几种氧化酶活性与植物对二氧化硫抗性的研究

植物受SO₂污染后有无不可见伤害的商榷

邓 立 杰 (广西植物研究所)

STUDIES ON SEVERAL OXIDASE ACTIVITIES AND RESISTANCE OF PLANTS TO SULFUR DIOXIDE

DISCUSSION ON PLANT POLLUTED BY SO₂ WHETHER EXISTS INVISIBLE INJURY

Deng Li-jie (Guangxi Institute of Botany)

摘要 分别用含100和200 ppm SO_2 (不致引起可见伤害)的两种亚硫酸 溶 液, 连续40 天, 每天一次定量喷射大猪屎青 (Crotalaria assamica Benth.) 后, 抗坏血酸 氧 化 酶、多酚氧化酶和过氧化物酶均比对照有较高的酶活性。再用250、275和300 ppm 的 SO_2 (可引起可见伤害浓度)浸泡30秒,以比较其出现可见伤害程度,结果发现,其伤害程度均依 次 比对照的为重,这一结果表明,经低浓度 SO_2 喷射过的大猪屎青已有了潜在的伤害,因此认为,大猪屎青对 SO_2 的反应中,不可见伤害或隐藏伤害是存在的,同时还认为,大猪屎青受到低于可见伤害浓度的 SO_2 污染后,酶活性的增高(或降低)是不可见伤害或隐藏伤害的标志。

前 盲

关于植物对SO₂的反应中是否存在"不可见伤害或隐藏伤害"问题,继 Katz(1949)^[8], Thomas, M. D. (1961)和Brandt, C. S. et al (1968)之后,余叔文等(1979)研究 植 物受 SO₂ 污染后质膜透性变化规律,结果认为,"植物对SO₂的反应中,可能不存在所谓不可见 伤害或隐藏伤害"^[1]。Tanaka, k. et al (1980)用0·1 ppm SO₂蒸熏白杨叶子20天后,再用 2 ppm 浓度熏蒸,然后测定叶中叶绿素受破坏程度,结果指出,经过低浓度(0·1 ppm) SO₂熏蒸后,白杨叶子对较高浓度SO₂ (2 ppm) 具有较大的抗性^[4]。我们在研究大猪屎青受 SO₂污染后(用含SO₂的亚硫酸溶液)发现,在浓度达受伤阈前,酶活性随浓度的增高而增大 (有的下降),认为这是它对不良外界条件影响的反应,是伤害的内在标志,仅是由于程度尚低,还未至于引起可见伤害而己。因此,大猪屎青受SO₂污染后不可见伤害或隐藏伤害可能 是存在^[2]。

材料和方法

以栽培了2个月的敏感植物大猪屎青为试验材料,用含100和200ppm SO₂(不致引起可见伤害)的亚硫酸液溶,连续进行定量喷射,每天一次,40天后测定抗坏血酸氧化酶、多酚氧化酶和过氧化物酶活性。然后再用含250、275和300 ppm SO₂(可引起可见伤害)的亚硫酸

溶液浸泡30秒, 4天后, 比较其可见伤害程度。酶活性测定方法同参考文献〔2〕。

结 果

一、低浓度(不致引起可见伤害)的SO。对大猪屎青几种氧化酶活性的影响。

大猪屎青经含100和200 ppm SO₂的亚硫酸溶液喷射40天后, 其酶活性测定结果,详见表1。

表 1

大猪屎青儿种氧化酶活性

F	每	,	*	ŧ	对	照	100	ppm	200 pp:	m.
抗	坏	酸氧	化	酶	0.3	79	1.	.43	2.35	
多	酚	氧	化	酶	5.0	38	7.	.03	7.03	
过	氧	化	物	酶	2.	29	11.	.10	11,26	

注: 酶活性测定重复三次,单位,毫克抗坏血酸/克鲜重/小时

从表 1 看出,喷射亚硫酸溶液后,大猪屎青的抗坏血酸氧化酶、多酚氧化酶和过氧化物酶均比对照 (未经 SO₂ 喷射)有较高的酶活性。抗坏血酸氧化酶分别增加81%和197%,多酚氧化物酶均为增加23%,过氧化物酶分别增加385%和392%。

二、经较长时间低浓度(不致引起可见伤害)SO,喷射的大猪**屎毒对较高浓度(可引起可**见伤害)SO。的抗性反应。

大猪青屎经含100和200 ppm SO₂的亚硫酸溶液喷射40天后,对250、275和300 ppm SO₂ 抗性反应的差异详见表 2。

表 2

大猪屎青航性反应

处理浓度	(1)未 经 SOz 喷 射	(Ⅱ)经100 ppm SO ₂ 喷射40天	(II)经200 ppm SO:喷射40天	
300 ppm	叶片明显出现黄褐斑点, 伤害 达100%。	同I。	同 I 和 II , (三者伤害程度相同,不易区别)。	
275 ppm	外观初看不易发现伤害症状。 但从叶下往上透光观察,有细 黄褐斑点出现。	外观有少量黄褐 斑点出现。 ,	外观有明显黄褐斑点出现,比 II重。	
250 ppm	从叶下往上透光观察,未见细 黄褐斑点出现。	外观不易辩别出伤害,但从叶 下往上透光观察,有细黄褐斑 点出现。	外观有轻微伤害, 从叶下往上 透光观察, 细黄褐斑点比 11多。	

表 2 表明,经低浓度(不致引起可见伤害)的 SO_2 喷射 40 天后的大猪屎青,其伤 春程 度 依次比对照(未经 SO_2 喷射)的为重。说明经低浓度 SO_2 喷射过的大猪屎青已有了潜在的(不可见的或隐藏的)伤害。

讨 论

我们用较低(不致引起可见伤害的)浓度(含 SO₂)的亚硫酸溶液,对大猪屎青喷射40天后,再用较高(可引起可见伤害的)浓度进行污染处理,结果发现,大猪屎青的伤害程度均比对照(未经SO₂喷射)的为重。这一结果表明,经低浓度较长时间喷射过的大猪屎青已有

了潜在的伤害。因此认为,大猪屎青对 SO_2 的反应中,不可见伤害或隐藏伤害是存在的,同时还认为,大猪屎青受到低于引起可见伤害浓度的 SO_2 污染后,酶活性的增高(或降低)是不可见伤害或隐藏伤害的标志。这一结论与余叔文等的研究结果不一致,特提出商榷。

但是,Tanaka,K. et al (1980)用0.1ppm SO_2 对白杨熏蒸了20天后,再暴露在2ppm SO_2 中,结果叶片叶绿素含量的减少较对照叶为少。认为这是经过0.1ppm SO_2 熏蒸 20天,有了较高的超氧化物歧化酶(SOD)活性的叶片对比照叶对 SO_2 毒性有较大的抗性 SO_2 。植物对受伤阈以下低浓度的 SO_2 的反应的不同,有待进一步详细研究。还有,在表示抗性大小方法中,Tanaka,K. 是用叶绿素含量的减少来表示,我们是用叶片出现可见伤害症状的程度来区分抗性的强弱。这里,叶绿素的破坏与植物受 SO_2 污染后出现的可见伤害程度 是 否呈正相关?反映植物对 SO_2 抗性强弱中,以叶绿素减少和可见伤害程度来表示,哪种 方 法为优?均有待进一步的研究讨论。

参加工作的还有李西丽同志及广西师范大学生物系79级学生黄乘明、范振芳同志。

参考文献

- [1] 余叔文等, 1979: 植物对二氧化硫的反应和抗性机理的研究——质膜透性变化和二氧化硫 的 伤 害, 植物生理学报, 5(4): 403—410。
- (2) 邓立杰, 1983: 几种氧化酶活性与植物对二氧化硫抗性的研究。植物本底及受污染后后酶活性 大 小与 抗性的关系,广西植物, 3(2): 137—143。
- (3) Linsworth, M. H. at al, 1976: Analysis of Gas Exchange between Plants and polluted Atmospheres, in T. A. Mansfield (ed.) Effects of Air Pollutants on Plants. 5—16. Cambridge University Press.
- (4) Tanaka, K. et al, 1980: Plant and Cell Physiology, 21(4): 601-611.