en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李海波(1981—),硕士,农艺师,主要从事种子种苗研究,(E-mail)121927418@qq.com。

通讯作者:

汪得凯,博士,研究员,主要从事药用植物资源与分子遗传研究,(E-mail)kay77@163.com。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2024)06-1091-14

DOI:10.11931/guihaia.gxzw202401005

参考文献
ARPITA K, SHARMA S, SRIVASTAVA H, et al. , 2023. Genome-wide survey, molecular evolution and expression analysis of Auxin Response Factor (ARF) gene family indicating their key role in seed number per pod in pigeonpea (C. cajan L. Millsp. ) [J]. Int J Biol Macromol, 253(Pt 4): 126833.
参考文献
BARBA-MONTOYA J, DOS RM, SCHNEIDER H, et al. , 2018. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a cretaceous terrestrial revolution [J]. New Phytol, 218(2): 819-834.
参考文献
CARUANA J, DHAR N, RAINA R, 2020. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8 [J]. Plant Direct, 4(9): e00270.
参考文献
CHANDLER JW, 2016. Auxin response factors [J]. Plant Cell Environ, 39(5): 1014-1028.
参考文献
CHEN D, WANGD WA, WU YQ, et al. , 2019. Expression and distribution of the auxin response factors in Sorghum bicolor during development and temperature stress [J]. Int J Mol Sci, 20(19): 4816.
参考文献
CHEN FQ, ZHANG JQ, HA X, et al. , 2023. Genome-wide identification and expression analysis of the auxin-response factor (ARF) gene family in Medicago sativa under abiotic stress [J]. BMC Genom, 24(1): 498.
参考文献
CHEN MY, ZHU XY, LIU XJ, et al. , 2021. Knockout of auxin response factor SlARF4 improves tomato resistance to water deficit [J]. Int J Mol Sci, 22(7): 3347.
参考文献
CHEN SS, ZHANG MH, WANG JX, et al. , 2021. Original plant and research progress of the medicinal plant Huperzia javanica [J]. Guihaia, 41(11): 1794-1809. [陈思思, 张梦华, 王锦秀, 等, 2021. 药用植物千层塔的基原物种及研究进展 [J]. 广西植物, 41(11): 1794-1809. ]
参考文献
CHENNA R, SUGAWARA H, KOIKE T, et al. , 2003. Multiple sequence alignment with the clustal series of programs [J]. Nucl Acids Res, 31(13): 3497-3500.
参考文献
CHUNG Y, ZHU Y, WU MF, et al. , 2019. Auxin response factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS [J]. Nat Commun, 10(1): 886.
参考文献
DU H, LIU HB, XIONG LZ, 2013. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice [J]. Front Plant Sci, 4: 397.
参考文献
EL MAMOUN I, BOUZROUD S, ZOUINE M, et al. , 2023. The knockdown of AUXIN RESPONSE FACTOR 2 confers enhanced tolerance to salt and drought stresses in tomato (Solanum lycopersicum L. ) [J]. Plants (Basel), 12(15): 2804.
参考文献
ELLIS C, NAGPAL P, YOUNG J, et al. , 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana [J]. Development, 132(20): 4563-4574.
参考文献
GOETZ M, VIVIAN-SMITH A, JOHNSON SD, et al. , 2006. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis [J]. Plant Cell, 18(8): 1873-1886.
参考文献
GUILFOYLE TJ, HAGEN G, 2007. Auxin response factors [J]. Curr Opin Plant Biol, 10(5): 453-460.
参考文献
HA CV, LE DT, NISHIYAMA R, et al. , 2013. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress [J]. DNA Res, 20(5): 511-524.
参考文献
HA GT, WONG RK, ZHANG Y, 2011. Huperzine A as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies [J]. Chem Biodivers, 8: 1189-1204.
参考文献
HAGEN G, GUILFOYLE T, 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors [J]. Plant Mol Biol, 49(3/4): 373-385.
参考文献
HARPER R, STOWE-EVANS E, LUESSE D, et al. , 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue [J]. Plant Cell, 12(5): 757-770.
参考文献
HOWES MJR, FANG R, HOUGHTON PJ, 2017. Effect of Chinese herbal medicine on Alzheimer's disease [J]. Int Rev Neurobiol, 135: 29-56.
参考文献
HU M, QI Z, REN Z, et al. , 2022. Genome-wide analysis of auxin response factors in lettuce (Lactuca sativa L. ) reveals the positive roles of LsARF8a in thermally induced bolting [J]. Int J Mol Sci, 23(21): 13509.
参考文献
HUANG YM, TENG JB, TU DP, et al. , 2023. Molecular bioinformatics and expression analysis of the COBRA gene family in Huperzia serrata [J/OL]. Guihaia: 1-15 [2024-02-22]. http: //kns. cnki. net/kcms/detail/45. 1134. Q. 20231105. 1605. 002. html. [黄玉妹, 滕建北, 涂冬萍, 等, 2023. 蛇足石杉COBRA基因家族的分子生物信息学及表达分析 [J/OL]. 广西植物: 1-15 [2024-02-22]. http: //kns. cnki. net/kcms/detail/45. 1134. Q. 20231105. 1605. 002. html. ]
参考文献
JAIN M, KHURANA JP, 2009. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice [J]. FEBS J, 276(11): 3148-3162.
参考文献
JIANG LZ, LV JH, LI KT, et al. , 2023. MdGRF11-MdARF19-2 module acts as a positive regulator of drought resistance in apple rootstock [J]. Plant Sci, 335: 111782.
参考文献
JIN LF, YARRA R, ZHOU LX, et al. , 2022. The auxin response factor (ARF) gene family in oil palm (Elaeis guineensis Jacq. ): genome-wide identification and their expression profiling under abiotic stresses [J]. Protoplasma, 259(1): 47-60.
参考文献
KIM J, HARTER K, THEOLOGIS A, 1997. Protein-protein interactions among the Aux/IAA proteins [J]. Proc Natl Acad Sci USA, 94(22): 11786-11791.
参考文献
KUMAR R, TYAGI AK, SHARMA AK, 2011. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development [J]. Mol Genet Genomics, 285(3): 245-260.
参考文献
KUMAR S, STECHER G, LI M, et al. , 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 35(6): 1547-1549.
参考文献
LIU NN, DONG LW, DENG X, et al. , 2018. Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. [J]. BMC Plant Biol, 18(1): 336.
参考文献
LUO XC, SUN MH, XU RR, et al. , 2014. Genome-wide identification and expression analysis of the ARF gene family in apple [J]. J Genet, 93 (3): 785-797.
参考文献
MA XQ, TAN CH, ZHU DY, et al. , 2006. A survey of potential huperzine A natural resources in China: the Huperziaceae [J]. J Ethnopharmacol, 104(1/2): 54-67.
参考文献
MA XJ, YANG ZG, TIAN XH, et al. , 2009. Research review of rare source plant Huperzia serrata (Qian Ceng Ta) [J]. Lishizhen Med Mat Med Res, 20(11): 2858-2860. [马小军, 闫志刚, 田夏红, 等, 2009. 珍稀药源植物蛇足石杉(千层塔)研究进展 [J]. 时珍国医国药, 20(11): 2858-2860. ]
参考文献
MOCKAITIS K, ESTELLE M, 2008. Auxin receptors and plant development: a new signaling paradigm [J]. Ann Rev Cell Dev Biol, 24: 55-80.
参考文献
OKUSHIMA Y, FUKAKI H, ONODA M, et al. , 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis [J]. Plant Cell, 19(1): 118-130.
参考文献
OKUSHIMA Y, OVERVOORDE PJ, ARIMA K, et al. , 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19 [J]. Plant Cell, 17(2): 444-463.
参考文献
PARK JE, PARK JY, KIM YS, et al. , 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis [J]. J Biol Chem, 282(13): 10036-10046.
参考文献
PEER WA, 2013. From perception to attenuation: auxin signaling and responses [J]. Curr Opin Plant Biol, 16(5): 561-568.
参考文献
QI YD, WANG DL, 2017. Population structure and resource reducing factors of Huperzia serrata (Thunb. ex Murray) Trevis. in China [J]. Mod Chin Med, 19(1): 96-102. [齐耀东, 王德立, 2017. 蛇足石杉的种群结构和致危因素 [J]. 中国现代中药, 19(1): 96-102. ]
参考文献
REN ZX, LIU RY, GU WT, et al. , 2017. The Solanum lycopersicum auxin response factor SlARF2 participates in regulating lateral root formation and flower organ senescence [J]. Plant Sci, 256: 103-111.
参考文献
ROOSJEN M, PAQUE S, WEIJERS D, 2018. Auxin response factors: output control in auxin biology [J]. J Exp Bot, 69(2): 179-188.
参考文献
SCHNEIDER H, SMITH AR, PRYER KM, 2009. Is morphology really at odds with molecules in estimating fern phylogeny? [J]. Syst Bot, 34: 455-475.
参考文献
SHEN CJ, YUE RQ, SUN T, et al. , 2015. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula [J]. Front Plant Sci, 6: 73.
参考文献
SHEN XX, HE JQ, PING YK, et al. , 2022. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees [J]. Plant Physiol, 188(3): 1686-1708.
参考文献
SU LY, XU M, ZHANG JD, et al. , 2021. Genome-wide identification of auxin response factor (ARF) family in kiwifruit (Actinidia chinensis) and analysis of their inducible involvements in abiotic stresses [J]. Physiol Mol Biol Plants, 27(6): 1261-1276.
参考文献
TANG XC, HAN YF, 2006. Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb [J]. CNS Drug Rev, 5: 281-300.
参考文献
TOMBULOGLU H, 2019. Genome-wide analysis of the auxin response factors (ARF) gene family in barley (Hordeum vulgare L. ) [J]. J Plant Biochem Biotechnol, 28: 14-24.
参考文献
ULMASOV T, HAGEN G, GUILFOYLE TJ, 1997. ARF1, a transcription factor that binds to auxin response elements [J]. Science, 276(5320): 1865-1868.
参考文献
WAADT R, SELLER CA, HSU PK, et al. , 2022. Plant hormone regulation of abiotic stress responses [J]. Nat Rev Mol Cell Biol, 23(10): 680-694.
参考文献
WAN SB, LI WL, ZHU YY, et al. , 2014. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera [J]. Plant Cell Rep, 33(8): 1365-1375.
参考文献
WANG DK, PEI KM, FU YP, et al. , 2007. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa) [J]. Gene, 394(1/2): 13-24.
参考文献
WOODWARD AW, BARTEL B, 2005. Auxin: regulation, action, and interaction [J]. Ann Bot, 95(5): 707-735.
参考文献
WU B, WANG L, PAN GY, et al. , 2020. Genome-wide characterization and expression analysis of the auxin response factor (ARF) gene family during melon (Cucumis melo L. ) fruit development [J]. Protoplasma, 257(3): 979-992.
参考文献
WU H, ZHUANG P, FENG ZB, et al. , 2005. Resource investigation and assessment of Huperzia serrata [J]. J Nat Resour, 20(1): 59-67. [吴荭, 庄平, 冯正波, 等, 2005. 中国蛇足石杉资源调查与评估 [J]. 自然资源学报, 20(1): 59-67. ]
参考文献
XING HY, PUDAKE RN, GUO GG, et al. , 2011. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize [J]. BMC Genomics, 12(1): 178.
参考文献
ZHAI YF, SHEN XX, SUN YM, et al. , 2023. Genome-wide investigation of ARF transcription factor gene family and its responses to abiotic stress in coix (Coix lacryma-jobi L. ) [J]. Protoplasma, 260(5): 1389-1405.
参考文献
ZHANG F, TAO WQ, SUN RQ, et al. , 2020. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana [J]. PLoS Genet, 16(2): e1008044.
参考文献
ZHANG LB, 2017. The PPG I classification and pteridophytes of China [J]. Biodivers Sci, 25 (3): 340-342. [张丽兵, 2017. 蕨类植物 PPG Ⅰ系统与中国石松类和蕨类植物分类 [J]. 生物多样性, 25(3): 340-342. ]
参考文献
ZHANG XL, YAN F, TANG YW, et al. , 2015. Auxin response gene SlARF3 plays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes [J]. Plant Cell Physiol, 56 (11): 2110-2124.
目录contents

    摘要

    生长素响应因子(ARF)是介导生长素信号传导并调节多种生物学过程的转录因子家族。为探究蛇足石杉ARF基因家族成员及其在高温和干旱胁迫响应中的作用,该研究利用全长转录组和RNA-seq数据,分析蛇足石杉ARF基因家族成员的系统发育及表达模式,并通过生物信息学分析,对ARF基因家族的理化性质、结构域、保守基序、系统发育、组织表达模式及高温和干旱胁迫下的表达模式进行分析。结果表明:(1)在蛇足石杉全长转录组中共筛选出24个ARF家族成员,均为酸性蛋白且均为亲水蛋白。(2)亚细胞定位预测显示,所有24个HsARF均定位于细胞核。(3)系统发育分析发现,HsARF与被子植物拟南芥和水稻亲缘关系较远,与高等开花植物只有2个共同的ARF祖先。(4)结构域分析发现,除HsARF18/23/24外,大多数HsARF有B3结构域。二级结构分析发现,HsARF蛋白占比最多的为无规卷曲,其次为延伸链和α-螺旋。24个HsARF蛋白中所用的三级结构模型只有4种。(5)RNA-seq分析显示,7个HsARF在所有检测的组织中表达量均较高,10个HsARF在茎中的表达量高于根和叶,而HsARF13和HsARF14在叶中的表达量低于根和茎。(6)HsARF在高温和干旱胁迫下表达量发生显著变化,其中18个HsARF基因不同程度高温胁迫诱导,有7个HsARF基因响应干旱胁迫,其中有3个HsARF基因受干旱诱导,有4个HsARF基因受干旱抑制。该研究结果为蛇足石杉HsARF基因的功能和生物育种提供了理论参考。

    Abstract

    Auxin response factor (ARF) is a transcription factor family that mediates auxin signaling and regulates various biological processes. To investigate the ARF gene family members and their roles in response to high temperature and drought stress, the phylogenetic and expression patterns of the ARF gene family members in Huperzia serrata were analyzed using full-length transcriptome and RNA-seq data. Based on bioinformatics analysis, the physicochemical properties, domains, conserved motifs, phylogeny, tissue expression patterns, and expression patterns of the ARF gene family under high temperature and drought stress were analyzed. The results were as follows:(1) A total of 24 ARF family members were screened in the full-length transcriptome of H. serrata, all of which were acidic proteins and hydrophilic proteins. (2) Subcellular localization prediction revealed that 24 HsARF were all localized in nucleus. (3) Phylogenetic analysis revealed that HsARF had a distant genetic relationship with angiosperms Arabidopsis and rice, and only share two common ARF ancestors with higher flowering plants. (4) Domain analysis revealed that, except for HsARF18/23/24, most HsARF had B3 domains. Analysis of secondary structure found that the highest proportion of HsARF protein was random curling, followed by elongated chains and α-helix. Three-dimensional (3D) protein structure prediction model used in the 24 HsARF proteins was only four. (5) RNA-seq analysis showed that the expression levels of 7 HsARF were high in all detected organs. The expression levels of 10 HsARF in stems were higher than those in roots and leaves. Otherwise, the expression levels of HsARF13 and HsARF14 in leaves were lower than those in roots and stems. (6) The expression levels of HsARF undergo significant changes under high temperature and drought stress, with 18 HsARF being induced to varying degrees by high temperature stress, 7 HsARF responded to drought stress, with 3 HsARF induced by drought, while 4 HsARF inhibited by drought. The results provide theoretical references for the functional and biological breeding study of ARF gene family in H. serrata.

  • 生长素响应因子(auxin response factor,ARF)是生长素信号通路的关键调节因子,它们与生长素反应元件基因(AuxRE)-TGTCTC基序结合并调节靶基因的表达(Ulmasov et al.,1997; Guilfoyle &Hagen 2007)。大多数ARFs包含3个保守的功能域,即N末端的DNA结合域(DBD)、中间区域(MR)起激活作用的结构域(AD)或抑制作用的结构域(RD)、C末端二聚化结构域(CTD)(Kim et al.,1997; Chandler,2016)。在低浓度生长素下,ARF与AUX/IAA蛋白形成非活性异二聚体,抑制早期生长素反应基因的转录。在高浓度的生长素下,IAA与ABP1结合(ABP1起到生长素受体的作用),AUX/IAA蛋白被激活的泛素连接酶靶向破坏,IAA诱导的AUX/IAA蛋白降解促进了活性ARF同源二聚体的形成 (Hagen &Guilfoyle,2002; Woodward &Bartel,2005)。大量研究表明,ARF基因在各种生长发育过程中发挥着关键作用,如控制花器官的发生和模式(Harper et al.,2000; Zhang et al.,2020);花衰老和脱落(Ellis et al.,2005);侧根形成(Okushima et al.,2007; Ren et al.,2017);表皮细胞和毛状体的形成(Zhang et al.,2015);器官发生(Chung et al.,2019)等。此外,ARF基因还参与了植物对许多生物和非生物的胁迫反应(Caruana et al.,2020; Chen et al.,2021; Shen et al.,2022; El Mamoun et al.,2023)。如MdARF17参与 MdmiR160-MdARF17-MdHYL1反馈回路负调控苹果的干旱反应(Shen et al.,2022)。MdARF19-2对苹果的抗旱性有正向调节作用(Jiang et al.,2023);而番茄SlARF2基因对盐和干旱反应具有负调控作用(El Mamoun et al.,2023)。

  • 蛇足石杉(Huperzia serrata)又名千层塔、救命王、金不换、山芝、蛇足草,为石松科石杉属植物,是一种传统的中草药(张丽兵,2017;陈思思等,2021),具有清热解毒、活血行瘀、消肿止痛等功效,常用于治疗挫伤、劳损、肿胀和精神分裂症等(马小军等,2009)。石杉碱甲(Huperzine A)是从蛇足石杉中提取出来的天然植物碱,为一种高选择性的乙酰胆碱酯酶抑制剂,临床主要用于重症肌无力的治疗,其能改善老年性记忆功能减退,可显著提高阿尔茨海默病(AD)患者的记忆、认知和行为功能,未发现明显的不良反应(Tang &Han,2006; Ha et al.,2011; Hoews et al.,2017)。随着野生蛇足石杉需求的急剧增加,基源植物蛇足石杉本身具有不可替代性,野生资源遭到灭绝性采挖,使得种质资源种类和数量急剧下降,野生资源生境要求苛刻、繁殖困难、生长缓慢,已经濒临灭绝(吴荭等,2005;Ma et al.,2006; 齐耀东和王德立,2017)。蛇足石杉已被列为《国家重点保护野生植物名录》(2020年8月)中的国家二级保护野生植物。大规模人工栽培蛇足石杉是缓解原料供需矛盾的必然选择,蛇足石杉喜荫凉,不耐高温和干旱,通过发掘蛇足石杉非生物胁迫相关基因功能,为蛇足石杉分子遗传改良提供新途径。

  • ARF在植物生长发育和非生物胁迫中发挥着重要作用,已经有数十种植物的ARF基因家族进行了全基因组范围的鉴定和功能分析,如拟南芥(Okushima et al.,2005)、水稻(Wang et al.,2007)、玉米(Xing et al.,2011)、高粱(Chen et al.,2019)、大麦(Tombuloglu,2019)、甜瓜(Wu et al.,2020)、猕猴桃(Su et al.,2021)、油棕(Jin et al.,2022)、薏苡(Zhai et al.,2023)和木豆(Arpita et al.,2023)等。蛇足石杉对生境要求较高,研究ARF基因家族在蛇足石杉生长发育和在非生物胁迫反应中的角色,有助于蛇足石杉的人工栽培技术提升和遗传改良。蛇足石杉全基因组测序尚未完成,目前仅有利用蛇足石杉全长转录组进行COBRA 基因家族研究的报道 (黄玉妹等,2023)。为探究蛇足石杉ARF基因家族(HsARF)在生长发育中的作用和高温及干旱胁迫下的反应,本研究利用蛇足石杉全长转录组测序和RNA-seq数据,拟探讨:(1)蛇足石杉ARF基因家族的成员、保守域等生物信息学特征;(2)HsARF的系统发育分析;(3)HsARF基因在蛇足石杉不同组织、高温和干旱胁迫下的表达模式。旨在为蛇足石杉ARF基因功能的研究和生物育种提供理论依据。

  • 1 材料与方法

  • 1.1 实验材料

  • 5年生蛇足石杉植株采集于浙江理工大学蛇足石杉种植资源圃。取根、茎和叶等量混合样品,液氮速冻后备用,利用PacBio Sequel平台的单分子实时(single molecular real time,SMRT)三代测序技术进行分析。选取苗龄和长势一致的蛇足石杉植株作为高温胁迫和干旱处理。高温胁迫处理:将蛇足石杉整株放于42℃光照培养箱(光照强度400 μmol·m-2·s-1,相对湿度为75%,光暗周期设置为14 h光照/10 h黑暗),以0 h为空白对照(CK),分别于处理后4、8、24 h取样,每组样品设置3个生物学重复。干旱胁迫用10% PEG6000 处理,以0 h空白对照(CK),对照组喷施ddH2O,分别于处理后4、8、24 h 取样,每组样品设置3个生物学重复。取样后用液氮速冻,立即放置-80℃冰箱,统一送南京集思慧远生物科技有限公司,利用Illumina测序技术平台进行RNA-seq分析。

  • 1.2 HsARF基因家族成员鉴定及蛋白理化性质分析

  • 基于蛇足石杉的全长转录组测序数据及其注释结果,采用两种方法鉴定蛇足石杉ARF成员(HsARF):(1)采用拟南芥和水稻ARF基因家族成员的蛋白序列作为种子序列,利用BLASTP比对搜索蛇足石杉全长转录组数据库中去冗余产生的Unigene蛋白质序列,筛选阈值E≤10-5;(2)用Tbtools(v2.031)的hmm搜索模块,以ARF(PF06507)的隐马氏模型,搜索全长转录组数据库中去冗余产生的Unigene蛋白质序列(E≤10-5)。合并两种方法得到的候选蛋白,之后去除重复的序列,利用NCBI-CDD(https://www.ncbi.nlm.nih.gov/cdd)、Pfam(https://pfam-legacy.xfam.org/)和SMART(http://smart.embl.de/)数据库工具,最终获得蛇足石杉ARF成员。利用在线网站Expasy(https://web.expasy.org/protparam/)对HsARF进行蛋白质基本理化性质分析。利用WoLF(https://wolfpsort.hgc.jp/)进行亚细胞定位预测分析。

  • 1.3 HsARF基因家族的系统发育分析

  • 分别选取拟南芥23条ARF蛋白序列(Okushima et al.,2005)、水稻25条ARF蛋白序列(Wang et al.,2007)和蛇足石杉24条ARF蛋白序列,利用Clustal-X1.83对齐(Chenna et al.,2003),使用MEGA 7.0(Kumar et al.,2018)软件,采用最大似然法(maximum likelihood,ML)构建系统发育树,采用默认参数。自展值(Bootstrap)=1 000,采用 Evolview(https://www.evolgenius.info/evolview/)在线软件对进化树进行美化。

  • 1.4 HsARF基因家族的保守基序分析

  • 采用NCBI-CDD在线工具预测HsARF的保守结构域(https://www.ncbi.nlm.nih.gov/cdd)。HsARF的保守基序(Motif)通过在线软件MEME(https://meme-suite.org/meme/tools/meme)进行鉴定,参数如下:最适基序宽度为6~200个,最大基序数为10个。利用Tbtools (v2.031)软件进行可视化。

  • 1.5 HsARF保守结构域分析、二级结构和三级结构预测

  • 蛋白质二级结构分析利用SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html)进行,获得每个蛋白的不同构象,包括α-螺旋、延伸链、β-转角和无规卷曲的百分比。通过蛋白质分类家族网站InterPro(http://www.ebi.ac.uk/interpro/scan.html/)对HsARF进行结构域分析。利用在线软件SWISS-MODEL(https://swissmodel.expasy.org/)建模,预测HsARF蛋白质的三维结构。

  • 1.6 HsARF基因家族的组织表达特征

  • 利用蛇足石杉根、茎和叶组织部位的转录组数据分析HsARF的表达特征,计算每千个碱基的转录每百万映射读取的转录(Transcripts Per kilobase of exon model per Million mapped reads,TPM)的均值,利用联川云平台(https://www.omicstudio.cn)绘制HsARF的表达量热图。

  • 1.7 HsARF基因家族在高温和干旱胁迫下的表达特征

  • 利用蛇足石杉高温胁迫和干旱处理的叶片转录组数据分析HsARF的表达特征,计算每千个碱基的转录每百万映射读取的转录(TPM)的均值,利用联川云平台(https://www.omicstudio.cn)绘制HsARF的表达量热图。

  • 2 结果与分析

  • 2.1 HsARF基因家族成员及理化性质分析

  • 基于蛇足石杉全长转录组数据,共鉴定获得24个HsARF成员,命名为HsARF1-HsARF24。对HsARF基因及其蛋白质理化特性进行分析,编码区(coding sequence,CDS)区序列长度范围为972~2 775 bp,编码氨基酸范围为323~924 aa,分子量范围为36.55~102.52 kD,等电点范围为5.55~9.15,大部分HsARF为酸性氨基酸,显示HsARF主要在弱酸性细胞环境中起作用。所有HsARF为亲水性蛋白(总平均亲水性<0)且不稳定(不稳定指数>40)。亚细胞定位预测结果显示,24个HsARF家族成员均定位在细胞核中(表1)。

  • 2.2 HsARF基因家族的系统发育分析

  • 将来自蛇足石杉、拟南芥和水稻的所有72个ARF蛋白进行比对后,利用最大似然法(ML)构建系统发育树。这些序列被分为4个群,分别命名为Class I-Class IV(图1)。其中,Class I和Class IV主要由水稻和拟南芥ARF蛋白组成,蛇足石杉ARF主要分布于Class Ⅱ和Class Ⅲ,Class Ⅱ有7个HsARF成员,Class Ⅲ有17个HsARF成员,并且蛇足石杉ARF与拟南芥和水稻ARF明显分开,形成相对独立的群。蛇足石杉作为石松类植物,是维管植物分化最早的类群,是裸子植物和被子植物的姐妹群,系统发育分析显示蛇足石杉与水稻和拟南芥等高等开花植物只有2个共同的ARF祖先。

  • 2.3 HsARF蛋白的保守基序和结构域分析

  • 对HsARF蛋白基序进行分析,鉴定的10个基序在所有24个HsARF中分布不均,其中HsARF18只含有基序1和基序9,大部分HsARF蛋白中都存在基序1、基序9和基序10,表明这3个基序是HsARF蛋白的重要组成部分。一些特定的基序组成了特定的结构域,其中Auxin_resp结构域主要由基序1和基序9组成,B3结构域主要由基序6、基序7、基序4、基序2和基序5组成,AUX_IAA结构域主要由基序3和基序8组成;而基序10只存在于Class IV中(图2:A,B)。这表明蛇足石杉ARF基因家族表现出功能保守性和多样性。

  • 对蛇足石杉ARF蛋白进行结构域分析,除HsARF18/23/24外,大多数HsARF在N-末端部分具有高度保守的B3型DNA结合结构域(DNA-binding domain,DBD)。此外,除HsARF5/18/22外,有21个HsARF含有CTD结构域(Aux/IAA结构域)(图2:C)。

  • 2.4 HsARF蛋白保守二级结构和三级结构预测

  • 对HsARF蛋白二级结构的分析发现,HsARF蛋白质二级结构中占比最多的为无规卷曲,其次为延伸链和α-螺旋,有相当比例的为状态不明(ambiguous state),结果显示无规卷曲是构成蛇足石杉HsARF蛋白二级结构的主要骨架(表2)。

  • 利用SWISS-MODEL同源建模构建了HsARF蛋白的三级结构,与建模模板的同源性大于40%,表明待预测蛋白与模板蛋白结构一致性较好,预测模型可信度较高(图3)。24个HsARF蛋白中,所用的模型只有4ldx.1.A、4chk.4.A、4ldw.1.A、4ldu.1.A 4种三级结构模型,其中与4ldx.1.A和4ldu.1.A有共同空间框架的蛋白都为7个,与4chk.4.A和4ldw.1.A有共同空间框架的蛋白都为5个(图3,表3)。全球性模型质量估计(global model quality estimation,GMQE)评分范围为0.07~0.35,但定性模型能量分析(qualitive model energy analysis,QMEAN)评分范围为(0.68±0.06)~(0.79±0.05),表明该模型具有高度可变性(表3)。

  • 表1 蛇足石杉ARF基因家族成员信息及蛋白理化性质

  • Table1 Member information and protein physicochemical properties of the ARF gene family in Huperzia serrata

  • 2.5 HsARF基因家族的组织表达特征

  • 利用RNA-seq数据,分析了HsARF基因在根、茎、叶组织中的表达模式。HsARF5、HsARF7、HsARF20和HsARF24在3个组织中表达量较低;HsARF1、HsARF10、HsARF11、HsARF12、HsARF15、HsARF19和HsARF21在所有检测的组织中表达量均较高;HsARF10、HsARF21、HsARF9、HsARF16、HsARF23、HsARF17、HsARF4、HsARF22、HsARF6和HsARF8在茎中的表达量高于根和叶;HsARF13和HsARF14在叶中的表达量低于根和茎(图4)。

  • 2.6 HsARF基因家族在高温和干旱胁迫下的表达特征

  • 为确定蛇足石杉ARF基因家族在高温和干旱胁迫下的表达模式,对不同时间处理的蛇足石杉叶片进行RNA-seq分析。HsARF5、HsARF7和HsARF20在叶片中表达量很低且不受高温胁迫诱导,另有18个HsARF基因不同程度受高温胁迫诱导,其中HsARF16、HsARF4、HsARF21、HsARF19、HsARF15、HsARF10和HsARF18在4 h后表达量显著增加,8 h和24 h与未处理相比,表达量始终维持在显著增加水平。HsARF13、HsARF6、HsARF9和HsARF8在高温诱导胁迫下表达出现“前高后低”的模式,即在4 h出现显著增加后,8 h表达量恢复至未处理水平;而HsARF17、HsARF3、HsARF11、HsARF12、HsARF23和HsARF24在高温胁迫下,4 h时出现显著变化,至8 h才显著增加,其中HsARF24在未受高温胁迫时,表达量极低,在高温胁迫8 h和24 h后表达量明显增加(图5:A)。这说明这些ARF基因在响应高温胁迫中发挥重要作用。

  • 图1 蛇足石杉ARF蛋白的系统发育树

  • Fig.1 Phylogenetic tree of ARF proteins in Huperzia serrata

  • 图2 蛇足石杉ARF蛋白的保守基序和保守结构域特征

  • Fig.2 Characteristics conserved motifs and conserved domains of ARF proteins in Huperzia serrata

  • 在干旱胁迫处理条件下,除HsARF7、HsARF20和HsARF24几乎不表达外,有7个HsARF基因响应干旱胁迫,其中有3个ARF基因(HsARF14、HsARF16和HsARF17)受干旱诱导,有4个ARF基因(HsARF3、HsARF21、HsARF22和HsARF18)受干旱抑制(图5:B)。这说明这些ARF基因在响应干旱胁迫中发挥重要作用。

  • 表2 蛇足石杉HsARF蛋白二级结构

  • Table2 Secondary structure of HsARF proteins in Huperzia serrata

  • 3 讨论与结论

  • 本研究从蛇足石杉全长转录组序列中共筛选出24个HsARF基因家族成员。相较于其他植物中发现的ARF基因家族成员数量,拟南芥(23)(Okushima et al.,2005)、水稻(25)(Wang et al.,2007)、玉米(36)(Xing et al.,2011)、苹果(31)(Luo et al.,2014)、葡萄(19)(Wan et al.,2014)、苜蓿(39)(Shen et al.,2015)、木豆(12)(Arpita et al.,2023),蛇足石杉ARF 基因数量适中,说明ARF 基因家族成员数量在不同植物间存在较大差异。由于蛇足石杉全基因组序列还没有发布,因此采用全长转录组还存在一些局限性,可能还存在一些根、茎、叶组织之外特异表达的ARF基因或在特定条件下诱导表达的ARF基因,最终的蛇足石杉ARF成员数量可能会有所增加。

  • 亚细胞定位预测24个HsARF家族成员均定位在细胞核中,提示HsARF作为转录因子主要在细胞核中发挥作用。与其他物种中报道的大部分ARF家族蛋白亚细胞定位结果一致,如拟南芥(Okushima et al.,2005)、水稻(Wang et al.,2007)、玉米(Xing et al.,2011)、番茄(Kumar et al.,2011)、紫花苜蓿(Chen et al.,2023)及薏苡(Zhai et al.,2023)等,表明ARF蛋白的亚细胞定位较为保守。其他物种中也有ARF成员不定位于细胞核中的报道,如油棕EgARF6定位于细胞质、EgARF11定位于细胞质、EgARF7定位于线粒体(Jin et al.,2022)。薏苡ClARF24被预测定位于质膜和细胞核(Zhai et al.,2023)。这些预测定位于细胞核以外的ARF蛋白可能具有独特的生物学功能。

  • HsARF蛋白基序分析发现,除HsARF18和HsARF23外,大部分HsARF含有8~10个基序,表明HsARF蛋白结构相对保守,也预示着其功能可能较为保守。HsARF蛋白的结构域分析发现,除了HsARF18/23/24不具有B3_DNA结构域外,大多数HsARF具有典型的B3_DNA结构域。B3_DNA结合结构域通过结合生长素应答基因启动子区的生长素应答元件(AuxREs,序列TGTCTC)来调节后者的表达(Du et al.,2013; Roosjen et al.,2018)。HsARF18/23/24缺失B3_DNA结构域,在玉米(Xing et al.,2011)、番茄(Kumar et al.,2011)、紫花苜蓿(Chen et al.,2023)及薏苡(Zhai et al.,2023)等其他物种中也发现了类似现象,说明这几个ARF基因可能分化出其他的生物学功能。此外,除HsARF5/18/22外,其余21个HsARF含有CTD结构域(Aux/IAA结构域)。CTD结构域缺失,意味着这些ARF蛋白不能与AUX/IAA或与其他ARF蛋白形成蛋白二聚体,其生长素响应功能可能发生了分化(Guilfoyle &Hagen,2007)。HsARF二级结构和三级结构预测显示,HsARF蛋白的结构多样性较低,进一步表明HsARF蛋白结构较为保守,其功能可能也较为保守。

  • 图3 蛇足石杉24个ARF蛋白的三维(3D)蛋白质结构预测模型

  • Fig.3 Three-dimensional (3D) protein structure prediction models for 24 ARF proteins in Huperzia serrata

  • 石松类植物为地球上最古老的维管束植物类群,是蕨类植物和种子植物姐妹类群,与他们的分化要追溯到392 — 451万年前(Schneider et al.,2009;Barba-Montoya et al.,2018)。系统发育分析显示,蛇足石杉与水稻和拟南芥等高等开花植物只有2个共同的ARF祖先,并且蛇足石杉ARF成员与拟南芥和水稻的系统发育关系较远。本研究结果表明,蛇足石杉在与其他高等植物分化后,ARF基因家族在蛇足石杉基因组中发生了独立的基因扩张。与蕨类植物和种子植物相比,蛇足石杉HsARF基因的结构和功能可能相对保守。

  • 生长素调节植物整个生育期,与植物的生长发育密切相关(Mockaitis &Estelle,2008; Peer,2013)。RNA-seq分析显示,24个HsARF中,HsARF5、HsARF7、HsARF20和HsARF24在3个组织中表达量较低,说明这些基因可能在特定的时期或受某些因素诱导而发挥作用。其余20个HsARF基因在根、茎、叶等不同组织中出现差异表达,有10个HsARF基因在茎中的表达量显著高于根和叶,说明这10个HsARF基因在茎中发挥重要作用。HsARF13和HsARF14在叶中的表达量低于根和茎,说明HsARF13和HsARF14可能在根和茎的生长发育中发挥重要作用。这说明这些在不同组织中表达量有差异的ARF基因可能在特定组织中发挥重要功能。例如,拟南芥AtARF7/NPH4和AtARF19通过激活LBD/ASL基因来调节侧根的形成(Okushima et al.,2007)。此外,AtARF8调控果实发育,AtARF8突变导致无籽果实(Goetz et al.,2006)。

  • 表3 蛇足石杉HsARF蛋白结构分析

  • Table3 Detailed information of the predicted structure of HsARF proteins in Huperzia serrata

  • 图4 HsARF基因在蛇足石杉不同组织中的表达模式

  • Fig.4 Expression patterns of HsARF genes in different tissues of Huperzia serrata

  • 生长素响应因子在生物和非生物胁迫中也具有重要作用(Waadt et al.,2022)。利用RNA-seq数据发现18个HsARF基因不同程度受高温胁迫诱导,说明这些ARF基因可能在响应高温胁迫中具有重要作用。其他植物中也有ARF基因参与温度响应的报道。例如:高粱SbARF6/24/25和SbARF16/22分别受到冷胁迫和高温胁迫的显著诱导(Chen et al.,2019);水稻OsARF11/13/16和OsARF4/14/18/19分别受到冷应激和热应激的诱导(Du et al.,2013);生菜中,大多数LsARF的表达水平与温度变化密切相关(Hu et al.,2022)。蛇足石杉中大部分HsARF基因受高温胁迫诱导,可能是古老的石松类植物在漫长的历史进程中,为应对气候变化而进化出响应高温胁迫的分子机制。在干旱胁迫处理条件下,有7个HsARF基因响应干旱胁迫,其中有3个HsARF基因(HsARF14、HsARF16和HsARF17)受干旱诱导,有4个HsARF基因(HsARF3、HsARF21、HsARF22和HsARF18)受干旱抑制。本研究结果与之前的结果总体一致,如大豆中51个ARF基因中有33个在干旱胁迫处理下上调(Ha et al.,2013)。水稻中的OsARF11/15(Jain &Khurana,2009)、高粱中的许多SbARF(Chen et al.,2019)、二穗短柄草中的BdARF4/8(Liu et al.,2018)和油棕中的大多数EgARF(23个中的19个)(Jin et al.,2022)响应多种非生物胁迫。Park等(2007)发现,在盐和干旱胁迫下,植物主要通过ARFs和ABA途径以激活GH3来维持生长素的稳态,并激活相关的胁迫反应基因,从而削弱或消除胁迫的影响。详细的功能研究需要进一步实验验证。总体而言,我们的发现为深入研究蛇足石杉HsARF基因的功能和生物育种提供了理论基础。

  • 数据保存位置:国家基因组科学数据中心(https://ngdc.cncb.ac.cn/),BioProject号(PRJCA022941),GSA提交号(CRA014583),run编号(CRX927338-CRX927365)。

  • 图5 HsARF基因在高温胁迫(A)和干旱胁迫(B)下的表达模式

  • Fig.5 Expression patterns of HsARF genes under high temperature (A) and drought stress (B)

  • 参考文献

    • ARPITA K, SHARMA S, SRIVASTAVA H, et al. , 2023. Genome-wide survey, molecular evolution and expression analysis of Auxin Response Factor (ARF) gene family indicating their key role in seed number per pod in pigeonpea (C. cajan L. Millsp. ) [J]. Int J Biol Macromol, 253(Pt 4): 126833.

    • BARBA-MONTOYA J, DOS RM, SCHNEIDER H, et al. , 2018. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a cretaceous terrestrial revolution [J]. New Phytol, 218(2): 819-834.

    • CARUANA J, DHAR N, RAINA R, 2020. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8 [J]. Plant Direct, 4(9): e00270.

    • CHANDLER JW, 2016. Auxin response factors [J]. Plant Cell Environ, 39(5): 1014-1028.

    • CHEN D, WANGD WA, WU YQ, et al. , 2019. Expression and distribution of the auxin response factors in Sorghum bicolor during development and temperature stress [J]. Int J Mol Sci, 20(19): 4816.

    • CHEN FQ, ZHANG JQ, HA X, et al. , 2023. Genome-wide identification and expression analysis of the auxin-response factor (ARF) gene family in Medicago sativa under abiotic stress [J]. BMC Genom, 24(1): 498.

    • CHEN MY, ZHU XY, LIU XJ, et al. , 2021. Knockout of auxin response factor SlARF4 improves tomato resistance to water deficit [J]. Int J Mol Sci, 22(7): 3347.

    • CHEN SS, ZHANG MH, WANG JX, et al. , 2021. Original plant and research progress of the medicinal plant Huperzia javanica [J]. Guihaia, 41(11): 1794-1809. [陈思思, 张梦华, 王锦秀, 等, 2021. 药用植物千层塔的基原物种及研究进展 [J]. 广西植物, 41(11): 1794-1809. ]

    • CHENNA R, SUGAWARA H, KOIKE T, et al. , 2003. Multiple sequence alignment with the clustal series of programs [J]. Nucl Acids Res, 31(13): 3497-3500.

    • CHUNG Y, ZHU Y, WU MF, et al. , 2019. Auxin response factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS [J]. Nat Commun, 10(1): 886.

    • DU H, LIU HB, XIONG LZ, 2013. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice [J]. Front Plant Sci, 4: 397.

    • EL MAMOUN I, BOUZROUD S, ZOUINE M, et al. , 2023. The knockdown of AUXIN RESPONSE FACTOR 2 confers enhanced tolerance to salt and drought stresses in tomato (Solanum lycopersicum L. ) [J]. Plants (Basel), 12(15): 2804.

    • ELLIS C, NAGPAL P, YOUNG J, et al. , 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana [J]. Development, 132(20): 4563-4574.

    • GOETZ M, VIVIAN-SMITH A, JOHNSON SD, et al. , 2006. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis [J]. Plant Cell, 18(8): 1873-1886.

    • GUILFOYLE TJ, HAGEN G, 2007. Auxin response factors [J]. Curr Opin Plant Biol, 10(5): 453-460.

    • HA CV, LE DT, NISHIYAMA R, et al. , 2013. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress [J]. DNA Res, 20(5): 511-524.

    • HA GT, WONG RK, ZHANG Y, 2011. Huperzine A as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies [J]. Chem Biodivers, 8: 1189-1204.

    • HAGEN G, GUILFOYLE T, 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors [J]. Plant Mol Biol, 49(3/4): 373-385.

    • HARPER R, STOWE-EVANS E, LUESSE D, et al. , 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue [J]. Plant Cell, 12(5): 757-770.

    • HOWES MJR, FANG R, HOUGHTON PJ, 2017. Effect of Chinese herbal medicine on Alzheimer's disease [J]. Int Rev Neurobiol, 135: 29-56.

    • HU M, QI Z, REN Z, et al. , 2022. Genome-wide analysis of auxin response factors in lettuce (Lactuca sativa L. ) reveals the positive roles of LsARF8a in thermally induced bolting [J]. Int J Mol Sci, 23(21): 13509.

    • HUANG YM, TENG JB, TU DP, et al. , 2023. Molecular bioinformatics and expression analysis of the COBRA gene family in Huperzia serrata [J/OL]. Guihaia: 1-15 [2024-02-22]. http: //kns. cnki. net/kcms/detail/45. 1134. Q. 20231105. 1605. 002. html. [黄玉妹, 滕建北, 涂冬萍, 等, 2023. 蛇足石杉COBRA基因家族的分子生物信息学及表达分析 [J/OL]. 广西植物: 1-15 [2024-02-22]. http: //kns. cnki. net/kcms/detail/45. 1134. Q. 20231105. 1605. 002. html. ]

    • JAIN M, KHURANA JP, 2009. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice [J]. FEBS J, 276(11): 3148-3162.

    • JIANG LZ, LV JH, LI KT, et al. , 2023. MdGRF11-MdARF19-2 module acts as a positive regulator of drought resistance in apple rootstock [J]. Plant Sci, 335: 111782.

    • JIN LF, YARRA R, ZHOU LX, et al. , 2022. The auxin response factor (ARF) gene family in oil palm (Elaeis guineensis Jacq. ): genome-wide identification and their expression profiling under abiotic stresses [J]. Protoplasma, 259(1): 47-60.

    • KIM J, HARTER K, THEOLOGIS A, 1997. Protein-protein interactions among the Aux/IAA proteins [J]. Proc Natl Acad Sci USA, 94(22): 11786-11791.

    • KUMAR R, TYAGI AK, SHARMA AK, 2011. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development [J]. Mol Genet Genomics, 285(3): 245-260.

    • KUMAR S, STECHER G, LI M, et al. , 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 35(6): 1547-1549.

    • LIU NN, DONG LW, DENG X, et al. , 2018. Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. [J]. BMC Plant Biol, 18(1): 336.

    • LUO XC, SUN MH, XU RR, et al. , 2014. Genome-wide identification and expression analysis of the ARF gene family in apple [J]. J Genet, 93 (3): 785-797.

    • MA XQ, TAN CH, ZHU DY, et al. , 2006. A survey of potential huperzine A natural resources in China: the Huperziaceae [J]. J Ethnopharmacol, 104(1/2): 54-67.

    • MA XJ, YANG ZG, TIAN XH, et al. , 2009. Research review of rare source plant Huperzia serrata (Qian Ceng Ta) [J]. Lishizhen Med Mat Med Res, 20(11): 2858-2860. [马小军, 闫志刚, 田夏红, 等, 2009. 珍稀药源植物蛇足石杉(千层塔)研究进展 [J]. 时珍国医国药, 20(11): 2858-2860. ]

    • MOCKAITIS K, ESTELLE M, 2008. Auxin receptors and plant development: a new signaling paradigm [J]. Ann Rev Cell Dev Biol, 24: 55-80.

    • OKUSHIMA Y, FUKAKI H, ONODA M, et al. , 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis [J]. Plant Cell, 19(1): 118-130.

    • OKUSHIMA Y, OVERVOORDE PJ, ARIMA K, et al. , 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19 [J]. Plant Cell, 17(2): 444-463.

    • PARK JE, PARK JY, KIM YS, et al. , 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis [J]. J Biol Chem, 282(13): 10036-10046.

    • PEER WA, 2013. From perception to attenuation: auxin signaling and responses [J]. Curr Opin Plant Biol, 16(5): 561-568.

    • QI YD, WANG DL, 2017. Population structure and resource reducing factors of Huperzia serrata (Thunb. ex Murray) Trevis. in China [J]. Mod Chin Med, 19(1): 96-102. [齐耀东, 王德立, 2017. 蛇足石杉的种群结构和致危因素 [J]. 中国现代中药, 19(1): 96-102. ]

    • REN ZX, LIU RY, GU WT, et al. , 2017. The Solanum lycopersicum auxin response factor SlARF2 participates in regulating lateral root formation and flower organ senescence [J]. Plant Sci, 256: 103-111.

    • ROOSJEN M, PAQUE S, WEIJERS D, 2018. Auxin response factors: output control in auxin biology [J]. J Exp Bot, 69(2): 179-188.

    • SCHNEIDER H, SMITH AR, PRYER KM, 2009. Is morphology really at odds with molecules in estimating fern phylogeny? [J]. Syst Bot, 34: 455-475.

    • SHEN CJ, YUE RQ, SUN T, et al. , 2015. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula [J]. Front Plant Sci, 6: 73.

    • SHEN XX, HE JQ, PING YK, et al. , 2022. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees [J]. Plant Physiol, 188(3): 1686-1708.

    • SU LY, XU M, ZHANG JD, et al. , 2021. Genome-wide identification of auxin response factor (ARF) family in kiwifruit (Actinidia chinensis) and analysis of their inducible involvements in abiotic stresses [J]. Physiol Mol Biol Plants, 27(6): 1261-1276.

    • TANG XC, HAN YF, 2006. Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb [J]. CNS Drug Rev, 5: 281-300.

    • TOMBULOGLU H, 2019. Genome-wide analysis of the auxin response factors (ARF) gene family in barley (Hordeum vulgare L. ) [J]. J Plant Biochem Biotechnol, 28: 14-24.

    • ULMASOV T, HAGEN G, GUILFOYLE TJ, 1997. ARF1, a transcription factor that binds to auxin response elements [J]. Science, 276(5320): 1865-1868.

    • WAADT R, SELLER CA, HSU PK, et al. , 2022. Plant hormone regulation of abiotic stress responses [J]. Nat Rev Mol Cell Biol, 23(10): 680-694.

    • WAN SB, LI WL, ZHU YY, et al. , 2014. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera [J]. Plant Cell Rep, 33(8): 1365-1375.

    • WANG DK, PEI KM, FU YP, et al. , 2007. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa) [J]. Gene, 394(1/2): 13-24.

    • WOODWARD AW, BARTEL B, 2005. Auxin: regulation, action, and interaction [J]. Ann Bot, 95(5): 707-735.

    • WU B, WANG L, PAN GY, et al. , 2020. Genome-wide characterization and expression analysis of the auxin response factor (ARF) gene family during melon (Cucumis melo L. ) fruit development [J]. Protoplasma, 257(3): 979-992.

    • WU H, ZHUANG P, FENG ZB, et al. , 2005. Resource investigation and assessment of Huperzia serrata [J]. J Nat Resour, 20(1): 59-67. [吴荭, 庄平, 冯正波, 等, 2005. 中国蛇足石杉资源调查与评估 [J]. 自然资源学报, 20(1): 59-67. ]

    • XING HY, PUDAKE RN, GUO GG, et al. , 2011. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize [J]. BMC Genomics, 12(1): 178.

    • ZHAI YF, SHEN XX, SUN YM, et al. , 2023. Genome-wide investigation of ARF transcription factor gene family and its responses to abiotic stress in coix (Coix lacryma-jobi L. ) [J]. Protoplasma, 260(5): 1389-1405.

    • ZHANG F, TAO WQ, SUN RQ, et al. , 2020. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana [J]. PLoS Genet, 16(2): e1008044.

    • ZHANG LB, 2017. The PPG I classification and pteridophytes of China [J]. Biodivers Sci, 25 (3): 340-342. [张丽兵, 2017. 蕨类植物 PPG Ⅰ系统与中国石松类和蕨类植物分类 [J]. 生物多样性, 25(3): 340-342. ]

    • ZHANG XL, YAN F, TANG YW, et al. , 2015. Auxin response gene SlARF3 plays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes [J]. Plant Cell Physiol, 56 (11): 2110-2124.

  • 参考文献

    • ARPITA K, SHARMA S, SRIVASTAVA H, et al. , 2023. Genome-wide survey, molecular evolution and expression analysis of Auxin Response Factor (ARF) gene family indicating their key role in seed number per pod in pigeonpea (C. cajan L. Millsp. ) [J]. Int J Biol Macromol, 253(Pt 4): 126833.

    • BARBA-MONTOYA J, DOS RM, SCHNEIDER H, et al. , 2018. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a cretaceous terrestrial revolution [J]. New Phytol, 218(2): 819-834.

    • CARUANA J, DHAR N, RAINA R, 2020. Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8 [J]. Plant Direct, 4(9): e00270.

    • CHANDLER JW, 2016. Auxin response factors [J]. Plant Cell Environ, 39(5): 1014-1028.

    • CHEN D, WANGD WA, WU YQ, et al. , 2019. Expression and distribution of the auxin response factors in Sorghum bicolor during development and temperature stress [J]. Int J Mol Sci, 20(19): 4816.

    • CHEN FQ, ZHANG JQ, HA X, et al. , 2023. Genome-wide identification and expression analysis of the auxin-response factor (ARF) gene family in Medicago sativa under abiotic stress [J]. BMC Genom, 24(1): 498.

    • CHEN MY, ZHU XY, LIU XJ, et al. , 2021. Knockout of auxin response factor SlARF4 improves tomato resistance to water deficit [J]. Int J Mol Sci, 22(7): 3347.

    • CHEN SS, ZHANG MH, WANG JX, et al. , 2021. Original plant and research progress of the medicinal plant Huperzia javanica [J]. Guihaia, 41(11): 1794-1809. [陈思思, 张梦华, 王锦秀, 等, 2021. 药用植物千层塔的基原物种及研究进展 [J]. 广西植物, 41(11): 1794-1809. ]

    • CHENNA R, SUGAWARA H, KOIKE T, et al. , 2003. Multiple sequence alignment with the clustal series of programs [J]. Nucl Acids Res, 31(13): 3497-3500.

    • CHUNG Y, ZHU Y, WU MF, et al. , 2019. Auxin response factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS [J]. Nat Commun, 10(1): 886.

    • DU H, LIU HB, XIONG LZ, 2013. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice [J]. Front Plant Sci, 4: 397.

    • EL MAMOUN I, BOUZROUD S, ZOUINE M, et al. , 2023. The knockdown of AUXIN RESPONSE FACTOR 2 confers enhanced tolerance to salt and drought stresses in tomato (Solanum lycopersicum L. ) [J]. Plants (Basel), 12(15): 2804.

    • ELLIS C, NAGPAL P, YOUNG J, et al. , 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana [J]. Development, 132(20): 4563-4574.

    • GOETZ M, VIVIAN-SMITH A, JOHNSON SD, et al. , 2006. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis [J]. Plant Cell, 18(8): 1873-1886.

    • GUILFOYLE TJ, HAGEN G, 2007. Auxin response factors [J]. Curr Opin Plant Biol, 10(5): 453-460.

    • HA CV, LE DT, NISHIYAMA R, et al. , 2013. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress [J]. DNA Res, 20(5): 511-524.

    • HA GT, WONG RK, ZHANG Y, 2011. Huperzine A as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies [J]. Chem Biodivers, 8: 1189-1204.

    • HAGEN G, GUILFOYLE T, 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors [J]. Plant Mol Biol, 49(3/4): 373-385.

    • HARPER R, STOWE-EVANS E, LUESSE D, et al. , 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue [J]. Plant Cell, 12(5): 757-770.

    • HOWES MJR, FANG R, HOUGHTON PJ, 2017. Effect of Chinese herbal medicine on Alzheimer's disease [J]. Int Rev Neurobiol, 135: 29-56.

    • HU M, QI Z, REN Z, et al. , 2022. Genome-wide analysis of auxin response factors in lettuce (Lactuca sativa L. ) reveals the positive roles of LsARF8a in thermally induced bolting [J]. Int J Mol Sci, 23(21): 13509.

    • HUANG YM, TENG JB, TU DP, et al. , 2023. Molecular bioinformatics and expression analysis of the COBRA gene family in Huperzia serrata [J/OL]. Guihaia: 1-15 [2024-02-22]. http: //kns. cnki. net/kcms/detail/45. 1134. Q. 20231105. 1605. 002. html. [黄玉妹, 滕建北, 涂冬萍, 等, 2023. 蛇足石杉COBRA基因家族的分子生物信息学及表达分析 [J/OL]. 广西植物: 1-15 [2024-02-22]. http: //kns. cnki. net/kcms/detail/45. 1134. Q. 20231105. 1605. 002. html. ]

    • JAIN M, KHURANA JP, 2009. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice [J]. FEBS J, 276(11): 3148-3162.

    • JIANG LZ, LV JH, LI KT, et al. , 2023. MdGRF11-MdARF19-2 module acts as a positive regulator of drought resistance in apple rootstock [J]. Plant Sci, 335: 111782.

    • JIN LF, YARRA R, ZHOU LX, et al. , 2022. The auxin response factor (ARF) gene family in oil palm (Elaeis guineensis Jacq. ): genome-wide identification and their expression profiling under abiotic stresses [J]. Protoplasma, 259(1): 47-60.

    • KIM J, HARTER K, THEOLOGIS A, 1997. Protein-protein interactions among the Aux/IAA proteins [J]. Proc Natl Acad Sci USA, 94(22): 11786-11791.

    • KUMAR R, TYAGI AK, SHARMA AK, 2011. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development [J]. Mol Genet Genomics, 285(3): 245-260.

    • KUMAR S, STECHER G, LI M, et al. , 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 35(6): 1547-1549.

    • LIU NN, DONG LW, DENG X, et al. , 2018. Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. [J]. BMC Plant Biol, 18(1): 336.

    • LUO XC, SUN MH, XU RR, et al. , 2014. Genome-wide identification and expression analysis of the ARF gene family in apple [J]. J Genet, 93 (3): 785-797.

    • MA XQ, TAN CH, ZHU DY, et al. , 2006. A survey of potential huperzine A natural resources in China: the Huperziaceae [J]. J Ethnopharmacol, 104(1/2): 54-67.

    • MA XJ, YANG ZG, TIAN XH, et al. , 2009. Research review of rare source plant Huperzia serrata (Qian Ceng Ta) [J]. Lishizhen Med Mat Med Res, 20(11): 2858-2860. [马小军, 闫志刚, 田夏红, 等, 2009. 珍稀药源植物蛇足石杉(千层塔)研究进展 [J]. 时珍国医国药, 20(11): 2858-2860. ]

    • MOCKAITIS K, ESTELLE M, 2008. Auxin receptors and plant development: a new signaling paradigm [J]. Ann Rev Cell Dev Biol, 24: 55-80.

    • OKUSHIMA Y, FUKAKI H, ONODA M, et al. , 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis [J]. Plant Cell, 19(1): 118-130.

    • OKUSHIMA Y, OVERVOORDE PJ, ARIMA K, et al. , 2005. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19 [J]. Plant Cell, 17(2): 444-463.

    • PARK JE, PARK JY, KIM YS, et al. , 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis [J]. J Biol Chem, 282(13): 10036-10046.

    • PEER WA, 2013. From perception to attenuation: auxin signaling and responses [J]. Curr Opin Plant Biol, 16(5): 561-568.

    • QI YD, WANG DL, 2017. Population structure and resource reducing factors of Huperzia serrata (Thunb. ex Murray) Trevis. in China [J]. Mod Chin Med, 19(1): 96-102. [齐耀东, 王德立, 2017. 蛇足石杉的种群结构和致危因素 [J]. 中国现代中药, 19(1): 96-102. ]

    • REN ZX, LIU RY, GU WT, et al. , 2017. The Solanum lycopersicum auxin response factor SlARF2 participates in regulating lateral root formation and flower organ senescence [J]. Plant Sci, 256: 103-111.

    • ROOSJEN M, PAQUE S, WEIJERS D, 2018. Auxin response factors: output control in auxin biology [J]. J Exp Bot, 69(2): 179-188.

    • SCHNEIDER H, SMITH AR, PRYER KM, 2009. Is morphology really at odds with molecules in estimating fern phylogeny? [J]. Syst Bot, 34: 455-475.

    • SHEN CJ, YUE RQ, SUN T, et al. , 2015. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula [J]. Front Plant Sci, 6: 73.

    • SHEN XX, HE JQ, PING YK, et al. , 2022. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees [J]. Plant Physiol, 188(3): 1686-1708.

    • SU LY, XU M, ZHANG JD, et al. , 2021. Genome-wide identification of auxin response factor (ARF) family in kiwifruit (Actinidia chinensis) and analysis of their inducible involvements in abiotic stresses [J]. Physiol Mol Biol Plants, 27(6): 1261-1276.

    • TANG XC, HAN YF, 2006. Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb [J]. CNS Drug Rev, 5: 281-300.

    • TOMBULOGLU H, 2019. Genome-wide analysis of the auxin response factors (ARF) gene family in barley (Hordeum vulgare L. ) [J]. J Plant Biochem Biotechnol, 28: 14-24.

    • ULMASOV T, HAGEN G, GUILFOYLE TJ, 1997. ARF1, a transcription factor that binds to auxin response elements [J]. Science, 276(5320): 1865-1868.

    • WAADT R, SELLER CA, HSU PK, et al. , 2022. Plant hormone regulation of abiotic stress responses [J]. Nat Rev Mol Cell Biol, 23(10): 680-694.

    • WAN SB, LI WL, ZHU YY, et al. , 2014. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera [J]. Plant Cell Rep, 33(8): 1365-1375.

    • WANG DK, PEI KM, FU YP, et al. , 2007. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa) [J]. Gene, 394(1/2): 13-24.

    • WOODWARD AW, BARTEL B, 2005. Auxin: regulation, action, and interaction [J]. Ann Bot, 95(5): 707-735.

    • WU B, WANG L, PAN GY, et al. , 2020. Genome-wide characterization and expression analysis of the auxin response factor (ARF) gene family during melon (Cucumis melo L. ) fruit development [J]. Protoplasma, 257(3): 979-992.

    • WU H, ZHUANG P, FENG ZB, et al. , 2005. Resource investigation and assessment of Huperzia serrata [J]. J Nat Resour, 20(1): 59-67. [吴荭, 庄平, 冯正波, 等, 2005. 中国蛇足石杉资源调查与评估 [J]. 自然资源学报, 20(1): 59-67. ]

    • XING HY, PUDAKE RN, GUO GG, et al. , 2011. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize [J]. BMC Genomics, 12(1): 178.

    • ZHAI YF, SHEN XX, SUN YM, et al. , 2023. Genome-wide investigation of ARF transcription factor gene family and its responses to abiotic stress in coix (Coix lacryma-jobi L. ) [J]. Protoplasma, 260(5): 1389-1405.

    • ZHANG F, TAO WQ, SUN RQ, et al. , 2020. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana [J]. PLoS Genet, 16(2): e1008044.

    • ZHANG LB, 2017. The PPG I classification and pteridophytes of China [J]. Biodivers Sci, 25 (3): 340-342. [张丽兵, 2017. 蕨类植物 PPG Ⅰ系统与中国石松类和蕨类植物分类 [J]. 生物多样性, 25(3): 340-342. ]

    • ZHANG XL, YAN F, TANG YW, et al. , 2015. Auxin response gene SlARF3 plays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes [J]. Plant Cell Physiol, 56 (11): 2110-2124.