en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

方振峰(1980—),博士,副教授,研究方向为中药及天然药物的活性成分,(E-mail)zhenfengfang@163.com。

中图分类号:Q946

文献标识码:A

文章编号:1000-3142(2024)06-1070-12

DOI:10.11931/guihaia.gxzw202306008

参考文献
CHEN M, WANG JT, WU ZN, et al. , 2017. Effect of total flavonoids in Scutellaria barbata in mediating autophagy in tumor cells via PI3K/AKT/mTOR pathway [J]. Chin J Chin Mat Med, 42(7): 1358-1364. [陈明, 王举涛, 吴珍妮, 等, 2017. 半枝莲总黄酮通过PI3K/AKT/mTOR通路诱导肿瘤细胞自噬的体内实验研究 [J]. 中国中药杂志, 42(7): 1358-1364. ]
参考文献
DAI SJ, PENG WB, SHEN L, et al. , 2011. New norditerpenoid alkaloids from Scutellaria barbata with cytotoxic activities [J]. Nat Prod Res, 25(11): 1019-1024.
参考文献
DAI SJ, PENG WB, ZHANG DW, et al. , 2009. Cytotoxic neo-clerodane diterpenoid alkaloids from Scutellaria barbata [J]. J Nat Prod, 72(10): 1793-1797.
参考文献
DAI SJ, SHEN L, REN Y, 2008. Two new neo-clerodane diterpenoids from Scutellaria barbata [J]. J Integr Plant Biol, 50(6): 699-702.
参考文献
DAI SJ, TAO JY, LIU K, et al. , 2006. neo-clerodane diterpenoids from Scutellaria barbata with cytotoxic activities [J]. Phytochemistry, 67(13): 1326-1330.
参考文献
DAI SJ, WANG GF, CHEN M, et al. , 2007. Five new neo-clerodane diterpenoid alkaloids from Scutellaria barbata with cytotoxic activities [J]. Chem Pharm Bull, 55(8): 1218-1221.
参考文献
DAI SJ, XIAO K, ZHANG L, et al. , 2016. New neo-clerodane diterpenoids from Scutellaria strigillosa with cytotoxic activities [J]. J Asian Nat Prod Res, 18(5): 456-461.
参考文献
GAO S, SONG GC, XU XY, 2017. Influence of Scutellaria Barbata polysaccharide on the cell activity of gastric carcinoma cell SGC-7901 [J]. Chin Foreign Med Res, 15(15): 1-2. [高山, 宋高臣, 许晓义, 2017. 半枝莲多糖对胃癌细胞SGC-7901的细胞活性影响 [J]. 中外医学研究, 15(15): 1-2. ]
参考文献
GU YZ, WEI LL, LIU Y, et al. , 2023. Research progress on diterpenoid constituents and their pharmacological effects of medicinal plants in the Labiatae family in the past decade [J]. J Chin Med Mat, 46(2): 511-524. [顾永哲, 魏乐乐, 刘月, 等, 2023. 近10年唇形科药用植物二萜类化学成分及其药理作用研究进展 [J]. 中药材, 46(2): 511-524. ]
参考文献
HUANG JX, WANG BX, ZOU HB, et al. , 2022. Mechanism of Fangji Fulingtang for treating acute kidney injury induced by ischemia-reperfusion based on network pharmacology and molecular docking verification [J]. Chin J Exp Tradit Med, 28(8): 175-182. [黄俊鑫, 王碧霞, 邹汉斌, 等, 2022. 基于网络药理学和分子对接探究防己茯苓汤治疗缺血再灌注急性肾损伤的作用机制 [J]. 中国实验方剂学杂志, 28(8): 175-182. ]
参考文献
KURIMOTO SI, PU JX, SUN HD, et al. , 2015. Acylated neo-clerodanes and 19-nor-neo-clerodanes from the aerial parts of Scutellaria coleifolia (Lamiaceae) [J]. Phytochemistry, 116: 298-304.
参考文献
LEI N, XIONG SH, TAN L, et al. , 2020. Inhibition of scutellarin on differentiation of colonic cancer stem cells via hedgehog signaling pathway [J]. Chin J Chin Mat Med, 45(7): 1676-1683. [雷楠, 熊思会, 谭溧, 等, 2020. 野黄芩苷通过hedgehog 信号通路抑制结肠肿瘤干细胞分化的研究 [J]. 中国中药杂志, 45(7): 1676-1683. ]
参考文献
LI GS, HAO XM, ZHANG L, et al. , 2015. Diterpenoids from Scutellaria strigillosa [J]. Chin J Chin Mat Med, 40(1): 98-102. [李桂生, 郝鑫淼, 张雷, 等, 2015. 沙滩黄芩中的二萜类化合物 [J]. 中国中药杂志, 40(1): 98-102. ]
参考文献
LI HQ, SU J, JIANG JY, et al. , 2019. Characterization of polysaccharide from Scutellaria barbata and its antagonistic effect on the migration and invasion of HT-29 colorectal cancer cells induced by TGF-β1 [J]. Int J Biol Macromol, 131: 886-895.
参考文献
LI J, WANG Y, LEI JC, et al. , 2014. Sensitisation of ovarian cancer cells to cisplatin by flavonoids from Scutellaria barbata [J]. Nat Prod Res, 28(10): 683-689.
参考文献
LIN XY, 2021. Extraction, purification, composition analysis and anti-hepatocellular activity of Scutellaria barbata D. Don polysaccharide [D]. Harbin: Heilongjiang University of Traditional Chinese Medicine. [林霄月, 2021. 半枝莲多糖提取纯化与组成分析及抗肝癌活性研究 [D]. 哈尔滨: 黑龙江中医药大学. ]
参考文献
LIU X, YAN XH, CHEN ZQ, et al. , 2023. Studies on the separation of total alkaloids from Sculellaria barbata and its antitumor activities [J]. Strait Pharm J, 35(4): 12-16. [刘欣, 严绪华, 陈中强, 等, 2023. 半枝莲总生物碱的纯化分离及其抗肿瘤活性研究 [J]. 海峡药学, 35(4): 12-16. ]
参考文献
LONG HL, XU GY, DENG AJ, et al. , 2015. Two new flavonoids from the roots of Scutellaria baicalensis [J]. J Asian Nat Prod Res, 17(7): 756-760.
参考文献
National Pharmacopoeia Commission, 2020. Pharmacopoeia of the People's Republic of China: Vol. I [S]. Beijing: China Pharmaceutical Science and Technology Press: 122. [国家药典委员会, 2020. 中华人民共和国药典: 一部 [S]. 北京: 中国医药科技出版社: 122. ]
参考文献
NGUYEN VH, PHAM VC, NGUYEN TTH, et al. , 2009. Novel antioxidant neo-clerodane diterpenoids from Scutellaria barbata [J]. Eur J Org Chem, (33): 5810-5815.
参考文献
NIU SR, SHI Y, YANG X, et al. , 2021. Research progress on anti-tumor effects of chemical components from Scutellaria barbata [J]. Chin Pharm, 32(15): 1915-1920. [牛淑睿, 石芸, 杨鑫, 等, 2021. 半枝莲化学成分的抗肿瘤作用研究进展 [J]. 中国药房, 32(15): 1915-1920. ]
参考文献
SUN PD, SUN D, WANG XD, 2017. Effects of Scutellaria barbata polysaccharide on the proliferation, apoptosis and EMT of human colon cancer HT29 cells [J]. Carbohyd Polym, 167: 90-96.
参考文献
TOMIMORI T, MIYAICHI Y, KIZU H, 1982. On the flavonoid constituents from the roots of Scutellaria baicalensis Georgi. I [J]. Yakugaku Zasshi, 102(4): 388-391.
参考文献
WANG F, REN FC, LI YJ, et al. , 2010. Scutebarbatines W-Z, new neo-clerodane diterpenoids from Scutellaria barbata and structure revision of a series of 13-spiro neo-clerodanes [J]. Chem Pharm Bull, 58(9): 1267-1270.
参考文献
WU TZ, WANG Q, JIANG C, et al. , 2015. neo-clerodane diterpenoids from Scutellaria barbata with activity against Epstein-Barr virus lytic replication [J]. J Nat Prod, 78(3): 500-509.
参考文献
XUE GM, XIA YZ, WANG ZM, et al. , 2016. neo-clerodane diterpenoids from Scutellaria barbata mediated inhibition of P-glycoprotein in MCF-7/ADR cells [J]. Eur J Med Chem, 121: 238-249.
参考文献
YAN XH, ZHOU TX, MEI L, et al. , 2023. Study on the chemical constituents of Scutellaria barbata and its inhibitory activity on the proliferation of breast cancer cells [J]. Chin Tradit Pat Med, 45(6): 1864-1870. [严绪华, 周童曦, 梅凌, 等, 2023. 半枝莲化学成分及其体外抑制乳腺癌细胞增殖活性 [J]. 中成药, 45(6): 1864-1870. ]
参考文献
YIN JP, ZHUO SY, 2021. Effects of ferulic acid on the proliferation, invasion and apoptosis of HepG2 hepatocellular carcinoma cells [J]. Chin Pharm, 32(13): 1565-1571. [音金萍, 卓少元, 2021. 阿魏酸对人肝癌HepG2细胞增殖、侵袭和凋亡的影响 [J]. 中国药房, 32(13): 1565-1571. ]
参考文献
YUAN QQ, SONG WB, WANG WQ, et al. , 2017. Scubatines A-F, new cytotoxic neo-clerodane diterpenoids from Scutellaria barbata D. Don [J]. Fitoterapia, 119: 1-18.
参考文献
ZENG J, 2018. The mechanism of breviscapine inhibiting the growth of non-small cell lung cancer by regulating the expression of miRNA-7 and IGFBP-4 [D]. Hangzhou: Zhejiang University. [曾剑, 2018. 灯盏花素通过调节miRNA-7和IGFBP-4的表达抑制非小细胞肺癌生长的机制研究 [D]. 杭州: 浙江大学. ]
参考文献
ZHANG HS, SU WW, ZHANG QM, et al. , 2022. Research progress on antitumor bioactivity of Scutellaria Barbata [J]. Chin J Pharm Econ, 17(5): 124-128. [张洪石, 苏文文, 张启明, 等, 2022. 半枝莲抗肿瘤生物活性研究进展 [J]. 中国药物经济学, 17(5): 124-128. ]
参考文献
ZHENG X, KANG W, LIU HH, et al. , 2018. Inhibition effects of total flavonoids from Scutellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway [J]. Int J Mol Med, 41(6): 3137-3416.
目录contents

    摘要

    前期研究发现,半枝莲(Scutellaria barbata)全草醇提物的乙酸乙酯萃取部位经大孔吸附树脂处理,其70%乙醇洗脱部位具有较好的抗肝癌活性。为明确其活性成分,该研究采用硅胶柱色谱、Sephadex LH-20柱色谱、制备TLC、半制备液相色谱等对活性部位进行分离和纯化,运用多种波谱分析方法鉴定了单体化合物结构,并利用CCK-8法评价了所有单体化合物对人肝癌HepG2细胞体外增殖抑制活性,同时利用分子对接技术考察了活性最好的化合物与肝癌靶标的结合情况。结果表明:(1)从该活性部位共分离得到14个化合物,包括12个新克罗烷型二萜类化合物和2个黄酮类化合物,分别鉴定为scutefolide C (1)、6-乙酰氧基-7-烟酸酰氧基半枝莲碱G (2)、scutestrigillosin D (3)、 scutehenanine D (4)、半枝莲碱A (5)、半枝莲碱B (6)、7-烟酸酰氧基半枝莲碱H (7)、半枝莲碱N (8)、半枝莲碱Y (9)、barbatin A (10)、barbatin B (11)、barbatin D (12)、5, 7, 6′-三羟基-2′-甲氧基黄酮醇(13)和5, 8-二羟基-6, 7-二甲氧基黄酮(14)。其中,化合物1-31314为首次从该植物中分离得到。(2)活性测试结果显示,化合物4710-12表现出较弱的HepG2细胞增殖抑制活性,化合物6的细胞增殖抑制活性和阳性对照(顺铂)活性接近,而化合物5表现出比顺铂更强的细胞增殖抑制活性。(3)分子对接结果显示,化合物5和化合物6与肝癌靶蛋白VEGF-2均具有良好的结合力。该研究结果不仅丰富了半枝莲的化学物质类群,也为进一步深入研究活性化合物抗肝癌的作用机制提供了参考。

    Abstract

    In previous study, the ethanol extract of Scutellaria barbata was partitioned with petroleum ether and EtOAc, respectively. The ethyl acetate extract site was subjected to column chromatography over macroporous adsorption resin eluting with gradient ethanol. The 70% ethanol elution fraction exhibited good anti-liver cancer activity. To clarify the active ingredients, the active site was separated and purified by silica gel column chromatography, Sephadex LH-20 column chromatography, preparative TLC, and semi preparative liquid chromatography, etc. Multiple spectroscopic analysis methods were used to identify the structure of the monomer compounds, and CCK-8 method was used to evaluate the inhibitory activity of all compounds on the proliferation of human liver cancer HepG2 cells in vitro. At the same time, molecular docking technology was used to investigate the binding of the most active compounds with target proteins VEGF-2 and FGFR-1, which were obtained from targeted drug for liver cancer. The results were as follows: (1) A total of 14 compounds were isolated from the active site, including 12 neo-clerodane diterpenoids and 2 flavonoids, which were identified as scuefolide C (1), 6-acetoxy-7-nicotinoyloxyscutebarbatine G (2), scutestrigillosin D (3), scutehenanine D (4), scutebarbatine A (5), scutebarbatine B (6), 7-O-nicotinoyloxyscutebarbatine H (7), scutebarbatine N (8), scutebarbatine Y (9), barbatin A (10), barbatin B (11), barbatin D (12), 5, 7, 6′- trihydroxy-2′-methoxyflavonol (13) and 5, 8-dihydroxy-6, 7-dimethoxyflavone (14). Compounds 1-3 and 13, 14 were isolated from this plant for the first time. (2) The results of cell proliferation inhibition activity test showed that compounds 4, 7, 10-12 exhibited weaker cell proliferation inhibitory activity against HepG2, and Compound 6 exhibited similar cell proliferation inhibitory activity to the positive control (cisplatin), while Compound 5 exhibited stronger cell proliferation inhibitory activity than cisplatin. (3) The molecular docking results showed that Compound 5 and Compound 6 had good binding affinity with target protein VEGF-2, which binded to residues such as GLY-841, LEU-840, ASN-923, ARG-1032 in VEGF-2 protein through hydrogen bonding. At the same time, Compound 5 and Compound 6 exhibited poor binding affinity with target protein FGFR-1. The results of this study not only enrich the chemical groups of S. barbata, but also provide a reference for further study on the mechanism of active compounds against liver cancer.

    关键词

    半枝莲化学成分二萜肝癌细胞增殖

  • 半枝莲(Scutellaria barbata)作为一种传统的抗癌中药,自2005版《中华人民共和国药典》收载以后,均被各版本《中华人民共和国药典》收录。半枝莲为全草入药,具有清热解毒等功效(国家药典委员会,2020)。由于半枝莲中黄酮成分丰富,因此对其总黄酮成分(Li et al.,2014;陈明等,2017;Zheng et al.,2018)、单体黄酮成分(曾剑,2018;雷楠等,2020)的抗肿瘤研究一直是半枝莲研究的热点。2010年以后,半枝莲多糖在抗肿瘤方面的作用引起了人们的关注(高山等,2017;Sun et al.,2017;Li et al.,2019;林霄月,2021),逐渐成为半枝莲抗肿瘤研究的另一个热点。近几年,半枝莲中陆续发现一些二萜(含二萜生物碱)类化合物对鼻咽癌、口腔表皮样癌、肺癌等表现出较好的活性,引起了国内外学者的广泛关注(牛淑睿等,2021;顾永哲等,2023)。

  • 目前,对半枝莲二萜类化学成分及其抗肝癌的研究很少。在前期研究中,本课题组发现半枝莲全草乙酸乙酯萃取部位大孔树脂70%乙醇洗脱部位具有较好的抗肝癌活性(刘欣等,2023),并且通过化学鉴别反应初步推测其主要化学成分可能为二萜生物碱类。因此,为进一步明确半枝莲抗肝癌的活性成分,为肝癌药物研制提供可能的先导化合物,本课题组对半枝莲乙酸乙酯萃取部位大孔树脂70%乙醇洗脱部位进行了系统分离,并对单体化合物进行了人肝癌HepG2细胞增殖抑制活性测试。同时,利用分子对接考察了活性较好的化合物与肝癌靶标的结合情况,为进一步深入研究活性化合物抗肝癌的作用机制提供参考。

  • 1 材料与方法

  • 1.1 材料

  • 半枝莲购自亳州中药材市场,产地为河北省,经江汉大学医学院药学系张涛教授鉴定为唇形科黄芩属植物半枝莲(Scutellaria barbata)的干燥全草。

  • 1.2 仪器和试剂

  • Bruker DRX-600 MHz核磁共振仪(德国布鲁克公司);安捷伦UPLC/Q-TOF6230型液相色谱-质谱联用仪;创新通恒LC 3000半制备型高效液相色谱仪(北京创新通恒色谱技术有限公司);CO2培养箱、全波长酶标仪(Thermo Fisher);半制备型反相YMC-Pack ODS-A色谱柱( 250 mm × 20 mm,10 μm)、分析型反相YMC C18色谱柱( 250 mm × 4.6 mm,5 μm)(日本YMC公司);Sephadex LH-20(英国Amersham Pharmacia Biotech AB 公司);色谱甲醇、乙腈(美国赛默飞世尔科技公司);分析纯试剂(国药集团药业股份有限公司)。顺铂(Pt,65%)购自上海源叶生物科技有限公司;人肝癌细胞HepG2细胞株由江汉大学医学院提供;胎牛血清、同仁化学CCK-8试剂盒购自赛因百奥生物技术(北京)有限公司;DMEM高糖培养基、0.01 mol·L-1 PBS、0.25%胰蛋白酶消化液均购自北京索莱宝生物科技有限公司。

  • 1.3 提取和分离

  • 取干燥半枝莲全草约10 kg,粉碎后用95%乙醇回流提取3次,合并提取液,减压浓缩得浸膏约1 279 g。浸膏加适量水使其混悬分散,依次用石油醚(60~90℃)、乙酸乙酯等体积萃取,回收溶剂得到石油醚、乙酸乙酯2个萃取部位。取乙酸乙酯萃取部位(约232 g)加入适量水超声溶解,使溶液中无明显颗粒状,过AB-8型大孔吸附树脂(约2.5 kg),用大量水洗至水溶液无明显浑浊,随后用10%→90%的乙醇进行梯度洗脱,每次增加10%乙醇,每个梯度洗脱3个柱床体积,收集各浓度洗脱溶液并减压回收溶剂得到9个部分(Fr.A-Fr.I)。根据前期活性测试结果,选定70%乙醇洗脱部位(Fr.G)作为研究对象。Fr.G(约8.52 g)经硅胶柱色谱,以石油醚-丙酮(18∶1、12∶1、7∶1、3∶1、1∶1,V/V)进行梯度洗脱,得到5个流分(G1-G5)。G1(约0.75 g)经过硅胶柱色谱,以二氯甲烷-乙酸乙酯(12∶1、7∶1、3∶1,V/V)进行梯度洗脱,合并得3个流分(G1.1-G1.3),其中流分G1.2(110 mg)经半制备液相色谱分离,以MeCN-H2O(78∶22,V/V)洗脱,得到化合物1(13 mg)。流分G2(0.85 g)经Sephadex LH-20柱色谱(100 g),以CH2Cl2-MeOH(3∶1,V/V)洗脱,得到3个流分(G2.1-G2.3)。其中流分G2.2(约0.12 g)经制备TLC[V(氯仿)∶V(丙酮)=9∶2]分离得到化合物2(14 mg);流分G2.3(约0.11 g)经制备TLC[V(氯仿)∶V(丙酮)=9∶2]分离得到化合物3(23 mg)。流分G3(2.3 g)经Sephadex LH-20柱色谱(200 g),以CH2Cl2-MeOH(1∶1,V/V)洗脱,得到G3.1-G3.7共7个部分。G3.1(约90 mg)经反相半制备HPLC分离,以MeOH-H2O(53∶47,V/V)洗脱,得到化合物10(8 mg);G3.2(约112 mg)经反相半制备HPLC分离,以MeOH-H2O(54∶46,V/V)洗脱,得到化合物11(19 mg);G3.3(约235 mg)经反相半制备HPLC分离,以MeOH-H2O(55∶45,V/V)洗脱,得到化合物4(39 mg)和化合物7(14 mg);G3.4(约0.36 g)经反相半制备HPLC分离,以MeOH-H2O(55∶45,V/V)洗脱,得到化合物6(19 mg)和化合物12(24 mg);G3.5(约80 mg)经反相半制备HPLC分离,以MeOH-H2O(54∶46,V/V)洗脱,得到化合物8(11 mg)。流分G3(约0.91 g)经Sephadex LH-20柱色谱(100 g),以CH2Cl2-MeOH(1∶1,V/V)洗脱,得到3个流分(G3.1-G3.3)。G3.1(约0.18 g)经反相制备HPLC分离,以MeOH-0.1% TFA(52∶46,V/V)洗脱,得到化合物13(2.1 mg)和化合物14(2.9 mg);G3.2(约0.29 g)经反相制备HPLC分离,以MeOH-H2O(54∶46→60∶40,V/V)进行梯度洗脱,得到化合物5(27 mg)和化合物9(19 mg)。

  • 1.4 人肝癌HepG2细胞增殖抑制活性

  • 参考音金萍和卓少元(2021)的方法,取对数期的HepG2细胞按每孔5×103个的密度接种在96孔板中并孵育过夜。待细胞贴壁生长完整后,除去培养基,用不同浓度的单体化合物和阳性对照物(顺铂)(0.625、1.25、2.5、5、10、20、40、80、160 μmol·L-1)处理细胞48 h。再向每个孔中加入10 μL CCK-8试剂,并将细胞在37℃下孵育1 h。另设对照组(含细胞、纯培养基和CCK-8溶液)、空白组(含纯培养基和CCK-8溶液),每组平行6次。按照CCK-8试剂盒说明书检测细胞增殖抑制活性,采用酶标仪在450 nm处记录OD值,计算细胞增殖抑制率,并据此计算药物对细胞的半数抑制浓度(IC50)值。

  • 1.5 分子对接

  • 在蛋白质数据库(https://www.rcsb.org/)中选取肝癌靶标VEGF-2蛋白(ID:3WZD)、FGFR-1(ID:5ZV2),用pymol进行蛋白和特异性配体乐伐替尼(lenvatinib,LEV)的分离,并去掉蛋白里的水分子,利用AutoDock 1.5.6对蛋白和特异性配体进行加氢、加电荷处理,并转换格式为PDBQT格式,同时确定蛋白VEGF-2和FGFR-1的活性口袋,记录“grid”参数。在PubChem数据库(https://pubchem.ncbi.nlm.nih.gov)中下载活性化合物的3D结构,通过AutoDock 1.5.6进行加氢、加电荷处理,并转换为PDBQT格式。利用Autodock Vina1.0对活性化合物、特异性配体和肝癌靶标进行分子对接,考察化合物和肝癌靶标的结合情况。

  • 1.6 统计学分析

  • 利用SPSS 22.0软件进行数据处理和统计学分析,半数抑制浓度(IC50)数值均以平均值±标准差(x-±s)形式表示。

  • 2 结果与分析

  • 2.1 化合物的结构鉴定

  • 利用各种色谱分离手段,从半枝莲抗肝癌活性部位共分离得到14个化合物。通过1H-NMR、13C-NMR、MS等波谱分析方法及文献数据对比鉴定了所有化合物结构,化合物1-14的结构式如图1所示。

  • 化合物1   白色粉末。ESI-MS m/z: 505.3 [M+H]+,推测化合物1的分子量为504,结合氢谱和碳谱数据,推测其分子式为C28H40O81H-NMR(CDCl3,600 MHz)δH: 1.18(1H,m,H-1a),1.55(1H,m,H-1b),1.28(1H,m,H-2a),1.66(1H,m,H-2b),2.13(1H,m,H-3a),2.55(1H,br d,J=18.1 Hz,H-3b),6.22(1H,d,J=10.5 Hz,H-6),5.57(1H,d,J=10.5 Hz,H-7),3.14(1H,br t,J=8.4 Hz,H-10),1.41(1H,m,H-11a),1.66(1H,m,H-11b),1.64(1H,m,H-12a),1.81(1H,m,H-12b),2.60(1H,d,J=16.8 Hz,H-14a),3.02(1H,d,J=16.8 Hz,H-14b),4.28(1H,d,J=9.0 Hz,H-16a),4.36(1H,d,J = 9.0 Hz,H-16b),1.26(3H,s,H-17),4.67(2H,br s,H-18),0.68(3H,s,H-20),7.07(1H,m,H-3′),1.56(1H,br d,J=7.3 Hz,H-4′),1.94(1H,br s,H-5′),2.63(1H,m,H-2″),1.19(1H,br d,J=7.2 Hz,H-3″),1.14(1H,br d,J=7.2 Hz,H-4″)。13C-NMR(CDCl3,150 MHz)δC: 23.9(C-1),22.9(C-2),30.1(C-3),137.5(C-4),127.7(C-5),74.3(C-6),76.5(C-7),81.2(C-8),40.9(C-9),36.8(C-10),25.9(C-11),28.5(C-12),77.5(C-13),44.8(C-14),174.5(C-15),77.3(C-16),21.1(C-17),61.6(C-18),17.9(C-20),166.8(C-1′),129.1(C-2′),138.6(C-3′),14.2(C-4′),12.5(C-5′),176.5(C-1″),34.8(C-2″),19.6(C-3″),19.1(C-4″)。以上数据与文献(Kurimoto et al.,2015)报道的基本一致,故鉴定化合物1为scutefolide C。

  • 化合物2   白色粉末。ESI-MS m/z: 619.2 [M+H]+,641.3 [M + Na]+,推测化合物2的分子量为618,结合氢谱和碳谱数据,推测其分子式为C34H38N2O91H-NMR(CDCl3,600 MHz)δH: 1.72(1H,m,H-1a),2.06(1H,m,H-1b),2.72(2H,m,H-2),5.45(1H,br s,H-3),5.73(1H,d,J=10.5 Hz,H-6),5.47(1H,d,J=10.5 Hz,H-7),2.76(1H,dd,J=12.5,3.0 Hz,H-10),5.94(1H,dd,J=12.4,4.5 Hz,H-11),1.78(1H,m,H-12a),2.30(1H,m,H-12b),2.61(1H,d,J=16.5 Hz,H-14a),3.16(1H,d,J=16.5 Hz,H-14b),4.13(1H,d,J=8.9 Hz,H-16a),4.19(1H,d,J = 8.9 Hz,H-16b),1.21(3H,s,H-17),1.75(3H,s,H-18),1.53(3H,s,H-19),1.26(3H,s,H-20),9.24(1H,br s,H-3′),8.80(1H,br d,J=4.8 Hz,H-5′),7.48(1H,dd,J=7.8,4.8 Hz,H-6′),8.33(1H,br d,J=7.8 Hz,H-7′),9.19(1H,br s,H-3″),8.78(1H,br d,J=4.8 Hz,H-5″),7.41(1H,dd,J=7.8,4.8 Hz,H-6″),8.28(1H,br d,J=7.8 Hz,H-7″),1.81(3H,s,CH3-CO-)。13C-NMR(CDCl3,150 MHz)δC: 28.9(C-1),32.9(C-2),121.1(C-3),145.5(C-4),45.7(C-5),73.3(C-6),75.5(C-7),81.7(C-8),38.9(C-9),44.3(C-10),71.9(C-11),29.5(C-12),77.8(C-13),44.9(C-14),173.5(C-15),76.9(C-16),21.2(C-17),20.6(C-18),17.3(C-19),20.3(C-20),164.5(C-1′),126.1(C-2′),150.9(C-3′),155.2(C-5′),123.5(C-6′),137.5(C-7′),164.3(C-1″),126.4(C-2″),151.6(C-3″),155.1(C-5″),123.8(C-6″),138.5(C-7″),171.8(CH3-CO-),22.3(CH3-CO-)。以上数据与文献(李桂生等,2015)报道的基本一致,故鉴定化合物2为6-乙酰氧基-7-烟酸酰氧基半枝莲碱G。

  • 化合物3   白色粉末。ESI-MS m/z: 576.3 [M+H]+,推测化合物3的分子量为575,结合氢谱和碳谱数据,推测其分子式为C33H37NO81H-NMR(CDCl3,600 MHz)δH: 1.81(1H,m,H-1a),2.55(1H,m,H-1b),2.15(2H,m,H-2),5.33(1H,br s,H-3),5.33(1H,d,J=10.2 Hz,H-6),3.62(1H,d,J=10.2 Hz,H-7),2.51(1H,d,J=12.5 Hz,H-10),5.69(1H,dd,J=12.6,4.2 Hz,H-11),2.15(1H,m,H-12a),2.26(1H,m,H-12b),2.87(1H,d,J=18.1 Hz,H-14a),2.94(1H,d,J=18.1 Hz,H-14b),4.23(1H,d,J=9.6 Hz,H-16a),4.42(1H,d,J = 9.6 Hz,H-16b),1.53(3H,s,H-17),1.64(3H,s,H-18),1.39(3H,s,H-19),1.18(3H,s,H-20),9.24(1H,br s,H-3′),8.84(1H,br d,J=4.8 Hz,H-5′),7.54(1H,dd,J=7.8,4.8 Hz,H-6′),8.33(1H,br d,J=7.8 Hz,H-7′),8.04(2H,br d,J=7.8 Hz,H-3″,7″),7.41(2H,br d,J=7.8 Hz,H-4″,6″),7.51(1H,dd,J=7.8,4.8 Hz,H-5″)。13C-NMR(150 MHz,CDCl3δC: 18.7(C-1),26.9(C-2),123.1(C-3),141.7(C-4),42.7(C-5),77.5(C-6),75.5(C-7),84.7(C-8),43.9(C-9),40.8(C-10),75.9(C-11),35.5(C-12),77.2(C-13),42.9(C-14),173.5(C-15),78.9(C-16),21.0(C-17),17.4(C-18),17.7(C-19),17.9(C-20),165.5(C-1′),126.3(C-2′),150.9(C-3′),154.2(C-5′),123.6(C-6′),137.9(C-7′),167.6(C-1″),130.4(C-2″),130.3(C-3″,7″),128.8(C-4″,6″),133.5(C-5″)。以上数据与文献(Dai et al.,2016)报道的基本一致,故鉴定化合物3为scutestrigillosin D。

  • 化合物4   黄色粉末。ESI-MS: m/z: 574.2 [M+H]+,596.4 [M + Na]+,推测化合物4的分子量为573,结合氢谱和碳谱数据,推测其分子式为C33H35NO81H-NMR(CDCl3,600 MHz)δH: 1.84(1H,m,H-1a),2.11(1H,m,H-1b),2.19(2H,m,H-2),5.31(1H,br s,H-3),5.81(1H,d,J=10.4 Hz,H-6),5.68(1H,d,J=10.4 Hz,H-7),2.56(1H,dd,J=12.6,2.2 Hz,H-10),5.58(1H,br d,J=10.4 Hz,H-11),2.74(1H,dd,J=13.8,10.4 Hz,H-12a),3.36(1H,br d,J=13.8 Hz,H-12b),4.50(1H,d,J=16.8 Hz,H-16a),4.75(1H,d,J=16.8 Hz,H-16b),1.34(3H,s,H-17),1.62(3H,s,H-18),1.48(3H,s,H-19),1.06(3H,s,H-20),8.97(1H,br s,H-3′),8.69(1H,br d,J=4.2 Hz,H-5′),7.26(1H,dd,J=8.2,4.2 Hz,H-6′),8.09(1H,br d,J=8.2 Hz,H-7′),7.36(2H,m,H-3″,7″),7.26(2H,m,H-4″,6″),7.40(1H,br t,J = 8.1 Hz,H-5″)。13C-NMR(CDCl3,150 MHz)δC: 19.7(C-1),25.9(C-2),123.5(C-3),141.2(C-4),43.6(C-5),75.4(C-6),77.5(C-7),78.5(C-8),47.5(C-9),41.1(C-10),75.5(C-11),29.0(C-12),130.5(C-13),138.9(C-14),171.3(C-15),70.3(C-16),22.3(C-17),21.2(C-18),17.7(C-19),17.1(C-20),164.5(C-1′),126.0(C-2′),150.7(C-3′),152.2(C-5′),123.1(C-6′),138.2(C-7′),166.3(C-1″),130.2(C-2″),129.5(C-3″,7″),128.7(C-4″,6″),133.5(C-5″)。以上数据与文献(Dai et al.,2009)报道的基本一致,故鉴定化合物4为scutehenanine D。

  • 化合物5   黄色粉末。ESI-MS m/z: 559.2 [M+H]+,推测化合物5的分子量为558,结合氢谱和碳谱数据,推测其分子式为C32H34N2O71H-NMR(CDCl3,600 MHz)δH: 1.39(1H,m,H-1a),1.71(1H,m,H-1b),2.07(2H,m,H-2),5.27(1H,s,H-3),5.96(1H,d,J=10.4 Hz,H-6),5.77(1H,d,J=10.4 Hz,H-7),2.42(1H,d,J=17.3 Hz,H-10),6.43(1H,d,J=17.3 Hz,H-11),6.46(1H,d,J=16.8 Hz,H-12),5.94(1H,s,H-14),5.04(1H,s,H-16),1.08(3H,s,H-17),1.59(3H,s,H-18),1.47(3H,s,H-19),1.30(3H,s,H-20),8.97(1H,d,J=1.8 Hz,H-3′),8.66(1H,dd,J=4.6,1.8 Hz,H-5′),7.25(1H,dd,J=8.2,4.6 Hz,H-6′),8.02(1H,dt,J=8.2,1.8 Hz,H-7′),9.03(1H,d,J=1.8 Hz,H-3″),8.68(1H,dd,J=4.6,1.8 Hz,H-5″),7.29(1H,dd,J=8.2,4.9 Hz,H-6″),8.09(1H,dt,J=8.2,1.8 Hz,H-7″)。13C-NMR(CDCl3,150 MHz)δC: 19.5(C-1),26.5(C-2),123.4(C-3),140.8(C-4),43.3(C-5),76.1(C-6),76.5(C-7),77.1(C-8),48.5(C-9),42.6(C-10),146.6(C-11),122.3(C-12),162.4(C-13),115.3(C-14),174.3(C-15),70.2(C-16),22.7(C-17),20.2(C-18),17.8(C-19),15.9(C-20),165.2(C-1′),125.9(C-2′),151.1(C-3′),153.6(C-5′),123.6(C-6′),137.0(C-7′),165.4(C-1″),124.5(C-2″),151.5(C-3″),153.6(C-5″),123.3(C-6″),137.9(C-7″)。以上数据与文献(Nguyen et al.,2009)报道的基本一致,故鉴定化合物5为半枝莲碱A。

  • 化合物6   白色粉末。ESI-MS m/z: 558.2 [M+H]+,556.1 [M-H ]-,推测化合物6的分子量为557,结合氢谱和碳谱数据,推测其分子式为C33H35NO71H-NMR(CDCl3,600 MHz)δH: 1.36(1H,m,H-1a),1.67(1H,m,H-1b),2.06(2H,m,H-2),5.27(1H,br s,H-3),5.91(1H,d,J=10.7 Hz,H-6),5.75(1H,d,J=10.7 Hz,H-7),2.37(1H,br d,J=12.0 Hz,H-10),6.49(1H,d,J=16.8 Hz,H-11),6.39(1H,d,J=16.8 Hz,H-12),5.98(1H,br s,H-14),5.02(2H,br s,H-16),1.09(3H,s,H-17),1.59(3H,s,H-18),1.46(3H,s,H-19),1.29(3H,s,H-20),8.99(1H,br s,H-3′),8.66(1H,br d,J=4.7 Hz,H-5′),7.29(1H,dd,J=7.9,4.7 Hz,H-6′),8.07(1H,br d,J=7.9 Hz,H-7′),7.86(2H,m,H-3″,7″),7.35(2H,m,H-4″,6″),7.49(1H,br t,J=7.8 Hz,H-5″)。13C-NMR(CDCl3,150 MHz)δC: 19.1(C-1),26.7(C-2),123.6(C-3),140.9(C-4),43.5(C-5),76.5(C-6),75.9(C-7),77.2(C-8),48.5(C-9),42.7(C-10),146.6(C-11),122.1(C-12),162.1(C-13),115.3(C-14),174.4(C-15),70.8(C-16),22.9(C-17),20.6(C-18),17.7(C-19),15.3(C-20),164.9(C-1′),125.7(C-2′),150.1(C-3′),153.5(C-5′),123.4(C-6′),137.1(C-7′),165.5(C-1″),128.9(C-2″),130.3(C-3″,7″),128.4(C-4″,6″),133.6(C-5″)。以上数据与文献(Dai et al.,2006)报道的基本一致,故鉴定化合物6为半枝莲碱B。

  • 化合物7   白色粉末。ESI-MS m/z: 575.2 [M+H]+,推测化合物7的分子量为574,结合氢谱和碳谱数据,推测其分子式为C32H34N2O81H-NMR(CDCl3,600 MHz)δH: 1.85(1H,m,H-1a),2.13(1H,m,H-1b),2.21(2H,m,H-2),5.29(1H,br s,H-3),5.91(1H,d,J=10.4 Hz,H-6),5.73(1H,d,J=10.4 Hz,H-7),2.53(1H,dd,J=12.0,1.8 Hz,H-10),5.57(1H,br d,J=10.4 Hz,H-11),2.72(1H,dd,J=14.4,10.4 Hz,H-12a),3.42(1H,br d,J=14.4 Hz,H-12b),4.57(1H,d,J=16.8 Hz,H-16a),4.78(1H,d,J=16.8 Hz,H-16b),1.36(3H,s,H-17),1.59(3H,s,H-18),1.48(3H,s,H-19),1.05(3H,s,H-20),9.06(1H,br s,H-3′),8.71(1H,br d,J=4.8 Hz,H-5′),7.29(1H,dd,J=8.1,4.8 Hz,H-6′),8.11(1H,br d,J=8.1 Hz,H-7′),8.99(1H,br s,H-3″),8.69(1H,br d,J=4.8 Hz,H-5″),7.29(1H,dd,J=7.8,4.6 Hz,H-6″),8.09(1H,br d,J=7.8 Hz,H-7″)。13C-NMR(CDCl3,150 MHz)δC: 19.5(C-1),26.5(C-2),123.6(C-3),141.1(C-4),43.1(C-5),76.5(C-6),77.4(C-7),78.2(C-8),47.5(C-9),40.7(C-10),75.9(C-11),29.1(C-12),130.1(C-13),139.3(C-14),171.7(C-15),70.3(C-16),21.9(C-17),20.6(C-18),17.4(C-19),16.6(C-20),164.8(C-1′),126.7(C-2′),150.4(C-3′),153.5(C-5′),123.5(C-6′),137.8(C-7′),164.8(C-1″),125.9(C-2″),150.3(C-3″),153.4(C-5″),123.6(C-6″),137.6(C-7″)。以上数据与文献(Dai et al.,2007)报道的基本一致,故鉴定化合物7为7-烟酸酰氧基半枝莲碱H。

  • 化合物8   黄色粉末。ESI-MS m/z: 535.2 [M+H]+,533.1 [ M-H ]-,推测化合物8的分子量为534,结合氢谱和碳谱数据,推测其分子式为C30H34N2O71H-NMR(CDCl3,600 MHz)δH: 1.36(1H,m,H-1a),1.68(1H,m,H-1b),2.08(2H,m,H-2),5.25(1H,br s,H-3),5.94(1H,d,J=10.2 Hz,H-6),5.63(1H,d,J=10.2 Hz,H-7),2.51(1H,dd,J=12.6,2.1 Hz,H-10),7.26(1H,br d,J=16.8 Hz,H-11),6.21(1H,d,J=16.8 Hz,H-12),1.59(3H,s,H-14),1.45(1H,s,H-15),1.26(3H,s,H-16),1.09(3H,s,H-17),4.54(2H,br s,H-18),9.06(1H,br s,H-3′),8.69(1H,br d,J=4.8 Hz,H-5′),7.27(1H,dd,J=7.9,4.8 Hz,H-6′),8.14(1H,br d,J=7.9 Hz,H-7′),9.02(1H,br s,H-3″),8.68(1H,br d,J=4.8 Hz,H-5″),7.28(1H,dd,J=7.8,4.8 Hz,H-6″),8.08(1H,br d,J=7.8 Hz,H-7″)。13C-NMR(CDCl3,150 MHz)δC: 19.4(C-1),26.3(C-2),123.5(C-3),140.7(C-4),43.3(C-5),76.2(C-6),76.4(C-7),77.2(C-8),48.5(C-9),42.7(C-10),154.9(C-11),126.7(C-12),198.5(C-13),20.3(C-14),17.5(C-15),15.3(C-16),22.9(C-17),66.8(C-18),164.8(C-1′),124.7(C-2′),150.7(C-3′),153.5(C-5′),123.9(C-6′),137.2(C-7′),164.7(C-1″),125.9(C-2″),150.7(C-3″),153.5(C-5″),123.6(C-6″),137.5(C-7″)。以上数据与文献(Dai et al.,2011)报道的基本一致,故鉴定化合物8为半枝莲碱N。

  • 化合物9   白色粉末。ESI-MS m/z: 558.1 [M+H]+,580.2 [ M+Na ]+,推测化合物9的分子量为557,结合氢谱和碳谱数据,推测其分子式为C33H35NO71H-NMR(CDCl3,600 MHz)δH: 1.36(1H,m,H-1a),1.67(1H,m,H-1b),2.07(2H,m,H-2),5.25(1H,br s,H-3),5.91(1H,d,J=10.2 Hz,H-6),5.75(1H,d,J=10.2 Hz,H-7),2.39(1H,br d,J=12.4 Hz,H-10),6.44(1H,d,J=16.8 Hz,H-11),6.48(1H,d,J=16.8 Hz,H-12),5.96(1H,br s,H-14),5.02(2H,br s,H-16),1.06(3H,s,H-17),1.59(3H,s,H-18),1.47(3H,s,H-19),1.28(3H,s,H-20),9.02(1H,br d,J=1.8 Hz,H-3′),8.64(1H,dd,J=4.8,1.8 Hz,H-5′),7.24(1H,dd,J=7.8,4.7 Hz,H-6′),8.07(1H,br d,J=7.8 Hz,H-7′),7.81(2H,d,J=8.2 Hz,H-3″,7″),7.28(2H,dd,J=8.2,7.4 Hz,H-4″,6″),7.39(1H,br t,J=7.4 Hz,H-5″)。13C-NMR(CDCl3,150 MHz)δC: 19.5(C-1),26.3(C-2),123.3(C-3),140.9(C-4),43.5(C-5),75.5(C-6),76.9(C-7),77.1(C-8),48.5(C-9),42.9(C-10),146.9(C-11),122.3(C-12),162.5(C-13),115.1(C-14),174.6(C-15),70.4(C-16),22.8(C-17),20.5(C-18),17.6(C-19),15.3(C-20),164.9(C-1′),125.4(C-2′),150.7(C-3′),153.6(C-5′),123.5(C-6′),137.5(C-7′),165.8(C-1″),129.9(C-2″),129.5(C-3″,7″),128.5(C-4″,6″),133.3(C-5″)。以上数据与文献(Wang et al.,2010)报道的基本一致,故鉴定化合物9为半枝莲碱Y。

  • 化合物10   白色粉末。ESI-MS m/z: 575.3 [M+H]+,推测化合物10的分子量为574,结合氢谱和碳谱数据,推测其分子式为C34H38O81H-NMR(CDCl3,600 MHz)δH: 1.66(1H,m,H-1a),2.06(1H,m,H-1b),2.19(2H,m,H-2),5.34(1H,br s,H-3),5.68(1H,d,J=10.1 Hz,H-6),3.75(1H,d,J=10.1 Hz,H-7),2.88(1H,dd,J=12.6,2.6 Hz,H-10),5.83(1H,dd,J=12.0,4.3 Hz,H-11),1.75(1H,m,H-12a),2.55(1H,m,H-12b),2.56(1H,d,J=17.8 Hz,H-14a),3.17(1H,d,J=17.8 Hz,H-14b),4.05(1H,d,J=8.8 Hz,H-16a),4.22(1H,d,J=8.8 Hz,H-16b),1.12(3H,s,H-17),1.69(3H,s,H-18),1.37(3H,s,H-19),1.09(3H,s,H-20),7.84(2H,m,H-3′,7′),7.37(2H,m,H-4′,6′),7.42(1H,br t,J=7.8 Hz,H-5′),7.77(2H,m,H-3″,7″),7.48(2H,m,H-4″,6″),7.45(1H,br t,J=7.8 Hz,H-5″)。13C-NMR(CDCl3,150 MHz)δC: 29.1(C-1),33.5(C-2),121.6(C-3),143.9(C-4),44.5(C-5),73.3(C-6),70.4(C-7),83.2(C-8),39.5(C-9),43.7(C-10),72.6(C-11),29.7(C-12),77.1(C-13),43.6(C-14),174.4(C-15),76.8(C-16),19.9(C-17),20.5(C-18),16.7(C-19),22.4(C-20),166.9(C-1′),128.7(C-2′),130.1(C-3′,7′),129.5(C-4′,6′),133.5(C-5′),168.5(C-1″),129.6(C-2″),130.2(C-3″,7″),128.5(C-4″,6″),133.8(C-5″)。以上数据与文献(Dai et al.,2006)报道的基本一致,故鉴定化合物10为barbatin A。

  • 化合物11   白色粉末。ESI-MS m/z: 575.3 [M+H]+,推测化合物11的分子量为574,结合氢谱和碳谱数据,推测其分子式为C34H38O81H-NMR(CDCl3,600 MHz)δH: 1.86(1H,m,H-1a),2.47(1H,m,H-1b),1.46(1H,m,H-2a),2.08(1H,m,H-2b),2.15(1H,m,H-3a),2.31(1H,m,H-3b),5.71(1H,d,J=10.8 Hz,H-6),5.65(1H,d,J=10.8 Hz,H-7),2.37(1H,dd,J=12.6,2.0 Hz,H-10),4.37(1H,dd,J=12.4,4.1 Hz,H-11),1.59(1H,m,H-12a),2.16(1H,m,H-12b),2.87(1H,d,J=17.0 Hz,H-14a),3.05(1H,d,J=17.0 Hz,H-14b),4.25(1H,d,J=9.0 Hz,H-16a),4.41(1H,d,J=9.0 Hz,H-16b),1.11(3H,s,H-17),4.64(2H,br s,H-18),1.45(3H,s,H-19),1.59(3H,s,H-20),7.94(2H,m,H-3′,7′),7.56(2H,m,H-4′,6′),7.44(1H,br t,J=7.8 Hz,H-5′),7.96(2H,m,H-3″,7″),7.65(2H,m,H-4″,6″),7.49(1H,br t,J=7.8 Hz,H-5″)。13C-NMR(CDCl3,150 MHz)δC: 22.3(C-1),28.5(C-2),32.6(C-3),154.7(C-4),45.9(C-5),74.3(C-6),70.1(C-7),84.8(C-8),43.7(C-9),43.4(C-10),74.6(C-11),31.6(C-12),77.7(C-13),42.6(C-14),174.2(C-15),79.4(C-16),16.7(C-17),104.5(C-18),17.7(C-19),20.4(C-20),166.7(C-1′),128.8(C-2′),130.3(C-3′,7′),129.2(C-4′,6′),133.2(C-5′),167.9(C-1″),129.5(C-2″),129.9(C-3″,7″),128.3(C-4″,6″),133.7(C-5″)。以上数据与文献(Dai et al.,2006)报道的基本一致,故鉴定化合物11为barbatin B。

  • 化合物12   白色粉末。ESI-MS m/z: 557.3 [M+H]+,推测化合物12的分子量为556,结合氢谱和碳谱数据,推测其分子式为C34H36O71H-NMR(CDCl3,600 MHz)δH: 1.36(1H,m,H-1a),1.66(1H,m,H-1b),2.06(2H,m,H-2),5.25(1H,br s,H-3),5.73(1H,d,J=10.4 Hz,H-6),5.91(1H,d,J=10.4 Hz,H-7),2.37(1H,dd,J=12.8,2.1 Hz,H-10),6.47(1H,d,J=16.8 Hz,H-11),6.43(1H,d,J=16.8 Hz,H-12),5.95(1H,br s,H-14),5.01(1H,dd,J=16.8,1.8 Hz,H-16a),5.04(1H,dd,J=16.8,1.8 Hz,H-16b),1.06(3H,s,H-17),1.59(3H,s,H-18),1.47(3H,s,H-19),1.28(3H,s,H-20),7.83(2H,m,H-3′,7′),7.31(2H,m,H-4′,6′),7.43(1H,br t,J=7.8 Hz,H-5′),7.86(2H,m,H-3″,7″),7.34(2H,m,H-4″,6″),7.47(1H,br t,J=7.8 Hz,H-5″)。13C-NMR(CDCl3,150 MHz)δC: 19.5(C-1),26.5(C-2),123.5(C-3),139.9(C-4),43.5(C-5),75.8(C-6),75.9(C-7),77.2(C-8),48.4(C-9),42.7(C-10),146.8(C-11),121.7(C-12),162.1(C-13),115.1(C-14),174.0(C-15),70.8(C-16),22.8(C-17),20.2(C-18),17.5(C-19),15.3(C-20),166.2(C-1′),129.8(C-2′),130.5(C-3′,7′),128.2(C-4′,6′),133.3(C-5′),166.3(C-1″),129.5(C-2″),129.3(C-3″,7″),128.3(C-4″,6″),132.8(C-5″)。以上数据与文献(Dai et al.,2008)报道的基本一致,故鉴定化合物12为barbatin D。

  • 化合物13   黄色粉末。ESI-MS m/z: 317.1 [M+H]+,339.2 [M + Na]+,推测化合物13的分子量为316,结合氢谱和碳谱数据,推测其分子式为C16H12O71H-NMR(DMSO-d6,600 MHz)δH: 6.21(1H,d,J=1.9 Hz,H-6),6.32(1H,d,J=1.9 Hz,H-8),6.58(1H,d,J=8.2 Hz,H-3′),7.29(1H,dd,J=8.2,8.1 Hz,H-4′),6.57(1H,d,J=8.1 Hz,H-5′),12.52(5-OH),10.76(7-OH),9.79(5-OH),3.75(3H,s,2′-OMe)。13C-NMR(DMSO-d6,150 MHz)δC: 145.9(C-2),138.1(C-3),176.7(C-4),161.4(C-5),98.3(C-6),164.0(C-7),93.6(C-8),157.6(C-9),103.9(C-10),107.4(C-1′),158.8(C-2′),102.1(C-3′),131.9(C-4′),108.7(C-5′),156.7(C-6′),55.8(2′-OMe)。以上数据与文献(Long et al.,2015)报道的基本一致,故鉴定化合物13为5,7,6′-三羟基-2′-甲氧基黄酮醇。

  • 化合物14   黄色粉末。ESI-MS m/z: 315.1 [M+H]+,推测化合物14的分子量为314,结合氢谱和碳谱数据,推测其分子式为C17H14O61H-NMR(DMSO-d6,600 MHz)δH: 6.98(1H,s,H-3),7.53~7.67(3H,m,H-3′,4′,5′),7.96~8.09(2H,m,H-2′,6′),12.71(1H,s,5-OH),3.88(3H,s,6-OMe),3.79(7-OMe)。13C-NMR(DMSO-d6,150 MHz)δC: 164.1(C-2),105.2(C-3),182.7(C-4),146.3(C-5),132.8(C-6),152.0(C-7),129.1(C-8),148.9(C-9),103.8(C-10),131.4(C-1′),126.8(C-2′,6′),130.0(C-3′,5′),132.5(C-4′),60.5,61.5(-OMe × 2)。以上数据与文献(Tomimori et al.,1982)报道的基本一致,故鉴定化合物14为5,8-二羟基-6,7-二甲氧基黄酮。

  • 2.2 人肝癌HepG2细胞增殖抑制活性

  • 采用CCK-8法评价了化合物1-14对人肝癌活性HepG2细胞体外增殖抑制活性,其IC50值见表1。由表1可知,化合物1-3891314均表现出无明显活性,化合物4710-12表现出较弱的肿瘤细胞增殖抑制活性,化合物6 [IC50值为(15.62 ± 2.07)μmol·L-1]细胞增殖抑制活性和阳性对照 [顺铂,IC50值为(13.74 ± 1.04)μmol·L-1]活性接近,而化合物5 [IC50值为(1.25 ± 0.39)μmol·L-1]表现出比顺铂更强的肿瘤细胞增殖抑制活性。

  • 图1 化合物1-14的结构式

  • Fig.1 Structural formulas of compounds 1-14

  • 表1 化合物1-14对人肝癌HepG2细胞增殖抑制的IC50

  • Table1 IC50 values of compounds 1-14 on the inhibition against proliferation of HepG2 cell

  • 2.3 分子对接

  • 利用Autodock Vina1.1.2软件将活性最好的单体化合物半枝莲碱A(5)和半枝莲碱B(6)与肝癌靶标VEGF-2蛋白、FGFR-1蛋白进行分子对接,化合物与受体的结合情况通过结合能(kcal·mol-1)衡量,通常结合能低于0 kcal·mol-1,表明化合物和蛋白可以结合,而结合能低于-5 kcal·mol-1,表明结合良好(黄俊鑫等,2022)。分子对接结果表明,肝癌靶标VEGF-2蛋白与其特异性配体乐伐替尼(LEV)的结合能为-9.2 kcal·mol-1,而与半枝莲碱A(5)、半枝莲碱B(6)的结合能分别为-8.5、-8.4 kcal·mol-1;FGFR-1蛋白与其特异性配体LEV的结合能为-10.6 kcal·mol-1,而与半枝莲碱A(5)、半枝莲碱B(6)的结合能分别为0.7、1.1 kcal·mol-1。因此,化合物5和化合物6与VEGF-2具有良好的结合力,其分子对接图见图2。由图2可知,半枝莲碱A(5)和半枝莲碱B(6)通过氢键与GLY-841、LEU-840、ASN-923、ARG-1032等残基结合。

  • 图2 化合物5和化合物6与VEGF-2蛋白的分子对接

  • Fig.2 Molecular docking of compounds 5 and 6 with VEGF-2 protein

  • 3 讨论与结论

  • 半枝莲为我国常见中草药,其在抗肿瘤领域应用较广泛,常使用半枝莲及其药治疗或辅助治疗恶性肿瘤(张洪石等,2022)。目前,半枝莲的研究主要集中在黄酮类成分和多糖类成分抗肿瘤及作用机制的研究。近几年,对于半枝莲二萜及二萜生物碱类化学成分的研究逐渐增多,得到了一些具有较好活性的化合物。Wu等(2015)研究发现化合物scutolide A-L、(14R)-14β-hydroxyscutolide K等13个化合物对EB病毒裂解复制有不同的抑制作用,其中化合物scutolide D的EC50(半最大效应浓度)和SI(选择指数)值分别为3.2 μmol·L-1和46.1,表明其对EB病毒具有较强活性和高安全性;Xue等(2016)研究发现半枝莲中二萜或二萜生物碱类化合物scutebatin A、6,7-二烟酸酰氧基半枝莲碱G(6,7-di-O-nicotinoylscutebarbatine G)、6-烟酸酰氧基-7-乙酰氧基半枝莲碱G(6-O-nicotinoyl-7-O-acetylscutebarbatine G)、半枝莲碱W(scutebarbatine W)表现出比维拉帕米(经典P-gp 抑制剂)具有更好的对抗多药耐药(MDR)能力,其中作用最强化合物为scutebatin A,其通过抑制P-gp活性和抑制p糖蛋白表达逆转多药耐药;Yuan等(2017)研究发现半枝莲中化合物scubatine F对A549(人肺腺癌)细胞和HL-60(人早幼粒细胞白血病)细胞表现出一定的细胞毒活性,IC50分别为10.4 μmol·L-1和15.3 μmol·L-1。综上可知,目前半枝莲中二萜类化合物的活性研究较少,主要集中在抗病毒、抗多药耐药等方面,而在抗肿瘤活性方面研究较少,尤其是在抗肝癌方面。

  • 前期对半枝莲95%乙醇提取物的乙酸乙酯萃取部位进行了大孔树脂梯度洗脱,发现50%乙醇洗脱部位具有很好的抗乳腺癌活性,其主要活性成分为黄酮类化合物,而70%~90%乙醇洗脱部位对乳腺癌无明显活性(严绪华等,2023)。同时,对60%~90%大孔树脂乙醇洗脱部位进行抗肝癌活性筛选(刘欣等,2023)。本研究则在前期抗肝癌活性研究基础上,选取活性最好的70%乙醇洗脱部位作为对象。利用多种色谱手段从70%乙醇洗脱部位中分离得到14个单体化合物,包括12个二萜类化合物和2个黄酮类化合物,其中化合物1-31314为首次从该植物中分离得到。同时,利用CCK-8法评价了14个单体化合物对人肝癌HepG2细胞株体外增殖活性的影响,其中化合物1-3891314无明显抑制活性,化合物4710-12表现出较弱的抑制活性,化合物6对肿瘤细胞增殖抑制活性(IC50值为15.62 μmol·L-1)与阳性对照活性接近,而化合物5表现出比顺铂更好的肿瘤细胞增殖抑制活性(IC50值为1.25 μmol·L-1)。由于所得的具有抗肝癌活性二萜类化合物数量较少且化合物分属不同的新克罗烷结构类型,因此其构效关系目前还不明确。通过文献查阅发现化合物46781011对HONE-1人鼻咽癌细胞株、KB人口腔表皮样癌细胞株和HT-29人结肠癌细胞株均具有较好的生长抑制活性,IC50值为2.8~8.1 μmol·L-1(Dai et al.,2006,2007,2009,2011),表明半枝莲二萜类化合物在其他肿瘤方面也能表现出较好的活性,值得进一步研究。本研究同时利用分子对接法探讨化合物半枝莲碱A(5)和半枝莲碱B(6)与肝癌靶标的结合情况。通过一线抗肝癌药物乐伐替尼(或仑伐替尼)明确的靶标结合蛋白银行数据库(https://www.rcsb.org/)中特异性配体乐伐替尼对应的蛋白,筛选出2个肝癌靶标VEGF-2(ID:3WZD)、FGFR-1(ID:5ZV2)蛋白作为目标蛋白。利用autodock vina1.1.2将化合物5和化合物6与目标蛋白进行分子对接。结果显示,半枝莲碱A(5)和半枝莲碱B(6)与VEGF-2蛋白均有良好的结合能力,比乐伐替尼稍弱,但与FGFR-1蛋白结合能力差,表明化合物5和化合物6的抗肝癌作用靶标之一可能为VEGF-2蛋白,靶标验证及后续作用机制还需要进一步深入研究。

  • 综上所述,本研究不仅丰富了半枝莲的化学物质类群,也为半枝莲抗肝癌物质的基础研究做出了一定贡献。

  • 参考文献

    • CHEN M, WANG JT, WU ZN, et al. , 2017. Effect of total flavonoids in Scutellaria barbata in mediating autophagy in tumor cells via PI3K/AKT/mTOR pathway [J]. Chin J Chin Mat Med, 42(7): 1358-1364. [陈明, 王举涛, 吴珍妮, 等, 2017. 半枝莲总黄酮通过PI3K/AKT/mTOR通路诱导肿瘤细胞自噬的体内实验研究 [J]. 中国中药杂志, 42(7): 1358-1364. ]

    • DAI SJ, PENG WB, SHEN L, et al. , 2011. New norditerpenoid alkaloids from Scutellaria barbata with cytotoxic activities [J]. Nat Prod Res, 25(11): 1019-1024.

    • DAI SJ, PENG WB, ZHANG DW, et al. , 2009. Cytotoxic neo-clerodane diterpenoid alkaloids from Scutellaria barbata [J]. J Nat Prod, 72(10): 1793-1797.

    • DAI SJ, SHEN L, REN Y, 2008. Two new neo-clerodane diterpenoids from Scutellaria barbata [J]. J Integr Plant Biol, 50(6): 699-702.

    • DAI SJ, TAO JY, LIU K, et al. , 2006. neo-clerodane diterpenoids from Scutellaria barbata with cytotoxic activities [J]. Phytochemistry, 67(13): 1326-1330.

    • DAI SJ, WANG GF, CHEN M, et al. , 2007. Five new neo-clerodane diterpenoid alkaloids from Scutellaria barbata with cytotoxic activities [J]. Chem Pharm Bull, 55(8): 1218-1221.

    • DAI SJ, XIAO K, ZHANG L, et al. , 2016. New neo-clerodane diterpenoids from Scutellaria strigillosa with cytotoxic activities [J]. J Asian Nat Prod Res, 18(5): 456-461.

    • GAO S, SONG GC, XU XY, 2017. Influence of Scutellaria Barbata polysaccharide on the cell activity of gastric carcinoma cell SGC-7901 [J]. Chin Foreign Med Res, 15(15): 1-2. [高山, 宋高臣, 许晓义, 2017. 半枝莲多糖对胃癌细胞SGC-7901的细胞活性影响 [J]. 中外医学研究, 15(15): 1-2. ]

    • GU YZ, WEI LL, LIU Y, et al. , 2023. Research progress on diterpenoid constituents and their pharmacological effects of medicinal plants in the Labiatae family in the past decade [J]. J Chin Med Mat, 46(2): 511-524. [顾永哲, 魏乐乐, 刘月, 等, 2023. 近10年唇形科药用植物二萜类化学成分及其药理作用研究进展 [J]. 中药材, 46(2): 511-524. ]

    • HUANG JX, WANG BX, ZOU HB, et al. , 2022. Mechanism of Fangji Fulingtang for treating acute kidney injury induced by ischemia-reperfusion based on network pharmacology and molecular docking verification [J]. Chin J Exp Tradit Med, 28(8): 175-182. [黄俊鑫, 王碧霞, 邹汉斌, 等, 2022. 基于网络药理学和分子对接探究防己茯苓汤治疗缺血再灌注急性肾损伤的作用机制 [J]. 中国实验方剂学杂志, 28(8): 175-182. ]

    • KURIMOTO SI, PU JX, SUN HD, et al. , 2015. Acylated neo-clerodanes and 19-nor-neo-clerodanes from the aerial parts of Scutellaria coleifolia (Lamiaceae) [J]. Phytochemistry, 116: 298-304.

    • LEI N, XIONG SH, TAN L, et al. , 2020. Inhibition of scutellarin on differentiation of colonic cancer stem cells via hedgehog signaling pathway [J]. Chin J Chin Mat Med, 45(7): 1676-1683. [雷楠, 熊思会, 谭溧, 等, 2020. 野黄芩苷通过hedgehog 信号通路抑制结肠肿瘤干细胞分化的研究 [J]. 中国中药杂志, 45(7): 1676-1683. ]

    • LI GS, HAO XM, ZHANG L, et al. , 2015. Diterpenoids from Scutellaria strigillosa [J]. Chin J Chin Mat Med, 40(1): 98-102. [李桂生, 郝鑫淼, 张雷, 等, 2015. 沙滩黄芩中的二萜类化合物 [J]. 中国中药杂志, 40(1): 98-102. ]

    • LI HQ, SU J, JIANG JY, et al. , 2019. Characterization of polysaccharide from Scutellaria barbata and its antagonistic effect on the migration and invasion of HT-29 colorectal cancer cells induced by TGF-β1 [J]. Int J Biol Macromol, 131: 886-895.

    • LI J, WANG Y, LEI JC, et al. , 2014. Sensitisation of ovarian cancer cells to cisplatin by flavonoids from Scutellaria barbata [J]. Nat Prod Res, 28(10): 683-689.

    • LIN XY, 2021. Extraction, purification, composition analysis and anti-hepatocellular activity of Scutellaria barbata D. Don polysaccharide [D]. Harbin: Heilongjiang University of Traditional Chinese Medicine. [林霄月, 2021. 半枝莲多糖提取纯化与组成分析及抗肝癌活性研究 [D]. 哈尔滨: 黑龙江中医药大学. ]

    • LIU X, YAN XH, CHEN ZQ, et al. , 2023. Studies on the separation of total alkaloids from Sculellaria barbata and its antitumor activities [J]. Strait Pharm J, 35(4): 12-16. [刘欣, 严绪华, 陈中强, 等, 2023. 半枝莲总生物碱的纯化分离及其抗肿瘤活性研究 [J]. 海峡药学, 35(4): 12-16. ]

    • LONG HL, XU GY, DENG AJ, et al. , 2015. Two new flavonoids from the roots of Scutellaria baicalensis [J]. J Asian Nat Prod Res, 17(7): 756-760.

    • National Pharmacopoeia Commission, 2020. Pharmacopoeia of the People's Republic of China: Vol. I [S]. Beijing: China Pharmaceutical Science and Technology Press: 122. [国家药典委员会, 2020. 中华人民共和国药典: 一部 [S]. 北京: 中国医药科技出版社: 122. ]

    • NGUYEN VH, PHAM VC, NGUYEN TTH, et al. , 2009. Novel antioxidant neo-clerodane diterpenoids from Scutellaria barbata [J]. Eur J Org Chem, (33): 5810-5815.

    • NIU SR, SHI Y, YANG X, et al. , 2021. Research progress on anti-tumor effects of chemical components from Scutellaria barbata [J]. Chin Pharm, 32(15): 1915-1920. [牛淑睿, 石芸, 杨鑫, 等, 2021. 半枝莲化学成分的抗肿瘤作用研究进展 [J]. 中国药房, 32(15): 1915-1920. ]

    • SUN PD, SUN D, WANG XD, 2017. Effects of Scutellaria barbata polysaccharide on the proliferation, apoptosis and EMT of human colon cancer HT29 cells [J]. Carbohyd Polym, 167: 90-96.

    • TOMIMORI T, MIYAICHI Y, KIZU H, 1982. On the flavonoid constituents from the roots of Scutellaria baicalensis Georgi. I [J]. Yakugaku Zasshi, 102(4): 388-391.

    • WANG F, REN FC, LI YJ, et al. , 2010. Scutebarbatines W-Z, new neo-clerodane diterpenoids from Scutellaria barbata and structure revision of a series of 13-spiro neo-clerodanes [J]. Chem Pharm Bull, 58(9): 1267-1270.

    • WU TZ, WANG Q, JIANG C, et al. , 2015. neo-clerodane diterpenoids from Scutellaria barbata with activity against Epstein-Barr virus lytic replication [J]. J Nat Prod, 78(3): 500-509.

    • XUE GM, XIA YZ, WANG ZM, et al. , 2016. neo-clerodane diterpenoids from Scutellaria barbata mediated inhibition of P-glycoprotein in MCF-7/ADR cells [J]. Eur J Med Chem, 121: 238-249.

    • YAN XH, ZHOU TX, MEI L, et al. , 2023. Study on the chemical constituents of Scutellaria barbata and its inhibitory activity on the proliferation of breast cancer cells [J]. Chin Tradit Pat Med, 45(6): 1864-1870. [严绪华, 周童曦, 梅凌, 等, 2023. 半枝莲化学成分及其体外抑制乳腺癌细胞增殖活性 [J]. 中成药, 45(6): 1864-1870. ]

    • YIN JP, ZHUO SY, 2021. Effects of ferulic acid on the proliferation, invasion and apoptosis of HepG2 hepatocellular carcinoma cells [J]. Chin Pharm, 32(13): 1565-1571. [音金萍, 卓少元, 2021. 阿魏酸对人肝癌HepG2细胞增殖、侵袭和凋亡的影响 [J]. 中国药房, 32(13): 1565-1571. ]

    • YUAN QQ, SONG WB, WANG WQ, et al. , 2017. Scubatines A-F, new cytotoxic neo-clerodane diterpenoids from Scutellaria barbata D. Don [J]. Fitoterapia, 119: 1-18.

    • ZENG J, 2018. The mechanism of breviscapine inhibiting the growth of non-small cell lung cancer by regulating the expression of miRNA-7 and IGFBP-4 [D]. Hangzhou: Zhejiang University. [曾剑, 2018. 灯盏花素通过调节miRNA-7和IGFBP-4的表达抑制非小细胞肺癌生长的机制研究 [D]. 杭州: 浙江大学. ]

    • ZHANG HS, SU WW, ZHANG QM, et al. , 2022. Research progress on antitumor bioactivity of Scutellaria Barbata [J]. Chin J Pharm Econ, 17(5): 124-128. [张洪石, 苏文文, 张启明, 等, 2022. 半枝莲抗肿瘤生物活性研究进展 [J]. 中国药物经济学, 17(5): 124-128. ]

    • ZHENG X, KANG W, LIU HH, et al. , 2018. Inhibition effects of total flavonoids from Scutellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway [J]. Int J Mol Med, 41(6): 3137-3416.

  • 参考文献

    • CHEN M, WANG JT, WU ZN, et al. , 2017. Effect of total flavonoids in Scutellaria barbata in mediating autophagy in tumor cells via PI3K/AKT/mTOR pathway [J]. Chin J Chin Mat Med, 42(7): 1358-1364. [陈明, 王举涛, 吴珍妮, 等, 2017. 半枝莲总黄酮通过PI3K/AKT/mTOR通路诱导肿瘤细胞自噬的体内实验研究 [J]. 中国中药杂志, 42(7): 1358-1364. ]

    • DAI SJ, PENG WB, SHEN L, et al. , 2011. New norditerpenoid alkaloids from Scutellaria barbata with cytotoxic activities [J]. Nat Prod Res, 25(11): 1019-1024.

    • DAI SJ, PENG WB, ZHANG DW, et al. , 2009. Cytotoxic neo-clerodane diterpenoid alkaloids from Scutellaria barbata [J]. J Nat Prod, 72(10): 1793-1797.

    • DAI SJ, SHEN L, REN Y, 2008. Two new neo-clerodane diterpenoids from Scutellaria barbata [J]. J Integr Plant Biol, 50(6): 699-702.

    • DAI SJ, TAO JY, LIU K, et al. , 2006. neo-clerodane diterpenoids from Scutellaria barbata with cytotoxic activities [J]. Phytochemistry, 67(13): 1326-1330.

    • DAI SJ, WANG GF, CHEN M, et al. , 2007. Five new neo-clerodane diterpenoid alkaloids from Scutellaria barbata with cytotoxic activities [J]. Chem Pharm Bull, 55(8): 1218-1221.

    • DAI SJ, XIAO K, ZHANG L, et al. , 2016. New neo-clerodane diterpenoids from Scutellaria strigillosa with cytotoxic activities [J]. J Asian Nat Prod Res, 18(5): 456-461.

    • GAO S, SONG GC, XU XY, 2017. Influence of Scutellaria Barbata polysaccharide on the cell activity of gastric carcinoma cell SGC-7901 [J]. Chin Foreign Med Res, 15(15): 1-2. [高山, 宋高臣, 许晓义, 2017. 半枝莲多糖对胃癌细胞SGC-7901的细胞活性影响 [J]. 中外医学研究, 15(15): 1-2. ]

    • GU YZ, WEI LL, LIU Y, et al. , 2023. Research progress on diterpenoid constituents and their pharmacological effects of medicinal plants in the Labiatae family in the past decade [J]. J Chin Med Mat, 46(2): 511-524. [顾永哲, 魏乐乐, 刘月, 等, 2023. 近10年唇形科药用植物二萜类化学成分及其药理作用研究进展 [J]. 中药材, 46(2): 511-524. ]

    • HUANG JX, WANG BX, ZOU HB, et al. , 2022. Mechanism of Fangji Fulingtang for treating acute kidney injury induced by ischemia-reperfusion based on network pharmacology and molecular docking verification [J]. Chin J Exp Tradit Med, 28(8): 175-182. [黄俊鑫, 王碧霞, 邹汉斌, 等, 2022. 基于网络药理学和分子对接探究防己茯苓汤治疗缺血再灌注急性肾损伤的作用机制 [J]. 中国实验方剂学杂志, 28(8): 175-182. ]

    • KURIMOTO SI, PU JX, SUN HD, et al. , 2015. Acylated neo-clerodanes and 19-nor-neo-clerodanes from the aerial parts of Scutellaria coleifolia (Lamiaceae) [J]. Phytochemistry, 116: 298-304.

    • LEI N, XIONG SH, TAN L, et al. , 2020. Inhibition of scutellarin on differentiation of colonic cancer stem cells via hedgehog signaling pathway [J]. Chin J Chin Mat Med, 45(7): 1676-1683. [雷楠, 熊思会, 谭溧, 等, 2020. 野黄芩苷通过hedgehog 信号通路抑制结肠肿瘤干细胞分化的研究 [J]. 中国中药杂志, 45(7): 1676-1683. ]

    • LI GS, HAO XM, ZHANG L, et al. , 2015. Diterpenoids from Scutellaria strigillosa [J]. Chin J Chin Mat Med, 40(1): 98-102. [李桂生, 郝鑫淼, 张雷, 等, 2015. 沙滩黄芩中的二萜类化合物 [J]. 中国中药杂志, 40(1): 98-102. ]

    • LI HQ, SU J, JIANG JY, et al. , 2019. Characterization of polysaccharide from Scutellaria barbata and its antagonistic effect on the migration and invasion of HT-29 colorectal cancer cells induced by TGF-β1 [J]. Int J Biol Macromol, 131: 886-895.

    • LI J, WANG Y, LEI JC, et al. , 2014. Sensitisation of ovarian cancer cells to cisplatin by flavonoids from Scutellaria barbata [J]. Nat Prod Res, 28(10): 683-689.

    • LIN XY, 2021. Extraction, purification, composition analysis and anti-hepatocellular activity of Scutellaria barbata D. Don polysaccharide [D]. Harbin: Heilongjiang University of Traditional Chinese Medicine. [林霄月, 2021. 半枝莲多糖提取纯化与组成分析及抗肝癌活性研究 [D]. 哈尔滨: 黑龙江中医药大学. ]

    • LIU X, YAN XH, CHEN ZQ, et al. , 2023. Studies on the separation of total alkaloids from Sculellaria barbata and its antitumor activities [J]. Strait Pharm J, 35(4): 12-16. [刘欣, 严绪华, 陈中强, 等, 2023. 半枝莲总生物碱的纯化分离及其抗肿瘤活性研究 [J]. 海峡药学, 35(4): 12-16. ]

    • LONG HL, XU GY, DENG AJ, et al. , 2015. Two new flavonoids from the roots of Scutellaria baicalensis [J]. J Asian Nat Prod Res, 17(7): 756-760.

    • National Pharmacopoeia Commission, 2020. Pharmacopoeia of the People's Republic of China: Vol. I [S]. Beijing: China Pharmaceutical Science and Technology Press: 122. [国家药典委员会, 2020. 中华人民共和国药典: 一部 [S]. 北京: 中国医药科技出版社: 122. ]

    • NGUYEN VH, PHAM VC, NGUYEN TTH, et al. , 2009. Novel antioxidant neo-clerodane diterpenoids from Scutellaria barbata [J]. Eur J Org Chem, (33): 5810-5815.

    • NIU SR, SHI Y, YANG X, et al. , 2021. Research progress on anti-tumor effects of chemical components from Scutellaria barbata [J]. Chin Pharm, 32(15): 1915-1920. [牛淑睿, 石芸, 杨鑫, 等, 2021. 半枝莲化学成分的抗肿瘤作用研究进展 [J]. 中国药房, 32(15): 1915-1920. ]

    • SUN PD, SUN D, WANG XD, 2017. Effects of Scutellaria barbata polysaccharide on the proliferation, apoptosis and EMT of human colon cancer HT29 cells [J]. Carbohyd Polym, 167: 90-96.

    • TOMIMORI T, MIYAICHI Y, KIZU H, 1982. On the flavonoid constituents from the roots of Scutellaria baicalensis Georgi. I [J]. Yakugaku Zasshi, 102(4): 388-391.

    • WANG F, REN FC, LI YJ, et al. , 2010. Scutebarbatines W-Z, new neo-clerodane diterpenoids from Scutellaria barbata and structure revision of a series of 13-spiro neo-clerodanes [J]. Chem Pharm Bull, 58(9): 1267-1270.

    • WU TZ, WANG Q, JIANG C, et al. , 2015. neo-clerodane diterpenoids from Scutellaria barbata with activity against Epstein-Barr virus lytic replication [J]. J Nat Prod, 78(3): 500-509.

    • XUE GM, XIA YZ, WANG ZM, et al. , 2016. neo-clerodane diterpenoids from Scutellaria barbata mediated inhibition of P-glycoprotein in MCF-7/ADR cells [J]. Eur J Med Chem, 121: 238-249.

    • YAN XH, ZHOU TX, MEI L, et al. , 2023. Study on the chemical constituents of Scutellaria barbata and its inhibitory activity on the proliferation of breast cancer cells [J]. Chin Tradit Pat Med, 45(6): 1864-1870. [严绪华, 周童曦, 梅凌, 等, 2023. 半枝莲化学成分及其体外抑制乳腺癌细胞增殖活性 [J]. 中成药, 45(6): 1864-1870. ]

    • YIN JP, ZHUO SY, 2021. Effects of ferulic acid on the proliferation, invasion and apoptosis of HepG2 hepatocellular carcinoma cells [J]. Chin Pharm, 32(13): 1565-1571. [音金萍, 卓少元, 2021. 阿魏酸对人肝癌HepG2细胞增殖、侵袭和凋亡的影响 [J]. 中国药房, 32(13): 1565-1571. ]

    • YUAN QQ, SONG WB, WANG WQ, et al. , 2017. Scubatines A-F, new cytotoxic neo-clerodane diterpenoids from Scutellaria barbata D. Don [J]. Fitoterapia, 119: 1-18.

    • ZENG J, 2018. The mechanism of breviscapine inhibiting the growth of non-small cell lung cancer by regulating the expression of miRNA-7 and IGFBP-4 [D]. Hangzhou: Zhejiang University. [曾剑, 2018. 灯盏花素通过调节miRNA-7和IGFBP-4的表达抑制非小细胞肺癌生长的机制研究 [D]. 杭州: 浙江大学. ]

    • ZHANG HS, SU WW, ZHANG QM, et al. , 2022. Research progress on antitumor bioactivity of Scutellaria Barbata [J]. Chin J Pharm Econ, 17(5): 124-128. [张洪石, 苏文文, 张启明, 等, 2022. 半枝莲抗肿瘤生物活性研究进展 [J]. 中国药物经济学, 17(5): 124-128. ]

    • ZHENG X, KANG W, LIU HH, et al. , 2018. Inhibition effects of total flavonoids from Scutellaria barbata D. Don on human breast carcinoma bone metastasis via downregulating PTHrP pathway [J]. Int J Mol Med, 41(6): 3137-3416.