en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴昊芬(1996—),硕士研究生,研究方向为中药学,(E-mail)2120200860@qq.com。

通讯作者:

任刚,教授,博士生导师,研究方向为中药和民族药的药效物质基础,(E-mail)20091005@jxutcm.edu.cn。

中图分类号:Q946

文献标识码:A

文章编号:1000-3142(2024)06-1060-10

DOI:10.11931/guihaia.gxzw202307001

参考文献
BADER G, TUJA D, WRAY V, et al. , 1993. Flavonol glycosides from Heteropappus altaicus and H. biennis [J]. Planta Med, 59(3): 284-285.
参考文献
CUI B, NAKAMURA M, KINJO J, et al. , 1993. Chemical constituents of Astragali semen [J]. Chem Pharm Bull, 41(1): 178-182.
参考文献
DAT LD, TUG NTM, DUC NV, et al. , 2019. Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels [J]. Carbohydr Res, 484: 107778.
参考文献
DRENIN AA, BOTIROV EK, TUROV YP, 2011. A new isoflavone glycoside from Trifolium pretense L. [J]. Russ J Bioorg Chem, 37(7): 862-865.
参考文献
Editorial Committee of Flora of China, 1993. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press: 78. [中国植物志编委会, 1993. 中国植物志 [M]. 北京: 科学出版社: 78. ]
参考文献
FENG WS, HAO ZY, ZHENG XK, et al. , 2007. Chemical constituents from leaves of Celastrus gemmatus Loes. [J]. Acta Phram Sin, 42(6): 625-630.
参考文献
FIORENTINO A, DELLA GM, D'ABROSCA B, et al. , 2006. Unusual sesquiterpene glucosides from Amaranthus retroflexus [J]. Tetrahedron, 62(38): 8952-8958.
参考文献
FU MQ, DENG D, FENG SX, et al. , 2012. Chemical constituents from roots of Flemingia philippinensis [J]. Chin Herb Med, 4(1): 8-11.
参考文献
GEIGER H, STEIN W, MUES R, et al. , 1987. Bryoflavone and heterobryoflavone, two new isoflavone-flavone dimers from Bryum capillare [J]. Z Naturforsch C, 42(12): 863-867.
参考文献
HAMBURGER MO, CORDELL GA, TANTIVATANA P, et al. , 1987. Traditional medicinal plants of Thailand, VIII. isoflavonoids of Dalbergia candenatensis [J]. J Nat Prod, 50(4): 696-699.
参考文献
HAN LF, ZHAO J, ZHANG Y, et al. , 2013. Chemical constituents from dried aerial parts of Eclipta prostrata [J]. Chin Herb Med, 5(4): 313-316.
参考文献
HE H, ZHAI M, 2008. Anti-myeloma mechanism of the study from genistein [J]. Nat Prod Res Dev, 20(6): 1067-1071. [何晖, 翟明, 2008. 4′, 5, 7三羟基异黄酮抗骨髓瘤细胞增殖机制的研究 [J]. 天然产物研究与开发, 20(6): 1067-1071. ]
参考文献
HOU RY, WU DM, JIAO WJ, et al. , 2021. Calycosin ameliorates glycolipid metabolism disorder and metabolic associated fatty liver disease symptoms in type 2 diabetic rats [J]. Chin J Pathophysiol, 37(11): 1965-1971. [侯瑞英, 吴冬梅, 焦伟杰, 等, 2021. 毛蕊异黄酮改善2型糖尿病模型大鼠的糖脂代谢紊乱和代谢相关脂肪性肝病症状 [J]. 中国病理生理杂志, 37(11): 1965-1971. ]
参考文献
HU P, MA CQ, LIU J, et al. , 2022. Effects and mechanism of naringin against vascular injury in diabetic mice [J]. Pharmacol Clin Chin Mat Med, 38(2): 64-69. [胡培, 马昌全, 刘佳, 等, 2022. 柚皮素抗糖尿病小鼠血管损伤的作用及其机制研究 [J]. 中药药理与临床, 38(2): 64-69. ]
参考文献
IBRAHIM ARS, GALAL AM, AHMED MS, et al. , 2003. O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans [J]. Chem Pharm Bull, 51(2): 203-206.
参考文献
JIA MR, ZHANG Y, 2016. Chinese ethnopharmaceutical dictionary [M]. Beijing: China Medical Science and Technology Press: 98. [贾敏如, 张艺, 2016. 中国民族药辞典 [M]. 北京: 中国医药科技出版社: 98. ]
参考文献
KWON DJ, BAE YS, 2011. Chemical constituents from the stem bark of Acer barbinerve [J]. Chem Nat Compd, 47(4): 636-639.
参考文献
LI WH, CHENG X, YANG YL, et al. , 2019. Kaempferol improves cerebral ischemia and reperfusion function in rats by inhibiting neuroinflammation and protecting the blood-brain barrier [J]. Chin J Pharmacol Toxicol, 33(9): 673. [李伟瀚, 程笑, 杨滢霖, 等, 2019. 山奈酚通过抑制神经炎症及保护血脑屏障而改善大鼠脑缺血再灌注神经功能 [J]. 中国药理学与毒理学杂志, 33(9): 673. ]
参考文献
LIU CD, CHEN J, WANG JH, 2009. A novel kaempferol triglycoside from flower buds of Panax quinquefolium [J]. Chem Nat Compd, 45(6): 808-810.
参考文献
PARVEEN Z, DENG Y, SAEED MK, et al. , 2007. Antiinflammatory and analgesic activities of Thesium hinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside [J]. Yakugaku Zasshi, 127(8): 1275-1279.
参考文献
QU DX, HAN JC, REN HH, et al. , 2016. Cardioprotective effects of astragalin against myocardial ischemia/reperfusion injury in isolated rat heart [J]. Oxid Med Cell Longev, 2016: 8194690.
参考文献
REN FZ, ZHANG L, NIU GY, et al. , 2005. Study on chemical constituents of sea breeze vine (I) [J]. Chin Tradit Herb Drugs, 36(2): 184-185. [任风芝, 张丽, 牛桂云, 等, 2005. 海风藤的化学成分研究(Ⅰ) [J]. 中草药, 36(2): 184-185. ]
参考文献
WANG JL, XU HM, LI WH, et al. , 2008. Study on chemical constituents of Astragalus dahuricus [J]. Chin J Chin Mat Med, 33(4): 414-416. [王金兰, 许红梅, 李卫宏, 等, 2008. 兴安黄芪化学成分研究 [J]. 中国中药杂志, 33(4): 414-416. ]
参考文献
WANG KH, YANG XY, ZHENG GS, et al. , 2022. Experimental study on the effect of naringenin on mitophagy of neuronal cells in mice with cerebral ischemia injury [J]. Shaanxi J Tradit Chin Med, 43(8): 997-1002. [王凯华, 杨鑫勇, 郑光珊, 等, 2022. 柚皮素对脑缺血损伤小鼠神经细胞线粒体自噬的影响实验研究 [J]. 陕西中医, 43(8): 997-1002. ]
参考文献
WANG KY, HUANG CX, LIU JY, et al. , 2022. Effect of naringin on the intestinal fibrosis in DSS induced colitis mice [C]// Chinese Society of Food Science and Technology. Abstracts of the 19th Annual Meeting of CIFST: 171-172. [王可盈, 黄春想, 刘俊阳, 等, 2022. 柚皮素对DSS诱导的结肠炎小鼠肠纤维化的改善作用研究 [C]//中国食品科学技术学会. 中国食品科学技术学会第十九届年会论文摘要集: 171-172. ]
参考文献
WANG SZ, ZHANG M, CHEN P, et al. , 2022. Effect of quercetin on neuropathic pain of diabetic rats and the influence on PI3K/AKT signaling pathway [J]. Pharmacol Clin Chin Mat Med, 38(2): 69-74. [王士珍, 张萌, 陈培, 等, 2022. 槲皮素对糖尿病大鼠神经病理性疼痛的改善作用及对PI3K/AKT信号通路的影响 [J]. 中药药理与临床, 38(2): 69-74. ]
参考文献
WANG X, LI L, CHEN YY, et al. , 2020. Study on the promoting effect and mechanism of naringenin on angiogenesis in rats with myocardial infarction [J]. J New Med, 51(12): 915-921. [王欣, 李磊, 陈元友, 等, 2020. 柚皮素对心肌梗死大鼠血管新生的促进作用及机制研究 [J]. 新医学, 51(12): 915-921. ]
参考文献
WANG XZ, ZHANG XY, MOU Y, et al. , 2021. Anti-tumor effect and mechanisms of calycosin: a review [J]. Chin J Exp Tradit Med Form, 27(23): 210-217. [王雪振, 张小雨, 牟悦, 等, 2021. 毛蕊异黄酮抗肿瘤作用及机制的研究进展 [J]. 中国实验方剂学杂志, 27(23): 210-217. ]
参考文献
WANG YJ, HAN BN, SHI YP, et al. , 2022. Protective effect and mechanism of millein isoflavone on respiratory syncytial virus induced pneumonia model mice [J]. J Chin Med Mat, 45(3): 715-719. [王玉君, 韩波妮, 史艳平, 等, 2022. 毛蕊异黄酮对呼吸道合胞病毒感染致肺炎模型小鼠的保护作用及机制研究 [J]. 中药材, 45(3): 715-719. ]
参考文献
WU H, DUSHENKOV S, HO CT, et al. , 2009. Novel acetylated flavonoid glycosides from the leaves of Allium ursinum [J]. Food Chem, 115: 592-595.
参考文献
WU T, ABDULLA R, YANG Y, et al. , 2008. Flavonoids from Gossypium hirsutum flowers [J]. Chem Nat Compd, 44(3): 370-373.
参考文献
YANG YC, 1991. Annals of Tibetan Medicine [M]. Xining: Qinghai People's Publishing House: 418. [杨永昌, 1991. 藏药志 [M]. 西宁: 青海人民出版社: 418. ]
参考文献
ZHANG JN, JIN XF, ZHANG Y, et al. , 2022. Protective effects of different doses of calycosin from Huangqi on neurons in rats with cerebral ischemia-reperfusion [J]. J Hebei Chin Med Pharmacol, 37(3): 43-47. [张彐宁, 靳晓飞, 张怡, 等, 2022. 黄芪中毛蕊异黄酮不同剂量对脑缺血再灌注大鼠神经细胞的保护作用 [J]. 河北中医药学报, 37(3): 43-47. ]
参考文献
ZHANG WT, LI J, WU YT, et al. , 2018. Effects of kaempferol-3-O-rutinoside on proliferation, migration and TGFBR1 signaling pathway activation in vascular smooth muscle cells [J]. Chin J Pathophysiol, 34(5): 832-838. [张文通, 李俊, 吴玉婷, 等, 2018. 山柰酚-3-O-芸香糖苷对血管平滑肌细胞增殖、迁移及TGFBR1信号通路活化的影响 [J]. 中国病理生理杂志, 34(5): 832-838. ]
参考文献
ZHAO BT, LE DD, NGUYEN PH, et al. , 2016. PTP1B, α-glucosidase, and DPP-IV inhibitory effects forchromene derivatives from the leaves of Smilax china L. [J]. Chem Biol Interact, 253: 27-37.
参考文献
ZHOU JL, MU ZJ, ZHONG GY, et al. , 2021. Research progress on chemical constituents and biological activities of Astragalus plants [J]. Chin Tradit Pat Med, 43(7): 1845-1851. [周家林, 慕泽泾, 钟国跃, 等, 2021. 黄芪属植物化学成分及生物活性研究进展 [J]. 中成药, 43(7): 1845-1851. ]
参考文献
ZHU Y, YE FM, REN J, et al. , 2016. Flavonoids from Illicium wardii [J]. Chem Nat Compd, 52(5): 899-901.
目录contents

    摘要

    为探究藏药萨嘎尔(坚硬黄耆)正丁醇部位的化学成分,该研究采用HP-20大孔吸附树脂、Sephadex LH-20、ODS柱层析及半制备高效液相(PHPLC)对坚硬黄耆乙醇提取物正丁醇部位进行分离纯化,并采用NMR和HR-ESI-MS等波谱方法对所分离化合物进行结构鉴定。结果表明:从坚硬黄耆正丁醇部位分离得到19个黄酮衍生物和1个倍半萜苷,其结构分别为7-O-methylorobol-4′-O-β-D-葡萄糖苷 (1)、mildiside A (2)、柚皮素 (3)、樱黄素4′-O-β-D-葡萄糖苷 (4)、orobot (5)、山柰酚-3-O-β-D-(6′-乙酰)葡萄糖苷 (6)、5,7-二羟基-4′-甲氧基异黄酮-2′-O-β-D-葡萄糖苷 (7)、amarantholidoside IV (8)、山柰酚-3-O-α-L-鼠李糖(1→2)-β-D-葡萄糖苷 (9)、山柰酚 (10)、5,7,4′-三羟基异黄酮 (11)、山柰酚-3-O-β-D-葡萄糖苷 (12)、(S)-mucronulatol (13)、毛蕊异黄酮 (14)、槲皮素 (15)、红车轴草素-7-O-β-D-葡萄糖苷 (16)、2′-羟基-3′,4′-二甲氧基异黄烷-7-O-β-D-葡萄糖苷 (17)、山柰酚-3-O-芸香糖苷 (18)、5,7,4′-三羟基-3′-甲氧基黄酮醇-3-O-芸香糖苷 (19)、槲皮素-3-O-β-D-葡萄糖苷 (20)。化合物1-9为首次在黄耆属中分离得到,其余化合物均为首次在坚硬黄耆中分离得到。该结果为坚硬黄耆的药效物质研究提供了基础数据,为未来合理开发利用该植物资源提供了理论依据。

    Abstract

    To study the chemical constituents of n-butanol extract from Astragalus rigidulus, HP-20 macroporous adsorption resin, Sephadex LH-20 gel, ODS gel column chromatography and semi-preparative high performance liquid chromatography were used to separate the chemical constituents. The structures of all isolates were identified by spectroscopic methods, including NMR and HR-ESI-MS. The results showed that twenty compounds including nineteen flavonoid derivatives and one sesquiterpene glycoside were isolated and purified from n-butanol extract of A. rigidulus. Their structures were identified as 7-O-methylorobol-4′-O-β-D-glucopyranoside (1), mildiside A (2), naringenin (3), purine 4′-O-β-D-glucoside (4), orobot (5), kaempferol-3-O-β-D-(6′-acetyl) glucopyranoside (6), 5,7-dihydroxy-4′-methoxyisoflavone-2′-O-β-D-glucopyranoside (7), amarantholidoside IV (8), kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (9), kaempferol (10), 5,7,4′-trihydroxyisoflavone (11), kaempferol-3-O-β-D-glucopyranoside (12), (S)-mucronulatol (13), calycosin (14), quercetin (15), pratensein-7-O-β-D-glucoside (16), 2′-hydroxy-3′,4′-dimethoxyisoflavan-7-O-β-D-glucoside (17), kaempferol-3-O-rutinoside (18), 5,7,4′-trihydroxy-3′-methoxyflavonol-3-O-rutinoside (19), quercetin-3-O-β-D-glucoside (20). It is the first report for the compounds 1-9 found in the genus Astragalus. The other compounds are isolated from the title plant for the first time. The results of this study provide basic data for the pharmacodynamic material study of A. rigidulus, and provide a theoretical reference for the rational development and utilization of the plant resources in the future.

  • 坚硬黄耆(Astragalus rigidulus),为豆科黄耆属多年生草本植物,分布于不丹、锡金、尼泊尔、中国西藏东部及南部(中国植物志编委会,1993),生长于海拔3 800~5 200 m的山坡草地或河滩砂砾地。笔者在西藏地区的考察调研表明,坚硬黄耆常作为藏药萨嘎尔的基原使用,是市场上流通的萨嘎尔商品药材最主流的基原物种。《中国民族药辞典》(贾敏如和张艺,2016)记载:“萨嘎尔全草或花治腹水、止肠痛,根治久病衰弱慢性肾炎浮肿,痈肿疮疖,贫血。”《藏药志》(杨永昌,1991)记载,萨嘎尔清肺热,泄水肿,治脾病,止肠痛,治腹水病。目前坚硬黄耆的化学成分和药理活性尚未见文献报道。

  • 笔者前期对坚硬黄耆的利尿功效进行了验证,并确认其主要活性部位为正丁醇部位,为阐明坚硬黄耆的活性物质基础,本文对正丁醇部位的化学成分进行了研究,从中分离得到20个化合物,分别鉴定为7-O-methylorobol-4′-O-β-D-葡萄糖苷(1)、mildiside A(2)、柚皮素(3)、樱黄素4′-O-β-D-葡萄糖苷(4)、orobot(5)、山柰酚-3-O-β-D-(6′-乙酰)葡萄糖苷(6)、5,7-二羟基-4′-甲氧基异黄酮-2′-O-β-D-葡萄糖苷(7)、amarantholidoside IV(8)、山柰酚-3-O-α-L-鼠李糖(1→2)-β-D-葡萄糖苷(9)、山柰酚(10)、5,7,4′-三羟基异黄酮(11)、山柰酚-3-O-β-D-葡萄糖苷(12)、(S)-mucronulatol(13)、毛蕊异黄酮(14)、槲皮素(15)、红车轴草素-7-O-β-D-葡萄糖苷(16)、2′-羟基-3′,4′-二甲氧基异黄烷-7-O-β-D-葡萄糖苷(17)、山柰酚-3-O-芸香糖苷(18)、5,7,4′-三羟基-3′-甲氧基黄酮醇-3-O-芸香糖苷(19)、槲皮素-3-O-β-D-葡萄糖苷(20)。化合物1-9为首次在黄耆属中分离得到,其余化合物均为首次在坚硬黄耆中分离得到。

  • 1 材料与仪器

  • 坚硬黄耆药材,购自西藏药材市场,经江西中医药大学中药资源与民族药研究中心慕泽泾老师鉴定为豆科黄耆属植物坚硬黄耆(Astragalus rigidulus)干燥全草。

  • AV-600核磁共振仪(德国Bruker公司);Triple-TOF5600+高分辨质谱仪(HR-QTOF-MS),配备ESI离子源及Analyst 1.6数据处理软件(美国AB SCIEX公司);LC-20AT高效液相、LC-6AD制备液相(日本Shimadzu公司);SHB-III型循环水式真空泵(郑州长城科工贸易有限公司);CP-214电子天平(上海奥豪斯仪器有限公司);R-210型旋转蒸发仪(瑞士BUCHI公司);SZ-93A型双重纯水蒸馏器(上海亚荣生化仪器厂);ZF-I型三用紫外分析仪(上海顾村电光仪器厂);BT25S型电子分析天平(北京赛多利斯仪器系统有限公司);薄层色谱硅胶板(青岛海洋化工有限公司);HP-20大孔吸附树脂(三菱化学株式会社);MCI CHP-20P树脂、Sephadex LH-20(瑞士Amersham Pharmacia公司);YMC-Pack ODS半制备柱(250 mm × 10 mm,5 μm)。色谱甲醇和乙腈均购自美国Tedia有限公司;分析纯甲醇、二氯甲烷、氯仿、石油醚、乙酸乙酯、乙醇均购自西陇化工股份有限公司。

  • 2 提取与分离

  • 取干燥坚硬黄耆全草药材,粉碎,得14.56 kg药粉。将药粉装入渗漉桶,依次以95%、50%乙醇进行渗漉提取,合并渗漉液,减压回收溶剂得浸膏4.18 kg。取4.1 kg浸膏加水适量混悬至无明显颗粒,依次用等体积石油醚、二氯甲烷、乙酸乙酯和正丁醇萃取,各溶剂萃取3次,减压浓缩回收有机溶剂,分别得到萃取物348.28 g(石油醚层)、125.26 g(二氯甲烷层)、69.43 g(乙酸乙酯层)、212.36 g(正丁醇层)、3 151.62 g(水层)。

  • 正丁醇部位经HP20大孔吸附色谱柱(乙醇-水0∶100→95∶5)得到11个流分(Fr.H0-Fr.H10)。Fr.H4(27.0 g)经MCI CHP-20P树脂柱色谱(甲醇-水10∶90→100∶0)得到4个流分(Fr.H4M1-Fr.H4M4),Fr.H4M3(0.5 g)经Sephadex LH-20凝胶柱色谱(甲醇)得到化合物10(17.6 mg);Fr.H4M1(9.3 g)经ODS反向柱色谱(甲醇-水0∶100→100∶0)得到5个流分(Fr.H4M1O1-Fr.H4M1O5)。Fr.H4M1O4(0.8 g)经Sephadex LH-20凝胶柱色谱(甲醇),继续经PHPLC(乙腈-水22∶78,3 mL·min-1,检测波长210 nm)制备得化合物8(36.5 mg);Fr.H4M1O2(4.9 g)在甲醇-水(100∶0)中自然沉淀,得到化合物12(2.6 g),其上清液经Sephadex LH-20凝胶柱色谱(甲醇)得到7个流分(Fr.H4M1O2L1-Fr.H4M1O2L7)。其中Fr.H4M1O2L2(351.1 mg)继续经PHPLC(乙腈-水18∶82,3 mL·min-1,检测波长210 nm)制备得化合物9(1.0 mg)、19(15.2 mg),Fr.H4M1O2L3(165.5 mg)经PHPLC(乙腈-水16∶84,3 mL·min-1,检测波长210 nm)制备得化合物18(3.0 mg),Fr.H4M1O2L7(52.1 mg)经PHPLC(乙腈-水16∶84,3 mL·min-1,检测波长210 nm)制备得化合物20(2.2 mg)。Fr.H5(27.3 g)经MCI CHP-20P树脂柱色谱(甲醇-水10∶90→100∶0)得到7个流分(Fr.H5M1-Fr.H5M7);Fr.H5M2(3.1 g)依次经Sephadex LH-20凝胶柱色谱(甲醇)得10个流分(Fr.H5M2L1-Fr.H5M2L10)。其中Fr.H5M2L7(77.8 mg)经PHPLC(乙腈-水16∶84,3 mL·min-1,检测波长210 nm)制备得化合物17(4.0 mg);Fr.H5M2L10(89.1 mg)经PHPLC(乙腈-水16∶84,3 mL·min-1,检测波长210 nm)制备得化合物16(2.5 mg),Fr.H5M2L9(25.1 mg)经PHPLC(乙腈-水25∶75,3 mL·min-1,检测波长210 nm)制备得化合物7(2.2 mg)、6(2.1 mg)。Fr.H5M5(7.2 g)经Sephadex LH-20凝胶柱色谱(甲醇)得化合物15(22.0 mg)和Fr.H5M5L3(11.0 mg),Fr.H5M5L3(11.0 mg)经PHPLC(乙腈-水24∶76,3 mL·min-1,检测波长210 nm)制备得化合物5(4.2 mg)。Fr.H5M6(4.0 g)经Sephadex LH-20凝胶柱色谱(甲醇)得到8个流分(Fr.H5M9L1-Fr.H5M9L8),其中Fr.H5M9L7(29.0 mg)经PHPLC(乙腈-水24∶76,3 mL·min-1,检测波长210 nm)制备得化合物4(5.1 mg)。Fr.H6(19.7 g)经Sephadex LH-20凝胶柱色谱法(甲醇)得到7个流分(Fr.H6L1-Fr.H6L7)。Fr.H6L4(2.4 g)经ODS反向柱色谱(甲醇-水10∶90→100∶0)得到9个流分(Fr.H6L4O1-Fr.H6L4O9)。Fr.H6L4O4(37.2 mg)经PHPLC(乙腈-水25∶75,3 mL·min-1,检测波长210 nm)制备得化合物14(3.1 mg)、3(2.0 mg);Fr.H6L4O5(28.5 mg)经PHPLC(乙腈-水30∶70,3 mL·min-1)制备得化合物1(9.1 mg)、11(4.2 mg); Fr.H6L4O7(26.8 mg)经PHPLC(乙腈-水30∶70,3 mL·min-1,检测波长210 nm)制备得化合物2(5.0 mg)、13(5.2 mg)。化合物1-20的结构式如图1所示。

  • 3 化合物结构鉴定

  • 化合物1   淡红色晶体(甲醇),分子式C22H22O11,ESI-MS m/z: 463.123 5 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 12.92(1H,s,OH-5),8.42(1H,s,H-2),7.15(1H,d,J=8.4 Hz,H-5′),7.06(1H,d,J=2.2 Hz,H-2′),6.93(1H,dd,J=8.4,2.2 Hz,H-6′),6.64(1H,d,J=2.2 Hz,H-8),6.40(1H,d,J=2.2 Hz,H-6),4.71(1H,d,J=7.3 Hz,H-1″),3.85(3H,s,OMe-7),3.73(1H,m,H-6″b),3.46(1H,m,H-6″a),3.34(1H,m,H-5″),3.32(1H,m,H-2″),3.29(1H,m,H-3″),3.19~3.15(1H,m,H-4″)。13C-NMR(150 MHz,DMSO-d6δ: 154.9(C-2),122.2(C-3),180.3(C-4),161.8(C-5),98.1(C-6),165.3(C-7),92.5(C-8),157.5(C-9),105.5(C-10),125.2(C-1′),116.7(C-2′),146.5(C-3′),145.4(C-4′),116.5(C-5′),120.0(C-6′),102.2(C-1″),73.3(C-2″),77.3(C-3″),69.9(C-4″),75.9(C-5″),60.8(C-6″),56.2(OMe-7)。上述数据与文献(Han et al.,2013)报道基本一致,故鉴定化合物1为7-O-methylorobol-4′-O-β-D-葡萄糖苷。

  • 图1 化合物 1-20的结构式

  • Fig.1 Structural formulas of compounds 1-20

  • 化合物2   淡黄色晶体(甲醇),分子式C23H24O11,ESI-MS m/z: 477.139 2 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 12.93(1H,s,OH-5),8.50(1H,s,H-2),7.22(1H,d,J=2.0 Hz,H-2′),7.15(1H,d,J=8.4 Hz,H-5′),7.10(1H,dd,J=8.4,2.0 Hz,H-6′),6.68(1H,d,J=2.2 Hz,H-8),6.43(1H,d,J=2.2 Hz,H-6),4.96(1H,d,J=7.5 Hz,H-1″),3.87(3H,s,OMe-3′),3.80(3H,s,OMe-7),3.67(1H,m,H-6″b),3.46(1H,m,H-6″a),3.33~3.25(4H,m,H-2″,3″,4″,5″)。13C-NMR(150 MHz,DMSO-d6δ: 155.1(C-2),122.2(C-3),180.3(C-4),161.8(C-5),98.2(C-6),165.3(C-7),92.5(C-8),157.5(C-9),105.4(C-10),124.3(C-1′),115.1(C-2′),148.6(C-3′),146.5(C-4′),113.5(C-5′),121.4(C-6′),100.0(C-1″),73.2(C-2″),77.1(C-3″),69.7(C-4″),76.9(C-5″),60.7(C-6″),55.8(OMe-7),56.2(OMe-3′)。上述数据与文献(Dat et al.,2019)报道基本一致,故鉴定化合物2为mildiside A。

  • 化合物3   白色无定型粉末,分子式C15H12O5,ESI-MS m/z: 273.075 8 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 7.31(2H,d,J=8.5 Hz,H-2′,6′),6.79(2H,d,J=8.6 Hz,H-3′,5′),5.86(2H,s,H-6,8),5.43(1H,dd,J=12.8,2.9 Hz,H-2),3.25(1H,dd,J=17.1,12.8 Hz,H-3a),2.67(1H,dd,J=17.1,2.9 Hz,H-3b)。13C-NMR(150 MHz,DMSO-d6δ: 78.5(C-2),41.9(C-3),196.3(C-4),163.7(C-5),95.9(C-6),167.3(C-7),95.2(C-8),162.9(C-9),101.8(C-10),128.9(C-1′),128.4(C-2′,6′),115.1(C-3′,5′),157.7(C-4′)。上述数据与文献(Ibrahim et al.,2003)报道基本一致,故鉴定化合物3为柚皮素。

  • 化合物4   淡黄色无定型粉末,分子式C22H22O10,ESI-MS m/z: 447.128 6 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 12.90(1H,s,OH-5),8.48(1H,s,H-2),7.51(2H,d,J =8.7 Hz,H-2′,6′),7.10(2H,d,J =8.7 Hz,H-3′,5′),6.68(1H,d,J=2.2 Hz,H-8),6.43(1H,d,J=2.2 Hz,H-6),4.91(1H,d,J=7.4 Hz,H-1″),3.88(3H,s,OMe-7),3.82~3.64(1H,m,H-6″b),3.52~3.44(1H,m,H-6″a),3.43~3.35(1H,m,H-5″),3.31~3.21(2H,m,H-2″,3″),3.21~3.11(1H,m,H-4″)。13C-NMR(150 MHz,DMSO-d6δ: 154.9(C-2),124.0(C-3),180.3(C-4),161.7(C-5),98.6(C-6),165.3(C-7),92.5(C-8),157.5(C-9),105.4(C-10),122.2(C-1′),130.1(C-2′,6′),116.1(C-3′,5′),157.3(C-4′),100.3(C-1″),73.2(C-2″),77.1(C-3″),69.7(C-4″),76.6(C-5″),60.7(C-6″),56.2(OMe-7)。上述数据与文献(Drenin et al.,2011)报道基本一致,故鉴定化合物4为樱黄素4′-O-β-D-葡萄糖苷。

  • 化合物5   淡黄色无定型粉末,分子式C15H10O6,ESI-MS m/z: 287.055 1 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 12.99(1H,s,OH-5),8.29(1H,s,H-2),6.99(1H,d,J=2.1 Hz,H-2′),6.80(1H,dd,J=8.2,2.1 Hz,H-6′),6.77(1H,d,J=8.2 Hz,H-5′),6.38(1H,d,J=2.1 Hz,H-8),6.22(1H,d,J=2.1 Hz,H-6)。13C-NMR(150 MHz,DMSO-d6δ: 154.0(C-2),121.6(C-3),180.2(C-4),162.0(C-5),98.9(C-6),164.3(C-7),93.6(C-8),157.5(C-9),104.5(C-10),122.4(C-1′),115.4(C-2′),144.9(C-3′),145.5(C-4′),116.5(C-5′),119.9(C-6′)。上述数据与文献(Geiger et al.,1987)报道基本一致,故鉴定化合物5为orobot。

  • 化合物6   暗黄色无定型粉末,分子式C23H22O12,ESI-MS m/z: 491.118 5 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 7.99(2H,d,J=8.9 Hz,H-2′,6′),6.87(2H,d,J=8.9 Hz,H-3′,5′),6.43(1H,d,J=2.1 Hz,H-8),6.20(1H,d,J=2.1 Hz,H-6),5.35(1H,d,J=7.5 Hz,H-1″),4.10(1H,dd,J=11.7,2.1 Hz,H-6″a),3.95(1H,dd,J=11.7,6.1 Hz,H-6″b),3.41(1H,m,H-5″),3.23(1H,m,H-2″),3.21(1H,m,H-3″),3.12(1H,m,H-4″),1.74(3H,s,H-8″)。13C-NMR(150 MHz,DMSO-d6δ: 156.5(C-2),133.1(C-3),177.3(C-4),161.2(C-5),98.8(C-6),160.0(C-7),93.7(C-8),156.4(C-9),101.1(C-10),120.8(C-1′),130.8(C-2′,6′),115.0(C-3′,5′),165.9(C-4′),104.3(C-1″),73.9(C-2″),76.1(C-3″),69.8(C-4″),74.1(C-5″),63.1(C-6″),169.8(C-7″),20.2(C-8″)。上述数据与文献(Zhu et al.,2016)报道基本一致,故鉴定化合物6为山柰酚3-O-β-D-(6′-乙酰)葡萄糖苷。

  • 化合物7   淡黄色无定型粉末,分子式C22H22O11,ESI-MS m/z: 463.123 5 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 8.13(1H,s,H-2),7.13(1H,d,J=8.3 Hz,H-6′),6.76(1H,d,J=2.3 Hz,H-3′),6.56(1H,d,J = 2.2 Hz,H-8),6.55(1H,dd,J = 8.3,2.3 Hz,H-5′),6.37(1H,d,J=2.2 Hz,H-6),4.93(1H,d,J=7.7 Hz,H-1″),3.89(3H,s,OMe-4′),3.70(1H,dd,J=12.0,5.5 Hz,H-6″a),3.66~3.56(1H,m,H-6″b),3.46~3.40(2H,m,H-2″,3″),3.37~3.32(2H,m,H-4″,5″)。13C-NMR(150 MHz,CD3OD)δ: 157.6(C-2),122.1(C-3),182.7(C-4),163.5(C-5),93.3(C-6),167.3(C-7),99.3(C-8),159.7(C-9),107.2(C-10),112.9(C-1′),157.8(C-2′),104.3(C-3′),160.4(C-4′),110.4(C-5′),133.5(C-6′),102.7(C-1″),73.8(C-2″),78.3(C-3″),71.2(C-4″),74.8(C-5″),62.5(C-6″),56.5(OMe-4′)。上述数据与文献(Zhao et al.,2016)报道基本一致,故鉴定化合物7为5,7-二羟基-4′-甲氧基异黄酮-2′-O-β-D-葡萄糖苷。

  • 化合物8   淡黄色无定型粉末,分子式C21H38O8,ESI-MS m/z: 419.264 0 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 5.93(1H,dd,J=17.4,10.8 Hz,H-2),5.25(1H,m,H-6),5.21(1H,dd,J=17.4,1.6 Hz,H-1a),5.04(1H,dd,J=10.8,1.6 Hz,H-1b),4.36(1H,d,J=7.8 Hz,H-1′),3.87(1H,dd,J=11.9,2.2 Hz,H-6′b),3.67(1H,dd,J=11.9,5.5 Hz,H-6′a),3.45(1H,dd,J=9.5,2.3 Hz,H-10),3.42~3.34(2H,m,H-4′,5′),3.32~3.19(2H,m,H-2′,3′),2.38(1H,m,H-8a),2.17(1H,m,H-8b),2.09~2.01(2H,m,H-5),1.63(3H,s,H-14),1.53(1H,dd,J=11.2,5.9 Hz,H-4),1.49~1.28(2H,m,H-9),1.27(3H,s,H-15),1.18(3H,s,H-12),1.15(3H,s,H-13)。13C-NMR(150 MHz,CD3OD)δ: 112.0(C-1),146.3(C-2),73.8(C-3),43.5(C-4),3.7(C-5),126.4(C-6),135.9(C-7),31.3(C-8),37.0(C-9),89.2(C-10),73.5(C-11),24.5(C-12),26.5(C-13),15.9(C-14),27.6(C-15),105.3(C-1′),75.3(C-2′),78.1(C-3′),71.5(C-4′),78.0(C-5′),62.5(C-6′)。上述数据与文献(Fiorentino et al.,2006)报道基本一致,故鉴定化合物8为amarantholidoside IV。

  • 化合物9   淡黄色无定型粉末,分子式C27H30O15,ESI-MS m/z: 595.165 8 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 8.05(2H,d,J=8.9 Hz,H-2′,6′),6.89(2H,d,J=8.9 Hz,H-3′,5′),6.37(1H,d,J=2.0 Hz,H-8),6.18(1H,d,J=2.0 Hz,H-6),5.75(1H,d,J=7.6 Hz,H-1″),5.23(1H,d,J=1.6 Hz,H-1’’’),4.04(1H,m,H-5’’’),4.00(1H,m,H-2’’’),3.78(1H,m,H-3’’’),3.74(1H,dd,J=12.0,2.2 Hz,H-6″a),3.62(1H,m,H-2″),3.56(1H,m,H-5″),3.51(1H,dd,J=12.0,5.7 Hz,H-6″b),3.36~3.34(1H,m,H-4’’’),3.30~3.27(1H,m,H-4″),3.23(1H,m,H-3″),0.96(3H,d,J=6.2 Hz,H-6’’’)。13C-NMR(150 MHz,CD3OD)δ: 158.4(C-2),134.4(C-3),179.4(C-4),163.2(C-5),99.7(C-6),165.8(C-7),94.6(C-8),158.5(C-9),105.9(C-10),123.1(C-1′),132.1(C-2′,6′),116.1(C-3′,5′),161.3(C-4′),100.3(C-1″),80.0(C-2″),78.9(C-3″),71.8(C-4″),78.4(C-5″),62.6(C-6″),102.6(C-1’’’),72.4(C-2’’’),72.3(C-3’’’),74.0(C-4’’’),69.9(C-5’’’),17.5(C-6’’’)。上述数据与文献(Wu et al.,2009)报道基本一致,故鉴定化合物9为山柰酚-3-O-α-L-鼠李糖(1→2)-β-D-葡萄糖苷。

  • 化合物10   黄色无定形粉末,分子式C15H10O6,ESI-MS m/z: 287.055 1 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 8.04(2H,d,J=8.9 Hz,H-3′,5′),6.92(2H,d,J=8.9 Hz,H-2′,6′),6.43(1H,d,J=2.0 Hz,H-8),6.18(1H,d,J=2.0 Hz,H-6)。13C-NMR(150 MHz,DMSO-d6δ: 146.7(C-2),135.7(C-3),175.9(C-4),156.2(C-5),98.3(C-6),164.2(C-7),93.5(C-8),160.7(C-9),102.9(C-10),121.7(C-1′),129.5(C-2′,6′),115.4(C-3′,5′),159.2(C-4′)。上述数据与文献(Liu et al.,2009)报道基本一致,故鉴定化合物10为山柰酚。

  • 化合物11   黄色无定型粉末,分子式C15H10O5,ESI-MS m/z: 271.060 1 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 7.36(2H,d,J=8.6 Hz,H-2′,6′),6.81(2H,d,J=8.6 Hz,H-3′,5′),6.31(1H,d,J=2.0 Hz,H-8),6.15(1H,d,J=2.0 Hz,H-6)。13C-NMR(150 MHz,DMSO-d6δ: 153.7(C-2),121.4(C-3),178.0(C-4),157.4(C-5),99.5(C-6),161.9(C-7),93.9(C-8),157.7(C-9),104.0(C-10),122.1(C-1′),130.2(C-2′,6′),115.1(C-3′,5′),161.7(C-4′)。上述数据与文献(任风芝等,2005)报道基本一致,故鉴定化合物11为5,7,4′-三羟基异黄酮。

  • 化合物12   黄色无定型粉末,分子式C21H20O11,ESI-MS m/z: 449.107 9 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 8.05(2H,d,J=8.8 Hz,H-2′,6′),6.89(2H,d,J=8.8 Hz,H-3′,5′),6.39(1H,d,J=1.8 Hz,H-8),6.20(1H,d,J=1.8 Hz,H-6),5.24(1H,d,J=7.3 Hz,H-1″),3.68(1H,dd,J=11.8,2.4 Hz,H-6″b),3.52(1H,dd,J=11.8,5.5 Hz,H-6″a),3.45~3.39(2H,m,H-2″,5″),3.30(1H,m,H-3″),3.20(1H,ddd,J=9.8,5.5,2.4 Hz,H-4″)。13C-NMR(150 MHz,CD3OD)δ: 159.0(C-2),135.4(C-3),179.4(C-4),163.1(C-5),104.1(C-6),166.7(C-7),95.0(C-8),158.6(C-9),105.6(C-10),122.8(C-1′),132.3(C-2′,6′),116.1(C-3′,5′),161.6(C-4′),100.1(C-1″),75.8(C-2″),78.4(C-3″),71.3(C-4″),78.0(C-5″),62.6(C-6″)。上述数据与文献(Wu et al.,2009)报道基本一致,故鉴定化合物12为山柰酚-3-O-β-D-葡萄糖苷。

  • 化合物13   白色无定型粉末,分子式C17H18O5,ESI-MS m/z: 303.122 7 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 9.16(1H,s,OH-7),8.62(1H,s,OH-3′),6.85(1H,d,J=8.2 Hz,H-5),6.68(1H,d,J=8.6 Hz,H-5′),6.59(1H,d,J=8.6 Hz,H-6′),6.27(1H,dd,J=8.2,2.4 Hz,H-6),6.18(1H,d,J=2.4 Hz,H-8),4.09(1H,ddd,J=10.3,3.5,2.1 Hz,H-2b),3.89(1H,t,J=10.3 Hz,H-2a),3.74(3H,s,OMe-4′),3.72(3H,s,OMe-2′),3.30(1H,m,H-3),2.83(1H,dd,J=15.6,11.3 Hz,H-4a),2.70(1H,dd,J=15.6,4.5 Hz,H-4b)。13C-NMR(150 MHz,DMSO-d6δ: 70.2(C-2),31.8(C-3),31.3(C-4),130.5(C-5),108.4(C-6),157.0(C-7),103.0(C-8),155.0(C-9),113.2(C-10),116.7(C-1′),146.5(C-2′),139.7(C-3′),148.2(C-4′),108.0(C-5′),127.3(C-6′),56.4(OMe-2′),60.7(OMe-4′)。上述数据与文献(Hamburger et al.,1987)报道基本一致,故鉴定化合物13为(S)-mucronulatol。

  • 化合物14   淡黄色无定型粉末,分子式C16H12O5,ESI-MS m/z: 285.075 8 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 9.02(1H,s,OH-3′),8.27(1H,s,H-2),7.94(1H,d,J=8.8 Hz,H-5),7.03(1H,d,J=1.7 Hz,H-6′),6.96~6.94(2H,m,H-2′,5′),6.91(1H,dd,J=8.8,2.2 Hz,H-6),6.84(1H,d,J=2.2 Hz,H-8),3.78(3H,s,OMe-4′)。13C-NMR(150 MHz,DMSO-d6δ: 153.0(C-2),124.7(C-3),174.6(C-4),127.3(C-5),115.3(C-6),163.2(C-7),102.1(C-8),157.5(C-9),116.7(C-10),123.3(C-1′),116.4(C-2′),146.0(C-3′),147.5(C-4′),112.0(C-5′),119.7(C-6′),55.7(OMe-4′)。上述数据与文献(Cui et al.,1993)报道基本一致,故鉴定化合物14为毛蕊异黄酮。

  • 化合物15   暗黄色无定型粉末,分子式C15H10O7,ESI-MS m/z: 303.050 6 [M+H]+1H-NMR(600 MHz,DMSO-d6δ: 12.48(1H,s,OH-5),7.66(1H,d,J=2.2 Hz,H-2′),7.54(1H,dd,J=8.5,2.2 Hz,H-6′),6.88(1H,d,J=8.5 Hz,H-5′),6.41(1H,d,J=2.0 Hz,H-8),6.18(1H,d,J=2.0 Hz,H-6)。13C-NMR(150 MHz,DMSO-d6δ: 146.8(C-2),135.8(C-3),175.9(C-4),160.7(C-5),98.3(C-6),164.1(C-7),93.4(C-8),156.2(C-9),103.0(C-10),122.0(C-1′),115.1(C-2′),145.1(C-3′),147.8(C-4′),115.7(C-5′),120.0(C-6′)。上述数据与文献(Wu et al.,2008)报道基本一致,故鉴定化合物15为槲皮素。

  • 化合物16   淡黄色无定型粉末,分子式C22H22O11,ESI-MS m/z: 463.123 5 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 8.19(1H,s,H-2),7.18(1H,d,J=2.0 Hz,H-2′),6.99(1H,dd,J=8.2,2.0 Hz,H-6′),6.86(1H,d,J=8.2 Hz,H-5′),6.72(1H,d,J=2.2 Hz,H-8),6.53(1H,d,J=2.2 Hz,H-6),5.05(1H,d,J=7.2 Hz,H-1″),3.90(3H,s,OMe-7),3.72(1H,m,H-6″a),3.65(1H,m,H-6″b),3.58(1H,m,H-3″),3.50~3.46(2H,m,H-2″,4″),3.43~3.38(1H,m,H-5″)。13C-NMR(150 MHz,CD3OD)δ: 155.6(C-2),123.6(C-3),182.5(C-4),163.6(C-5),101.1(C-6),164.8(C-7),95.9(C-8),159.2(C-9),108.0(C-10),125.1(C-1′),114.0(C-2′),148.1(C-3′),148.8(C-4′),116.2(C-5′),122.9(C-6′),101.6(C-1″),74.7(C-2″),78.38(C-3″),71.2(C-4″),77.8(C-5″),62.40(C-6″),56.5(OMe-4′)。上述数据与文献(Fu et al.,2012)报道基本一致,故鉴定化合物16为红车轴草素-7-O-β-D-葡萄糖苷。

  • 化合物17   淡黄色晶体(甲醇),分子式C23H28O10,ESI-MS m/z: 465.175 6 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 7.00(1H,d,J=8.4 Hz,H-5),6.72(1H,d,J=8.6 Hz,H-6′),6.65(1H,dd,J=8.4,2.5 Hz,H-6),6.63(1H,d,J=8.6 Hz,H-5′),6.59(1H,d,J=2.5 Hz,H-8),4.87(1H,overlap,H-1″),4.23(1H,ddd,J=10.4,3.5,2.1 Hz,H-2b),3.97(1H,t,J=10.4 Hz,H-2a),3.91(1H,dd,J=12.1,2.0 Hz,H-6″b),3.86(3H,s,OMe-4′),3.85(3H,s,OMe-3′),3.73(1H,dd,J=12.1,5.1 Hz,H-6″a),3.46(1H,m,H-3),3.50~3.39(4H,m,H-2″,3″,4″,5″),2.95(1H,m,H-4a),2.86(1H,m,H-4b)。13C-NMR(150 MHz,CD3OD)δ: 71.7(C-2),33.1(C-3),32.5(C-4),131.1(C-5),108.4(C-6),158.4(C-7),102.5(C-8),156.2(C-9),117.8(C-10),128.4(C-1′),147.3(C-2′),140.7(C-3′),149.8(C-4′),110.3(C-5′),117.8(C-6′),105.7(C-1″),74.9(C-2″),78.1(C-3″),71.4(C-4″),78.0(C-5″),62.5(C-6″),61.3(OMe-3′),56.7(OMe-4′)。上述数据与文献(王金兰等,2008)报道基本一致,故鉴定化合物17为2′-羟基-3′,4′-二甲氧基异黄烷-7-O-β-D-葡萄糖苷。

  • 化合物18   黄色无定型粉末,分子式C27H30O15,ESI-MS m/z: 595.165 8 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 8.07(2H,d,J=8.8 Hz,H-2′,6′),6.89(2H,d,J=8.8 Hz,H-3′,5′),6.40(1H,d,J=2.0 Hz,H-8),6.21(1H,d,J=2.0 Hz,H-6),5.13(1H,d,J=7.3 Hz,H-1″),4.52(1H,d,J=1.6 Hz,H-1’’’),3.81(1H,dd,J=11.1,1.6 Hz,H-6″a),3.62~3.53(1H,m,H-3’’’),3.54~3.34(6H,m,H-2″,3″,5″,2’’’,5’’’,6″b),3.29~3.23(2H,m,H-4″,4’’’),1.12(3H,d,J=6.2 Hz,H-6’’’)。13C-NMR(150 MHz,CD3OD)δ: 159.4(C-2),135.5(C-3),179.4(C-4),163.1(C-5),100.1(C-6),166.3(C-7),95.0(C-8),158.6(C-9),105.6(C-10),122.8(C-1′),132.4(C-2′,6′),116.1(C-3′,5′),161.5(C-4′),104.6(C-1″),75.8(C-2″),78.2(C-3″),72.3(C-4″),77.2(C-5″),68.6(C-6″),102.4(C-1’’’),71.4(C-2’’’),72.1(C-3’’’),73.9(C-4’’’),69.7(C-5’’’),17.9(C-6’’’)。上述数据与文献(Feng et al.,2007)报道基本一致,故鉴定化合物18为山柰酚-3-O-芸香糖苷。

  • 化合物19   黄色无定型粉末,分子式C28H32O16,ESI-MS m/z: 625.176 4 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 7.97(1H,d,J=2.1 Hz,H-2′),7.65(1H,dd,J=8.4,2.1 Hz,H-6′),6.94(1H,d,J=8.4 Hz,H-5′),6.43(1H,dd,J=4.0,2.1 Hz,H-8),6.23(1H,d,J=2.1 Hz,H-6),5.26(1H,d,J=7.5 Hz,H-1″),4.55(1H,d,J=1.6 Hz,H-1’’’),3.97(3H,s,OMe-3′),3.82(1H,dd,J=11.3,1.6 Hz,H-6″a),3.62(1H,dd,J=3.5,1.6 Hz,H-3’’’),3.50~3.38(6H,m,H-2″,3″,5″,2’’’,5’’’,6″b),3.28~3.22(2H,m,H-4″,4’’’),1.12(3H,d,J=6.2 Hz,H-6’’’)。13C-NMR(150 MHz,CD3OD)δ: 158.5(C-2),135.4(C-3),179.3(C-4),158.8(C-5),100.0(C-6),166.2(C-7),94.9(C-8),163.0(C-9),105.7(C-10),123.0(C-1′),114.5(C-2′),148.3(C-3′),150.8(C-4′),116.1(C-5′),124.0(C-6′),104.4(C-1″),75.9(C-2″),78.2(C-3″),71.6(C-4″),77.4(C-5″),68.5(C-6″),102.5(C-1’’’),72.1(C-2’’’),72.3(C-3’’’),73.8(C-4’’’),69.8(C-5’’’),17.9(C-6’’’),56.8(OMe-3′)。上述数据与文献(Bader et al.,1993)报道基本一致,故鉴定化合物19为5,7,4′-三羟基-3′-甲氧基黄酮醇-3-O-芸香糖苷。

  • 化合物20   黄色无定型粉末,分子式C21H20O12,ESI-MS m/z: 465.102 8 [M+H]+1H-NMR(600 MHz,CD3OD)δ: 7.73(1H,d,J=2.2 Hz,H-2′),7.61(1H,dd,J=8.4,2.2 Hz,H-6′),6.88(1H,d,J=8.4 Hz,H-5′),6.37(1H,d,J=2.1 Hz,H-8),6.19(1H,d,J=2.1 Hz,H-6),5.23(1H,d,J=7.7 Hz,H-1″),3.76~3.18(5H,m,H-2″-6″)。13C-NMR(150 MHz,CD3OD)δ: 158.7(C-2),135.6(C-3),179.2(C-4),163.0(C-5),100.6(C-6),168.0(C-7),95.2(C-8),158.6(C-9),105.1(C-10),123.1(C-1′),116.0(C-2′),146.0(C-3′),149.9(C-4′),117.5(C-5′),123.2(C-6′),104.5(C-1″),75.7(C-2″),78.4(C-3″),71.2(C-4″),78.2(C-5″),62.6(C-6″)。上述数据与文献(Kwonj &Bae,2011)报道基本一致,故鉴定化合物20为槲皮素-3-O-β-D-葡萄糖苷。

  • 4 讨论与结论

  • 黄耆属植物富含黄酮类成分,骨架主要为黄酮、黄酮醇、异黄酮及异黄烷等(周家林等,2021)。笔者首次对坚硬黄耆正丁醇部位的化学成分进行了研究,从中分离鉴定了20个化合物,包括19个黄酮类成分和1个倍半萜苷。其中化合物1-9为首次在黄耆属中分离得到。

  • 本研究显示坚硬黄耆正丁醇部位富含黄酮类成分,其中丰量成分为山柰酚-3-O-β-D-葡萄糖苷(12)。由文献调研可知,这些化合物具有广泛的生理活性,如抗炎(31214)(Parveen et al.,2007; 王可盈等,2022; 王玉君等,2022)、抗心肌缺血再灌注性损伤(12)(Qu et al.,2016)、镇痛(12)(Parveen et al.,2007)、抗糖尿病(31415)(侯瑞英等,2021;胡培等,2022;王士珍等,2022)、抑制骨髓瘤细胞增殖(11)(何晖和翟明,2008)、抗肿瘤(14)(王雪振等,2021)、抑制血管平滑肌细胞增殖(18)(张文通等,2018)、促进血管新生(3)(王欣等,2020)、改善脑缺血后神经损伤(31014)(李伟瀚等,2019; 王凯华等,2022; 张彐宁等,2022)。然而,根据现有文献尚无法推测这些化合物对其所在正丁醇部位是否有利尿作用。后期研究中,笔者拟基于利尿细胞模型对所分离单体进行活性筛选,以进一步明晰坚硬黄耆发挥利尿功效的药效物质基础。综上所述,本研究为坚硬黄耆的药效物质基础提供了基础数据,也为未来合理开发利用该植物资源提供了理论依据。

  • 参考文献

    • BADER G, TUJA D, WRAY V, et al. , 1993. Flavonol glycosides from Heteropappus altaicus and H. biennis [J]. Planta Med, 59(3): 284-285.

    • CUI B, NAKAMURA M, KINJO J, et al. , 1993. Chemical constituents of Astragali semen [J]. Chem Pharm Bull, 41(1): 178-182.

    • DAT LD, TUG NTM, DUC NV, et al. , 2019. Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels [J]. Carbohydr Res, 484: 107778.

    • DRENIN AA, BOTIROV EK, TUROV YP, 2011. A new isoflavone glycoside from Trifolium pretense L. [J]. Russ J Bioorg Chem, 37(7): 862-865.

    • Editorial Committee of Flora of China, 1993. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press: 78. [中国植物志编委会, 1993. 中国植物志 [M]. 北京: 科学出版社: 78. ]

    • FENG WS, HAO ZY, ZHENG XK, et al. , 2007. Chemical constituents from leaves of Celastrus gemmatus Loes. [J]. Acta Phram Sin, 42(6): 625-630.

    • FIORENTINO A, DELLA GM, D'ABROSCA B, et al. , 2006. Unusual sesquiterpene glucosides from Amaranthus retroflexus [J]. Tetrahedron, 62(38): 8952-8958.

    • FU MQ, DENG D, FENG SX, et al. , 2012. Chemical constituents from roots of Flemingia philippinensis [J]. Chin Herb Med, 4(1): 8-11.

    • GEIGER H, STEIN W, MUES R, et al. , 1987. Bryoflavone and heterobryoflavone, two new isoflavone-flavone dimers from Bryum capillare [J]. Z Naturforsch C, 42(12): 863-867.

    • HAMBURGER MO, CORDELL GA, TANTIVATANA P, et al. , 1987. Traditional medicinal plants of Thailand, VIII. isoflavonoids of Dalbergia candenatensis [J]. J Nat Prod, 50(4): 696-699.

    • HAN LF, ZHAO J, ZHANG Y, et al. , 2013. Chemical constituents from dried aerial parts of Eclipta prostrata [J]. Chin Herb Med, 5(4): 313-316.

    • HE H, ZHAI M, 2008. Anti-myeloma mechanism of the study from genistein [J]. Nat Prod Res Dev, 20(6): 1067-1071. [何晖, 翟明, 2008. 4′, 5, 7三羟基异黄酮抗骨髓瘤细胞增殖机制的研究 [J]. 天然产物研究与开发, 20(6): 1067-1071. ]

    • HOU RY, WU DM, JIAO WJ, et al. , 2021. Calycosin ameliorates glycolipid metabolism disorder and metabolic associated fatty liver disease symptoms in type 2 diabetic rats [J]. Chin J Pathophysiol, 37(11): 1965-1971. [侯瑞英, 吴冬梅, 焦伟杰, 等, 2021. 毛蕊异黄酮改善2型糖尿病模型大鼠的糖脂代谢紊乱和代谢相关脂肪性肝病症状 [J]. 中国病理生理杂志, 37(11): 1965-1971. ]

    • HU P, MA CQ, LIU J, et al. , 2022. Effects and mechanism of naringin against vascular injury in diabetic mice [J]. Pharmacol Clin Chin Mat Med, 38(2): 64-69. [胡培, 马昌全, 刘佳, 等, 2022. 柚皮素抗糖尿病小鼠血管损伤的作用及其机制研究 [J]. 中药药理与临床, 38(2): 64-69. ]

    • IBRAHIM ARS, GALAL AM, AHMED MS, et al. , 2003. O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans [J]. Chem Pharm Bull, 51(2): 203-206.

    • JIA MR, ZHANG Y, 2016. Chinese ethnopharmaceutical dictionary [M]. Beijing: China Medical Science and Technology Press: 98. [贾敏如, 张艺, 2016. 中国民族药辞典 [M]. 北京: 中国医药科技出版社: 98. ]

    • KWON DJ, BAE YS, 2011. Chemical constituents from the stem bark of Acer barbinerve [J]. Chem Nat Compd, 47(4): 636-639.

    • LI WH, CHENG X, YANG YL, et al. , 2019. Kaempferol improves cerebral ischemia and reperfusion function in rats by inhibiting neuroinflammation and protecting the blood-brain barrier [J]. Chin J Pharmacol Toxicol, 33(9): 673. [李伟瀚, 程笑, 杨滢霖, 等, 2019. 山奈酚通过抑制神经炎症及保护血脑屏障而改善大鼠脑缺血再灌注神经功能 [J]. 中国药理学与毒理学杂志, 33(9): 673. ]

    • LIU CD, CHEN J, WANG JH, 2009. A novel kaempferol triglycoside from flower buds of Panax quinquefolium [J]. Chem Nat Compd, 45(6): 808-810.

    • PARVEEN Z, DENG Y, SAEED MK, et al. , 2007. Antiinflammatory and analgesic activities of Thesium hinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside [J]. Yakugaku Zasshi, 127(8): 1275-1279.

    • QU DX, HAN JC, REN HH, et al. , 2016. Cardioprotective effects of astragalin against myocardial ischemia/reperfusion injury in isolated rat heart [J]. Oxid Med Cell Longev, 2016: 8194690.

    • REN FZ, ZHANG L, NIU GY, et al. , 2005. Study on chemical constituents of sea breeze vine (I) [J]. Chin Tradit Herb Drugs, 36(2): 184-185. [任风芝, 张丽, 牛桂云, 等, 2005. 海风藤的化学成分研究(Ⅰ) [J]. 中草药, 36(2): 184-185. ]

    • WANG JL, XU HM, LI WH, et al. , 2008. Study on chemical constituents of Astragalus dahuricus [J]. Chin J Chin Mat Med, 33(4): 414-416. [王金兰, 许红梅, 李卫宏, 等, 2008. 兴安黄芪化学成分研究 [J]. 中国中药杂志, 33(4): 414-416. ]

    • WANG KH, YANG XY, ZHENG GS, et al. , 2022. Experimental study on the effect of naringenin on mitophagy of neuronal cells in mice with cerebral ischemia injury [J]. Shaanxi J Tradit Chin Med, 43(8): 997-1002. [王凯华, 杨鑫勇, 郑光珊, 等, 2022. 柚皮素对脑缺血损伤小鼠神经细胞线粒体自噬的影响实验研究 [J]. 陕西中医, 43(8): 997-1002. ]

    • WANG KY, HUANG CX, LIU JY, et al. , 2022. Effect of naringin on the intestinal fibrosis in DSS induced colitis mice [C]// Chinese Society of Food Science and Technology. Abstracts of the 19th Annual Meeting of CIFST: 171-172. [王可盈, 黄春想, 刘俊阳, 等, 2022. 柚皮素对DSS诱导的结肠炎小鼠肠纤维化的改善作用研究 [C]//中国食品科学技术学会. 中国食品科学技术学会第十九届年会论文摘要集: 171-172. ]

    • WANG SZ, ZHANG M, CHEN P, et al. , 2022. Effect of quercetin on neuropathic pain of diabetic rats and the influence on PI3K/AKT signaling pathway [J]. Pharmacol Clin Chin Mat Med, 38(2): 69-74. [王士珍, 张萌, 陈培, 等, 2022. 槲皮素对糖尿病大鼠神经病理性疼痛的改善作用及对PI3K/AKT信号通路的影响 [J]. 中药药理与临床, 38(2): 69-74. ]

    • WANG X, LI L, CHEN YY, et al. , 2020. Study on the promoting effect and mechanism of naringenin on angiogenesis in rats with myocardial infarction [J]. J New Med, 51(12): 915-921. [王欣, 李磊, 陈元友, 等, 2020. 柚皮素对心肌梗死大鼠血管新生的促进作用及机制研究 [J]. 新医学, 51(12): 915-921. ]

    • WANG XZ, ZHANG XY, MOU Y, et al. , 2021. Anti-tumor effect and mechanisms of calycosin: a review [J]. Chin J Exp Tradit Med Form, 27(23): 210-217. [王雪振, 张小雨, 牟悦, 等, 2021. 毛蕊异黄酮抗肿瘤作用及机制的研究进展 [J]. 中国实验方剂学杂志, 27(23): 210-217. ]

    • WANG YJ, HAN BN, SHI YP, et al. , 2022. Protective effect and mechanism of millein isoflavone on respiratory syncytial virus induced pneumonia model mice [J]. J Chin Med Mat, 45(3): 715-719. [王玉君, 韩波妮, 史艳平, 等, 2022. 毛蕊异黄酮对呼吸道合胞病毒感染致肺炎模型小鼠的保护作用及机制研究 [J]. 中药材, 45(3): 715-719. ]

    • WU H, DUSHENKOV S, HO CT, et al. , 2009. Novel acetylated flavonoid glycosides from the leaves of Allium ursinum [J]. Food Chem, 115: 592-595.

    • WU T, ABDULLA R, YANG Y, et al. , 2008. Flavonoids from Gossypium hirsutum flowers [J]. Chem Nat Compd, 44(3): 370-373.

    • YANG YC, 1991. Annals of Tibetan Medicine [M]. Xining: Qinghai People's Publishing House: 418. [杨永昌, 1991. 藏药志 [M]. 西宁: 青海人民出版社: 418. ]

    • ZHANG JN, JIN XF, ZHANG Y, et al. , 2022. Protective effects of different doses of calycosin from Huangqi on neurons in rats with cerebral ischemia-reperfusion [J]. J Hebei Chin Med Pharmacol, 37(3): 43-47. [张彐宁, 靳晓飞, 张怡, 等, 2022. 黄芪中毛蕊异黄酮不同剂量对脑缺血再灌注大鼠神经细胞的保护作用 [J]. 河北中医药学报, 37(3): 43-47. ]

    • ZHANG WT, LI J, WU YT, et al. , 2018. Effects of kaempferol-3-O-rutinoside on proliferation, migration and TGFBR1 signaling pathway activation in vascular smooth muscle cells [J]. Chin J Pathophysiol, 34(5): 832-838. [张文通, 李俊, 吴玉婷, 等, 2018. 山柰酚-3-O-芸香糖苷对血管平滑肌细胞增殖、迁移及TGFBR1信号通路活化的影响 [J]. 中国病理生理杂志, 34(5): 832-838. ]

    • ZHAO BT, LE DD, NGUYEN PH, et al. , 2016. PTP1B, α-glucosidase, and DPP-IV inhibitory effects forchromene derivatives from the leaves of Smilax china L. [J]. Chem Biol Interact, 253: 27-37.

    • ZHOU JL, MU ZJ, ZHONG GY, et al. , 2021. Research progress on chemical constituents and biological activities of Astragalus plants [J]. Chin Tradit Pat Med, 43(7): 1845-1851. [周家林, 慕泽泾, 钟国跃, 等, 2021. 黄芪属植物化学成分及生物活性研究进展 [J]. 中成药, 43(7): 1845-1851. ]

    • ZHU Y, YE FM, REN J, et al. , 2016. Flavonoids from Illicium wardii [J]. Chem Nat Compd, 52(5): 899-901.

  • 参考文献

    • BADER G, TUJA D, WRAY V, et al. , 1993. Flavonol glycosides from Heteropappus altaicus and H. biennis [J]. Planta Med, 59(3): 284-285.

    • CUI B, NAKAMURA M, KINJO J, et al. , 1993. Chemical constituents of Astragali semen [J]. Chem Pharm Bull, 41(1): 178-182.

    • DAT LD, TUG NTM, DUC NV, et al. , 2019. Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels [J]. Carbohydr Res, 484: 107778.

    • DRENIN AA, BOTIROV EK, TUROV YP, 2011. A new isoflavone glycoside from Trifolium pretense L. [J]. Russ J Bioorg Chem, 37(7): 862-865.

    • Editorial Committee of Flora of China, 1993. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press: 78. [中国植物志编委会, 1993. 中国植物志 [M]. 北京: 科学出版社: 78. ]

    • FENG WS, HAO ZY, ZHENG XK, et al. , 2007. Chemical constituents from leaves of Celastrus gemmatus Loes. [J]. Acta Phram Sin, 42(6): 625-630.

    • FIORENTINO A, DELLA GM, D'ABROSCA B, et al. , 2006. Unusual sesquiterpene glucosides from Amaranthus retroflexus [J]. Tetrahedron, 62(38): 8952-8958.

    • FU MQ, DENG D, FENG SX, et al. , 2012. Chemical constituents from roots of Flemingia philippinensis [J]. Chin Herb Med, 4(1): 8-11.

    • GEIGER H, STEIN W, MUES R, et al. , 1987. Bryoflavone and heterobryoflavone, two new isoflavone-flavone dimers from Bryum capillare [J]. Z Naturforsch C, 42(12): 863-867.

    • HAMBURGER MO, CORDELL GA, TANTIVATANA P, et al. , 1987. Traditional medicinal plants of Thailand, VIII. isoflavonoids of Dalbergia candenatensis [J]. J Nat Prod, 50(4): 696-699.

    • HAN LF, ZHAO J, ZHANG Y, et al. , 2013. Chemical constituents from dried aerial parts of Eclipta prostrata [J]. Chin Herb Med, 5(4): 313-316.

    • HE H, ZHAI M, 2008. Anti-myeloma mechanism of the study from genistein [J]. Nat Prod Res Dev, 20(6): 1067-1071. [何晖, 翟明, 2008. 4′, 5, 7三羟基异黄酮抗骨髓瘤细胞增殖机制的研究 [J]. 天然产物研究与开发, 20(6): 1067-1071. ]

    • HOU RY, WU DM, JIAO WJ, et al. , 2021. Calycosin ameliorates glycolipid metabolism disorder and metabolic associated fatty liver disease symptoms in type 2 diabetic rats [J]. Chin J Pathophysiol, 37(11): 1965-1971. [侯瑞英, 吴冬梅, 焦伟杰, 等, 2021. 毛蕊异黄酮改善2型糖尿病模型大鼠的糖脂代谢紊乱和代谢相关脂肪性肝病症状 [J]. 中国病理生理杂志, 37(11): 1965-1971. ]

    • HU P, MA CQ, LIU J, et al. , 2022. Effects and mechanism of naringin against vascular injury in diabetic mice [J]. Pharmacol Clin Chin Mat Med, 38(2): 64-69. [胡培, 马昌全, 刘佳, 等, 2022. 柚皮素抗糖尿病小鼠血管损伤的作用及其机制研究 [J]. 中药药理与临床, 38(2): 64-69. ]

    • IBRAHIM ARS, GALAL AM, AHMED MS, et al. , 2003. O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans [J]. Chem Pharm Bull, 51(2): 203-206.

    • JIA MR, ZHANG Y, 2016. Chinese ethnopharmaceutical dictionary [M]. Beijing: China Medical Science and Technology Press: 98. [贾敏如, 张艺, 2016. 中国民族药辞典 [M]. 北京: 中国医药科技出版社: 98. ]

    • KWON DJ, BAE YS, 2011. Chemical constituents from the stem bark of Acer barbinerve [J]. Chem Nat Compd, 47(4): 636-639.

    • LI WH, CHENG X, YANG YL, et al. , 2019. Kaempferol improves cerebral ischemia and reperfusion function in rats by inhibiting neuroinflammation and protecting the blood-brain barrier [J]. Chin J Pharmacol Toxicol, 33(9): 673. [李伟瀚, 程笑, 杨滢霖, 等, 2019. 山奈酚通过抑制神经炎症及保护血脑屏障而改善大鼠脑缺血再灌注神经功能 [J]. 中国药理学与毒理学杂志, 33(9): 673. ]

    • LIU CD, CHEN J, WANG JH, 2009. A novel kaempferol triglycoside from flower buds of Panax quinquefolium [J]. Chem Nat Compd, 45(6): 808-810.

    • PARVEEN Z, DENG Y, SAEED MK, et al. , 2007. Antiinflammatory and analgesic activities of Thesium hinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside [J]. Yakugaku Zasshi, 127(8): 1275-1279.

    • QU DX, HAN JC, REN HH, et al. , 2016. Cardioprotective effects of astragalin against myocardial ischemia/reperfusion injury in isolated rat heart [J]. Oxid Med Cell Longev, 2016: 8194690.

    • REN FZ, ZHANG L, NIU GY, et al. , 2005. Study on chemical constituents of sea breeze vine (I) [J]. Chin Tradit Herb Drugs, 36(2): 184-185. [任风芝, 张丽, 牛桂云, 等, 2005. 海风藤的化学成分研究(Ⅰ) [J]. 中草药, 36(2): 184-185. ]

    • WANG JL, XU HM, LI WH, et al. , 2008. Study on chemical constituents of Astragalus dahuricus [J]. Chin J Chin Mat Med, 33(4): 414-416. [王金兰, 许红梅, 李卫宏, 等, 2008. 兴安黄芪化学成分研究 [J]. 中国中药杂志, 33(4): 414-416. ]

    • WANG KH, YANG XY, ZHENG GS, et al. , 2022. Experimental study on the effect of naringenin on mitophagy of neuronal cells in mice with cerebral ischemia injury [J]. Shaanxi J Tradit Chin Med, 43(8): 997-1002. [王凯华, 杨鑫勇, 郑光珊, 等, 2022. 柚皮素对脑缺血损伤小鼠神经细胞线粒体自噬的影响实验研究 [J]. 陕西中医, 43(8): 997-1002. ]

    • WANG KY, HUANG CX, LIU JY, et al. , 2022. Effect of naringin on the intestinal fibrosis in DSS induced colitis mice [C]// Chinese Society of Food Science and Technology. Abstracts of the 19th Annual Meeting of CIFST: 171-172. [王可盈, 黄春想, 刘俊阳, 等, 2022. 柚皮素对DSS诱导的结肠炎小鼠肠纤维化的改善作用研究 [C]//中国食品科学技术学会. 中国食品科学技术学会第十九届年会论文摘要集: 171-172. ]

    • WANG SZ, ZHANG M, CHEN P, et al. , 2022. Effect of quercetin on neuropathic pain of diabetic rats and the influence on PI3K/AKT signaling pathway [J]. Pharmacol Clin Chin Mat Med, 38(2): 69-74. [王士珍, 张萌, 陈培, 等, 2022. 槲皮素对糖尿病大鼠神经病理性疼痛的改善作用及对PI3K/AKT信号通路的影响 [J]. 中药药理与临床, 38(2): 69-74. ]

    • WANG X, LI L, CHEN YY, et al. , 2020. Study on the promoting effect and mechanism of naringenin on angiogenesis in rats with myocardial infarction [J]. J New Med, 51(12): 915-921. [王欣, 李磊, 陈元友, 等, 2020. 柚皮素对心肌梗死大鼠血管新生的促进作用及机制研究 [J]. 新医学, 51(12): 915-921. ]

    • WANG XZ, ZHANG XY, MOU Y, et al. , 2021. Anti-tumor effect and mechanisms of calycosin: a review [J]. Chin J Exp Tradit Med Form, 27(23): 210-217. [王雪振, 张小雨, 牟悦, 等, 2021. 毛蕊异黄酮抗肿瘤作用及机制的研究进展 [J]. 中国实验方剂学杂志, 27(23): 210-217. ]

    • WANG YJ, HAN BN, SHI YP, et al. , 2022. Protective effect and mechanism of millein isoflavone on respiratory syncytial virus induced pneumonia model mice [J]. J Chin Med Mat, 45(3): 715-719. [王玉君, 韩波妮, 史艳平, 等, 2022. 毛蕊异黄酮对呼吸道合胞病毒感染致肺炎模型小鼠的保护作用及机制研究 [J]. 中药材, 45(3): 715-719. ]

    • WU H, DUSHENKOV S, HO CT, et al. , 2009. Novel acetylated flavonoid glycosides from the leaves of Allium ursinum [J]. Food Chem, 115: 592-595.

    • WU T, ABDULLA R, YANG Y, et al. , 2008. Flavonoids from Gossypium hirsutum flowers [J]. Chem Nat Compd, 44(3): 370-373.

    • YANG YC, 1991. Annals of Tibetan Medicine [M]. Xining: Qinghai People's Publishing House: 418. [杨永昌, 1991. 藏药志 [M]. 西宁: 青海人民出版社: 418. ]

    • ZHANG JN, JIN XF, ZHANG Y, et al. , 2022. Protective effects of different doses of calycosin from Huangqi on neurons in rats with cerebral ischemia-reperfusion [J]. J Hebei Chin Med Pharmacol, 37(3): 43-47. [张彐宁, 靳晓飞, 张怡, 等, 2022. 黄芪中毛蕊异黄酮不同剂量对脑缺血再灌注大鼠神经细胞的保护作用 [J]. 河北中医药学报, 37(3): 43-47. ]

    • ZHANG WT, LI J, WU YT, et al. , 2018. Effects of kaempferol-3-O-rutinoside on proliferation, migration and TGFBR1 signaling pathway activation in vascular smooth muscle cells [J]. Chin J Pathophysiol, 34(5): 832-838. [张文通, 李俊, 吴玉婷, 等, 2018. 山柰酚-3-O-芸香糖苷对血管平滑肌细胞增殖、迁移及TGFBR1信号通路活化的影响 [J]. 中国病理生理杂志, 34(5): 832-838. ]

    • ZHAO BT, LE DD, NGUYEN PH, et al. , 2016. PTP1B, α-glucosidase, and DPP-IV inhibitory effects forchromene derivatives from the leaves of Smilax china L. [J]. Chem Biol Interact, 253: 27-37.

    • ZHOU JL, MU ZJ, ZHONG GY, et al. , 2021. Research progress on chemical constituents and biological activities of Astragalus plants [J]. Chin Tradit Pat Med, 43(7): 1845-1851. [周家林, 慕泽泾, 钟国跃, 等, 2021. 黄芪属植物化学成分及生物活性研究进展 [J]. 中成药, 43(7): 1845-1851. ]

    • ZHU Y, YE FM, REN J, et al. , 2016. Flavonoids from Illicium wardii [J]. Chem Nat Compd, 52(5): 899-901.