DOI: 10.11931/guihaia.gxzw201906041

夏胜应,刘志雄. *CygoSTK* 基因在普通春兰与奇花品种'天彭牡丹'中的表达比较 [J]. 广西植物, 2020, 40(4): 518-525. XIA SY, LIU ZX. Expression comparison of *CygoSTK* gene in *Cymbidium goeringii* and abnormal flower variety 'Tian Peng Mu Dan' [J]. Guihaia, 2020, 40(4): 518-525.

CygoSTK 基因在普通春兰与奇花品种 '天彭牡丹'中的表达比较

夏胜应,刘志雄*

(长江大学园艺园林学院,湖北荆州 434025)

摘 要:为深入研究春兰(Cymbidium goeringii)与春兰奇花品种花器官发育调控的分子机制,该研究采用 同源克隆的方法,分别从普通的春兰与春兰奇花品种'天彭牡丹'的花芽中克隆得到1个 cDNA 长 849 bp D类MADS-box 基因 CygoSTK(Genbank 登录号为 MH917912.1)。结果表明:该基因序列在两种春兰中高度 一致,包含1个长 705 bp 的完整 ORF,编码1个由 234个氨基酸残基组成的 STK 进化系 MADS-box 转录因 子;结构分析表明,CygoSTK 转录因子包含1个高度保守的 MADS 结构域(MADS domain)(1~57)和1个次 级保守的K 结构域(91~172),其C 末端的转录激活区含有两个高度保守的基序,即AGI 基序和AGII 基序; 进一步用 qPCR 检测 CygoSTK 基因在普通的春兰与春兰奇花品种'天彭牡丹'不同花器官中的相对表达量 发现,CygoSTK 基因在普通的春兰,子房中的表达量最高,显著高于该基因在相应品种其 他花器官中的表达量(LSD,P<0.05)。以上结果说明 CygoSTK 基因在功能上有很强的保守性,主要参与春 兰子房的发育。

关键词:春兰, CygoSTK 基因, MADS-box, 花发育, 实时荧光定量 中图分类号: Q943.2 文献标识码:A 文章编号: 1000-3142(2020)04-0518-08 开放科

开放科学(资源服务)标识码(OSID):

Expression comparison of *CygoSTK* gene in *Cymbidium goeringii* and abnormal flower variety 'Tian Peng Mu Dan'

XIA Shengying, LIU Zhixiong*

(College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China)

Abstract: In order to uncover the molecular mechanism of flower organ development regulation of *Cymbidium goeringii* and varieties with abnormal flower, a cDNA was cloned from the flower buds of the common *C. goeringii* and *C. goeringii* 'Tian Peng Mu Dan' by homologous cloning method. The 849 bp D-class MADS-box gene *CygoSTK* (Genbank

收稿日期: 2019-08-09

基金项目:国家自然科学基金 (31101202) [Supported by the National Natural Science Foundation of China (31101202)]。

作者简介:夏胜应(1994-),男,陕西安康人,硕士,主要从事园林植物种质资源与利用研究,(E-mail)925431216@qq.com。

通信作者:刘志雄,博士,副教授,主要从事植物发育遗传与种质创新研究,(E-mail)zxliu77@ yahoo.com。

accession number is MH917912.1), which was high identity in *C. goeringii* and *C. goeringii* 'Tian Peng Mu Dan', contained a 705 bp complete ORF, encoding 234 amino acid residues; Protein alignment and a phylogenetic tree grouped CygoSTK into the STK lineage. Structural analysis showed that CygoSTK transcription factor contained a highly conserved MADS domain (1-57) and a secondary conserved K domain (91-172); In addition, the C-terminal transcriptional activation region of CygoSTK contained two highly conserved motifs: AGI motif and AGII motif. Furthermore, the relative expression of *CygoSTK* gene in different floral organs of *C. goeringii* and *C. goeringii* 'Tian Peng Mu Dan' was detected by qPCR. Our data suggested that *CygoSTK* expression was the highest in the ovary of common *C. goeringii* and *C. goeringii* 'Tian Peng Mu Dan', which was significantly higher than that of the other floral organs (*LSD*, *P*<0.05). Our results indicate that the function of *CygoSTK* gene is highly conserved and *CygoSTK* is mainly involved in regulating the ovary development of *C. goeringii*.

Key words: Cymbidium goeringii, CygoSTK gene, MADS-box, ploral development, real-time quantitative PCR

春兰(Cymbidium goeringii)是兰科(Orchidaceae) 兰属(Cymbidium)地生兰类植物,又名朵兰、扑地 兰、幽兰、朵朵香、草兰,在我国有两千多年的栽培 历史,因其资源稀有和花型独特而成为人们最为 喜欢的国兰种类之一,是春兰育种的重要方向 (Xiang et al., 2018)。普通(野生)春兰主要分布 在我国的长江流域及西南地区,日本和朝鲜半岛 也均有分布(陈君梅等,2016)。春兰叶片飘逸、花 姿高雅、花色素淡、香气清幽,具有较高的观赏价 值和经济价值,深受东南亚人们的喜爱(Zuo et al., 2017; Han et al., 2018)。我国春兰栽培历史 悠久,自然变异类型丰富,积累了许多以花色、瓣 型、花型、叶艺等形色各异的名贵种质资源,形成 了深厚的养兰、赏兰文化。开发和选育观赏价值 高的春兰新品种,对于丰富我国春兰种质资源,弘 扬和传播国兰文化等具有重要的科学意义和经济 价值。

在春兰传统铭品中,春兰'天彭牡丹'作为牡 丹型奇花的代表,其唇瓣增多,合蕊柱无药帽,由 于其开花后酷似牡丹而备受国人青睐。前人对兰 科(Orchidaceae)植物意大利红门兰(Orchis italica) 的研究发现,其 SEEDSTICK(STK)同源基因 OitaSTK 对维持合蕊柱、胚珠和唇瓣形态的正常发 育有重要作用(Salemme et al., 2013)。在拟南芥 中,STK 是参与调控胚珠和种子正常发育的 D 类 MADS-box 基因,主要在胚珠和种子中表达(Hundertmark et al., 2008)。研究春兰花器官发育的 STK 基因的表达模式和功能,一方面有助于解析 春兰花器官形态建成分子基础,为春兰的花型改 良和分子育种积累基因资源;另一方面为研究兰 科植物的花型演变积累资料。本研究以普通(野 生)春兰(Cymbidium goeringii)与春兰奇花品种 '天彭牡丹'(C. goeringii 'Tian Peng Mu Dan')为 材料,在克隆其 D类 MADS-box 基因 CygoSTK 的基 础上,通过比较该基因在两个春兰品种花器官中 表达模式的差异,分析该基因的表达差异与花型 变异的相互关系,以期解析 CygoSTK 基因参与春 兰花发育调控的分子机制。

1 材料与方法

1.1 材料

普通(野生)春兰(Cymbidium goeringii)与春 兰奇花品种'天彭牡丹'(C. goeringii 'Tian Peng Mu Dan')引种后种植于湖北荆州长江大学园艺园 林学院人工气候室。于2018年1月份分别取其当 天开花的花朵,分别剥取春兰的花萼、花瓣、唇瓣、 花粉块、合蕊柱和子房和'天彭牡丹'的花萼、花 瓣、唇瓣、合蕊柱和子房。将其按组织分开,取样 后迅速放于液氮中速冻,于-80℃冰箱中保存 备用。

1.2 研究方法

1.2.1 春兰 RNA 的分离和第一链 cDNA 合成 采 用 EASY spin Plus 多糖多酚复杂植物 RNA 快速提 取试剂盒(北京艾德莱生物科技有限公司)分别提 取春兰与春兰'天彭牡丹'花芽的总 RNA,用 M-MLV逆转录酶(TaKaRa)合成第一链 cDNA,反应体系和操作按照说明书进行。

1.2.2 春兰 *CygoSTK* 基因的克隆 根据 Genbank 中 已公布的兰科植物 STK 同源基因的 5'非翻译区 (5' untranslation region, 5'UTR)和 3'UTR 的保守

序列设计春兰 STK 同源基因引物(表1),进行	う 春
兰 STK 同源基因的全长扩增,扩增程序和阳性	生克
隆的鉴定参考刘志雄和于先泥(2012)的方法。	弓
物合成和测序均由生工生物工程(上海)股份不	有限
公司完成。	

Table 1 Primer names and sequences

引物名称	序列 (5'→ 3')	用途
Primer name	Sequence (5'→ 3')	Function
GSPSTK-F	CAACGACGAGATGCACTTCTCTG	PCR
CygoSTK-R	CTGTAGCAAGACGCCTTAATGAC	PCR
Actin-F	ATTCAGCCTCTAGTTTGCGATAA	Actin qPCR
Actin-R	CAGCAAATCCAGCCTAACAAATG	Actin qPCR
qCygoSTK-F	TTGAGTATATGCAGAAACGAGAA	<i>CygoSTK</i> qPCR
qCygoSTK-R	TTGAGTCGAAGGTTGGAAGGGTC	<i>CygoSTK</i> qPCR

1.2.3 CygoSTK 基因序列结构分析 将分离得到的 春兰 CygoSTK 基因完整开放阅读框(Open Reading Frame, ORF)编码的蛋白在 NCBI 网页上执行 BlastP(https://blast.nebi.nlm.nih.gov/Blast.cgi)同 源搜索比对,选取来自不同被子植物的 20 个 STK 同源蛋白(表 2),采用 MEGA5.0 软件的邻接法 (NJ)构建蛋白序列的分子系统发育树。同时,选取 拟南芥(Arabidopsis thaliana)的 STK、矮牵牛(Petunia ×hybrida)的 FBP7、FBP11 和球花石斛(Dendrobium thyrsiflorum)等8 个物种的9 个 STK 同源蛋白(表 3), 用 BioEdit 7.2 软件中的 ClustalW 程序进行序列比对, 进一步分析 CygoSTK 蛋白的结构域。

1.2.4 CygoSTK 基因的表达分析 在 CygoSTK 基因 的非保守区域中设计引物,并以春兰的 CygoActin (GU181354.1)为内参基因,设计内参基因引物, 检测引物的特异性后,用实时荧光定量 PCR 技术 (quantitative real time PCR, qPCR) 检测 CygoSTK 基因在春兰不同花器官中表达的组织特异性,引 物序列见表 1。qPCR 在 CFX96(BIO-RAD,美国) 荧光定量 PCR 仪上进行,反应体系 20 μ L:ChamQ SYBR qPCR Master Mix 10 μ L;上、下游引物各 0.4 μ L;cDNA 模板 0.4 μ L;ddH₂O 8.6 μ L。反应程序: 95 ℃ 1 min;95 ℃ 10 s;60 ℃ 15 s;40 个循环。实 时荧光定量采用 ChamQ SYBR qPCR Master Mix 试 剂盒(购置于南京诺维赞生物科技有限公司),基 因的相对表达量按照 2^{-△△Ct}法计算。用 SPSS17.0 软件对数据进行统计分析。

2 结果与分析

2.1 两种春兰花结构的分析

普通春兰的花由 3 枚花萼、2 枚花瓣、1 枚特 化的唇瓣、2 个花药构成的花粉块、1 个合蕊柱和 1 个由 3 心皮合生的子房组成,其中花粉块着生于 合蕊柱上(图 1:A)。春兰'天彭牡丹'的花结构包 括 4 个花萼、花瓣 2 至多数、唇瓣 2 至多数、合蕊柱 顶端无花粉块,子房外观形态正常(图 1:B)。

2.2 春兰 CygoSTK 基因全长 cDNA 序列的克隆

春兰 CygoSTK 基因 cDNA 序列全长 849 bp,包 含1个长 111 bp 的 5'UTR,1个长 705 bp 的 ORF, 编码1个含 234 个氨基酸残基的 STK-like 转录因 子和1个终止密码子,同时该序列还包含1个长 33 bp 的 3'非翻译区。命名为 CygoSTK (Genbank 登录号为 MH917912.1)。序列结构分析表明,两 个品种中克隆得到的 CygoSTK 基因碱基序列完全 一致。

2.3 蛋白同源序列比对与分子系统发生分析

分子系统发生分析与进化树重建结果(图2) 表明,CygoSTK 转录因子与9个被子植物共10个 STK 同源蛋白共聚于 STK 进化系,是拟南芥 STK

表 2 构建分子系统发育树的 STK 同源蛋白

Table 2 STK homologous proteins for phylogenetic tree construction

蛋白质名称 Protein name	种名 Species name	登录号 Accession number
STK	拟南芥 Arabidopsis thaliana	NP_192734.1
FBP7	矮牵牛 Petunia × hybrida	CAA57311.1
FBP11	矮牵牛 Petunia × hybrida	CAA57445.1
HoMADS1	风信子 Hyacinthus orientalis	AAF08830.1
OritAG2	红门兰 Orchis italica	AFU81322.1
DthyrAG2	石斛兰 Dendrobium thyrsiflorum	ABQ08574.1
AG	拟南芥 Arabidopsis thaliana	NP_567569.1
SHP1	拟南芥 A. thaliana	AAA32730.1
SHP2	拟南芥 A. thaliana	AAA32735.1
PrpeSTK	桃 Prnus persica	ABQ85556.1
PravSTK	樱桃 P. avium	AEH41428.1
MaMADS1	小果野蕉 Musa acuminata	AAY53908.1
NAG1	烟草 Nicotiana tabacum	AAA17033.1
TAG1	番茄 Solanum lycopersicum	AAA34197.1
CeMADS1	建兰 Cymbidium ensifolium	ADP00515.1
FBP6	矮牵牛 Petunia × hybrida	CAA48635.1
PLE	金鱼草 Antirrhinum majus	AAB25101.1
LLAG1	铁炮百合 Lilium longiflorum	AAR98733.1
PrseSTK	日本晚樱 Prunus serrulata	ADD91578.1
CygoSTK	春兰 Cymbidium goeringii	MH917912.1

直系同源蛋白,其与拟南芥的 STK 转录因子的序 列相似性为 57.87%,该转录因子与单子叶植物的 STK 同源蛋白聚于1个小的进化分支,其与兰科植

表 3 构建不同物种 STK 同源蛋白比对的序列

Table 3Sequence alignment construction of different
species of STK homologous proteins

蛋白质名称 Protein name	种名 Species name	登录号 Accession number
CygoSTK	春兰 Cymbidium goeringii	
DthyrAG2	球花石斛 Dendrobium thyrsiflorum	AAY86365
HoMADS1	风信子 Hyacinthus orientalis	AAF08830
OritAG2	红门兰 Orchis italica	AFU81322
AVAG2	天门冬 Asparagus virgatus	BAD83772
LMADS2	铁炮百合 Lilium longiflorum	AAS01766
ApMADS2	百子莲 Agapanthus praecox	BAC66963
STK	拟南芥 Arabidopsis thaliana	NP_192734
FBP7	矮牵牛 Petunia × hybrida	CAA57311
FBP11	矮牵牛 Petunia × hybrida	CAA57445

物球花石斛 STK 同源蛋白 DthyrAG2 的亲缘关系 最近,序列相似性高达 88.46%,物种间的演化关 系在进化树上得到了很好支持。

蛋白同源序列比对结果(图 3)显示, CygoSTK 转录因子具有 1 个高度保守的 MADS 结构域 (MADS domain)(1~57), 1 个次级保守的 K 结构 域(91~172), 1 个保守性较低的 I 区(58~90)。 其 M 区有 57 个氨基酸, I 区有 33 个氨基酸, K 区 有 82 个氨基酸, C 区有 62 个氨基酸, 其 C 末端的 转录激活区含有两个高度保守的基序, 即 AGI 基 序和 AG II 基序, 且在该蛋白的最末端发现了单子 叶植物 D 类蛋白特有的 MD 基序(图 3)。这进一 步证实 CygoSTK 蛋白属于 MADS-box 基因家族中 的 D 类蛋白。

2.4 春兰 CygoSTK 基因在花器官中表达的组织特 异性分析

qPCR 检测分析结果(图 4)显示,在春兰中 CygoSTK 基因主要在花瓣、唇瓣、花粉团、合蕊柱和

A. 春兰; B. 春兰'天彭牡丹'。
A. Cymbidium goeringii; B. C. goeringii 'Tian Peng Mu Dan'.

图 1 两种春兰的花结构 Fig. 1 Flower structure of two kinds of *Cymbidium goeringii*

分支上的数字表示执行 1 000 次重复计算获得的自展百分比。标尺代表遗传距离。 The number represents the Bootstrap percentage values calculated by 1 000 replicates. The scale bar represents genetic distance.

> 图 2 CygoSTK 与其他植物 STK-like 蛋白的分子系统发生分析 Fig. 2 Phylogenetic analysis of CygoSTK and other STK-like proteins from different plants

第1个下划线代表 M 区,第2个下划线代表 K 区, M 区和 K 区之间是 I 区; AG I 基序、AG II 基序和 MD 基序用方框标出。 The first underline represents the M region, the second underline represents the K region, and the I region is between M region and the K region; AG I motif, AG II motif and MD motif are boxed.

图 3 CygoSTK 与其他物种 D 类 MADS-box 同源蛋白间的比较 Fig. 3 Comparison of CygoSTK with D-class MADS-box homologous proteins of other plants

ov. 子房。 se. Sepal; pe. Petal; lip. Labellum; an. Anther; gy. Gynostemi-

um; ov. Ovary.

图 4 CygoSTK 基因在两个品种花器官中的表达比较 Fig. 4 Comparison expression of CygoSTK gene in floral organs of two varieties

子房中表达,在花萼中仅能检测到微弱的转录信 号;其在子房中的表达量最高,均显著高于其在其 他花器官中的表达(*LSD*,*P*<0.05),在合蕊柱中的 表达量其次,但均显著高于其在花瓣、唇瓣和花粉 团中的表达量(*LSD*,*P*<0.05);同时,*CygoSTK* 基 因在唇瓣中的表达量显著高于花瓣和花粉团 (*LSD*,*P*<0.05),但其在花粉团中的表达与花瓣中 的表达量却无显著差异。在春兰'天彭牡丹'中 CygoSTK 基因主要在花萼、唇瓣、合蕊柱和子房中 表达,在花瓣中仅能检测到微弱的转录信号;与普 通春兰类似, CygoSTK 基因在春兰'天彭牡丹'子 房中的表达量最高,均显著高于其他花器官(LSD, P<0.05),在合蕊柱中的表达量次之,显著高于花 萼和唇瓣(LSD,P<0.05),同时在花萼中的表达量 也显著高于唇瓣(LSD, P<0.05)。从 CygoSTK 基 因在两种春兰同类花器官表达的差异来看, CygoSTK 基因在春兰'天彭牡丹'的花萼中有明显 表达,而在普通春兰花萼中仅能检测到微弱的转 录信号;在普通春兰的花瓣中有明显表达,而在春 兰'天彭牡丹'花瓣中仅能检测到微弱的转录信 号:但 CygoSTK 基因在普通春兰唇瓣中的表达量 却显著高于春兰'天彭牡丹'(LSD, P<0.05)。从 CygoSTK基因在普通春兰和春兰'天彭牡丹'合蕊 柱与子房中的表达量来看, CygoSTK 基因在普通春 兰子房中的表达量显著高于'天彭牡丹'(LSD,P< 0.05),但在两个品种合蕊柱中的表达量却无显著 性差异。

3 讨论

在本研究中,获得了春兰与春兰奇花品种'天 彭牡丹'花器官发育相关的1个 MADS-box 基因 CygoSTK。氨基酸序列比对、蛋白质结构域和系统进化树分析结果表明,CygoSTK蛋白均含有典型的MADS结构域和K结构域,是高度保守的D类MADS-box蛋白。

在被子植物中, MADS-box 基因表达模式的变 化大多会对植物的生长发育产生重要影响 (Kramer et al., 2004)。在模式植物拟南芥中, STK 基因主要在子房中表达,参与调控胚珠和种子的 发育(Hundertmark et al., 2008)。在石蒜科(Amaryllidaceae) 植物中国水仙(Narcissus tazetta var. chinensis)中,STK-like 基因 NtSTK 主要在雌蕊中表 达(吴菁华等,2015)。在蔷薇科(Rosaceae)植物 重瓣樱花'普贤像'中,STK 同源基因 PrseSTK 在花 萼、雄蕊和雌蕊中表达,其在花萼中异位表达导致 重瓣樱花萼筒上着生异位子房,进而参与调控樱 花单瓣与重瓣花的形态差异(刘志雄和李凤兰, 2015)。在棕榈科植物油棕(Elaeis guineensis)中, 其 STK 同源基因 SHELL 除参与调控果实形状发育 外,还参与种子油脂的合成(Singh et al., 2013)。 在兰科植物中,文心兰(Erycina pusilla)的 STK 同 源基因 EpMADS23 在合蕊柱中的表达量显著高于 其他花器官组织(Dirks-Mulder et al., 2017)。在 小屿蝴蝶兰(Phalaenopsis equestris)中, STK-like 基 因 PeMADS7 仅在合蕊柱中表达,且表达时间相对 较晚,PeMADS7转基因拟南芥表现出早花、叶片向 上弯曲以及种子不育增加等现象(You et al., 2012)。木石斛(Dendrobium crumenatum)的 STK 同源基因 DcOAG2 在合蕊柱、子房和花粉团中检测 到有表达,主要调控石斛兰子房的发育(Xu et al., 2010)。蝴蝶兰(Dendrobium thyrsiflorum)的STK 同源基因 PhalAG2 在唇瓣、蕊柱、子房中均有表 达,该基因与 C 类基因共同调控着蝴蝶兰子房的 发育(Song et al., 2006)。石斛兰的 STK 同源基因 DthvrAG2 在唇瓣、蕊柱和子房中均有表达,且在胚 珠晚期的发育中发挥着重要作用(Skipper et al., $2006)_{\circ}$

在本研究中, CygoSTK 基因主要在春兰的唇瓣、花粉团、合蕊柱和子房中表达, 其中在子房中的表达量显著地高于其他花器官, 表明 CygoSTK 基因对春兰子房的形成起着重要的调控作用。在 春兰奇花品种'天彭牡丹'中, CygoSTK 基因主要 在花萼、合蕊柱和子房中表达, CygoSTK 基因在春 兰'天彭牡丹'花萼中表达量高可能与其花萼增多 与形态变异相关,但具体的调控方式还有待于进 一步研究。从 CygoSTK 基因在两个春兰品种花器 官的表达模式来看,其主要在合蕊柱和子房中表 达,但在子房中的表达量显著高于其他花器官,在 春兰花发育过程中可能主要参与调控子房的 发育。

综上所述, CygoSTK 基因的表达在功能上具有 很强的保守性,主要参与春兰子房的发育,同时对 该基因的进一步研究对于春兰花器官形态改造及 定向的培育具有重要参考价值。

参考文献:

- CHEN JM, SONG JY, HE J, et al., 2016. Studies on volatile components in the flowers of *Cymbidium goeringii* and *Cymbidium faberi* in Qinling Mountains [J]. Acta Hortic Sin, 43(12): 2461 – 2472. [陈君梅, 宋军阳, 何洁, 等, 2016. 秦岭地区春兰和蕙兰的花挥发性成分研究 [J]. 园 艺学报, 43(12): 2461–2472.]
- DIRKS-MULDER A, BUTOT R, VAN SP, et al., 2017. Exploring the evolutionary origin of floral organs of *Erycina pusilla*, an emerging orchid model system [J]. BMC Evol Biol, 23(3): 17–89.
- HAN YP, KANG KW, KIM DH, et al., 2018. In vitro propagation of Cymbidium goeringii Reichenbach fil. through direct adventitious shoot regeneration [J]. Physiol Mol Biol Plant, 24(2): 307-313.
- HUMDERTMARK M, HINCHA DK, 2008. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana [J]. BMC Genomics, 118 (9): 1471-2164.
- KRAMER EM, PLUSCA C, PLUS CL, 2019. The developmental evolution of flowers [J]. Curr Top Dev Biol, 131(12): 211–238.
- LIU ZX, YU XN, 2012. Cloning and expressing analysis of a floral homeotic gene *PrseAP3* from *Prunus lannesiana* [J]. J Huazhong Agric Univ, 31(5): 578-583. [刘志雄, 于先 泥, 2012. 日本晚樱同源异型基因 *PrseAP3* 的克隆及其在 单瓣与重瓣花中的表达分析 [J]. 华中农业大学学报, 31(5):578-583.]
- LIU ZX, LI FL, 2015. Expression of a floral homeotic gene PrseSTK from Prunus lannesiana in single and double flower

- [J]. Bull Bot Res, 35(4): 535-539. [刘志雄, 李凤兰, 2015. 樱胚珠发育调控基因 *PrseSTK* 在单瓣与重瓣花中的 表达比较 [J]. 植物研究, 35(4):535-539.]
- SALEMME M, SICA M, GAUDIO L, et al., 2013. The OitaAG and OitaSTK genes of the orchid Orchis italica: A comparative analysis with other C- and D-class MADS-box genes [J]. Mol Biol Rep., 40(5); 3523-3535.
- SINGH R, LOW ET, OOI LC, et al., 2013. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK [J]. Nature, 500(7462): 340-344.
- SKIPPER M, JOHANSEN LB, PEDERSEN KB, et al., 2006. Cloning and transcription analysis of an AGAMOUS and SEEDSTICK ortholog in the orchid *Dendrobium thyrsiflorum* (Reichb. f.) [J]. Gene, 366(2): 266–274.
- SONG IJ, NAKAMURA T, FUKUDA T, et al., 2006. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in *Phalaenopsis* [J]. Dev Gene Evol, 216(6): 301–313.
- WU JH, WU SH, YANG C, et al., 2015. cDNA cloning, sequence analysis and tissue expression of *NtSTK* gene in *Nar*-

cissus tazetta var. *chinese* [J]. Chin J Trop Crop, 36(10): 1820-1824. [吴菁华, 吴少华, 杨超, 等, 2015. 中国水仙 *NtSTK* 基因的克隆、序列和组织表达分析 [J]. 热带作物 学报, 36(10):1820-1824.]

- XIANG L, CHEN Y, CHEN L, et al., 2018. B and E MADSbox genes determine the perianth formation in *Cymbidium go*eringii (Rchb. f.) [J]. Physiol Plant, 162(3): 353-369.
- XU Y, TEO LL, ZHOU J, et al., 2010. Floral organ identity genes in the orchid *Dendrobium crumenatum* [J]. Plant J, 46(1): 54-68.
- YOU YC, PEI FL, YU YH, et al., 2012. C- and D-class MADS-Box genes from *Phalaenopsis equestris* (Orchidaceae) display functions in gynostemium and ovule development [J]. Plant Cell Physiol, 53(6): 1053-1067.
- ZUO LJ, YU L, CHEN B, 2017. Studies on rhizome multiplication and differentiation of *Cymbidium sinense* × *Cymbidium goeringii* [J]. Agric Biotechnol, 6(6): 22–25.

(责任编辑 蒋巧媛)