en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

曾雨娴(1997—),硕士研究生,主要从事中药民族药化学成分研究,(E-mail)2268093191@qq.com。

通讯作者:

卢汝梅,教授,博士,主要从事中药化学成分与质量标准研究,(E-mail)lrm1969@163.com。

中图分类号:Q946

文献标识码:A

文章编号:1000-3142(2024)06-1195-10

DOI:10.11931/guihaia.gxzw202307021

参考文献
AI TM, LI SJ, 2018. Medicinal flora of China: Vol. 7 [M]. Beijing: Peking University Medical Press: 199. [艾铁民, 李世晋, 2018. 中国药用植物志: 第七卷 [M]. 北京: 北京大学医学出版社: 199. ]
参考文献
BAI M, ZHENG CJ, WU LJ, et al. , 2018. Bioactive flavonoid derivatives from Scutellaria luzonica [J]. Chem Nat Compd, 54(11): 350-353.
参考文献
CHANG CI, KUO CC, CHANG JY, et al. , 2004. Three new oleanane-type triterpenes from Ludwigia octovalvis with cytotoxic activity against two human cancer cell lines [J]. J Nat Prod, 67 (1): 91-93.
参考文献
CHEN GZ, WANG HD, PEI D, et al. , 2022. Chemical components of antioxidant extract in Olea europaea pomace [J]. Guihaia, 42(9): 1498-1506. [陈根振, 王蝴蝶, 裴栋, 等, 2022. 油橄榄果渣抗氧化部位化学成分的研究 [J]. 广西植物, 42(9): 1498-1506. ]
参考文献
CHEN Y, FAN CL, WANG Y, et al. , 2018. Chemical constituents from roots of Isatis indigotica [J]. Chin J Chin Mat Med, 43(10): 2091-2096. [陈烨, 范春林, 王英, 等, 2018. 板蓝根的化学成分研究 [J]. 中国中药杂志, 43(10): 2091-2096. ]
参考文献
GUPTA A, SINGH AK, KUMAR R, et al. , 2019. Corilagin in cancer: a critical evaluation of anticancer activities and molecular mechanisms [J]. Molecules, 24(18): 3399.
参考文献
HAO FX, ZENG MN, CAO B, et al. , 2023. Effect of aqueous extract of Corni Fructus on Aβ25-35-induced brain injury and neuroinflammation in mice with Alzheimer's disease [J]. Chin J Chin Mat Med, 4(17): 401-413. [郝凤霄, 曾梦楠, 曹兵, 等, 2023, 山茱萸水提物对Aβ25-35诱导阿尔茨海默病小鼠脑损伤和神经炎症的作用 [J]. 中国中药杂志, 4(17): 401-413. ]
参考文献
HE RJ, WANG YF, LI DP, et al. , 2020. Phenolic constituents from Melastoma normale [J]. Guihaia, 40(5): 641-647. [何瑞杰, 王亚凤, 李典鹏, 等, 2020. 展毛野牡丹酚类化学成分的研究 [J]. 广西植物, 40(5): 641-647. ]
参考文献
HUANG RS, 2019. Selected edition of Zhuang Medicine: Vol. 2 [M]. Nanning: Guangxi Science and Technology Press: 128. [黄瑞松, 2019. 壮药选编: 下册 [M] . 南宁: 广西科学技术出版社: 128. ]
参考文献
HUANG YF, ZHANG N, ZHOU ZY, et al. , 2020. Phenolic constituents from Kalimeris shimadae and their antitumor activity [J]. Chin Tradit Pat Med, 42(11): 2922-2926. [黄宇飞, 张楠, 周忠玉, 等, 2020. 毡毛马兰酚性成分及其抗肿瘤活性 [J]. 中成药, 42(11): 2922-2926. ]
参考文献
JIN YJ, LI SC, XUE X, et al. , 2022. Bioactive chemical constituents of Adonis amurensis [J]. Chem Nat Compd, 58(1): 116-118.
参考文献
KAUMDA JS, QIN XJ, ZHANG XZ, et al. , 2020. Ten new glycosides, carissaedulosides A-J from the root barks of Carissa edulis and their cytotoxicities [J]. Bioorg Chem, 102: 104097.
参考文献
LI M, ZHANG ZG, SHI JY, et al. , 2020. Isolation and identification of chemical constituents from Chaenomeles sinensis [J]. Chin J Med Chem, 30(8): 481-486. [李孟, 张志广, 石静亚, 等, 2020. 光皮木瓜化学成分的分离与鉴定 [J]. 中国药物化学杂志, 30(8): 481-486. ]
参考文献
LIU Y, LIU S, PENG ZQ, et al. , 2022. Chemical constituents from roots of Schisandra chinensis [J]. Chin Tradit Herb Drugs, 53(19): 5959-5971. [刘艳, 刘爽, 彭紫琪, 等, 2022. 五味子根的化学成分研究 [J]. 中草药, 53(19): 5959-5971. ]
参考文献
LIN DB, YANG JY, ZHANG B, et al. , 2021. Chemical constituents from the rattans of Sarcostemma acidaum [J]. Chin Med Mat, 44(6): 1380-1385. [林道伯, 杨静雨, 张斌, 等, 2021. 肉珊瑚化学成分研究 [J]. 中药材, 44(6): 1380-1385. ]
参考文献
LOU HB, WANG XH, HE LL, et al. , 2022. Chemical constituents and antioxidant activities form the stems and leaves of Saccharum officinarum [J]. Guihaia, 42(11): 1875-1883. [娄红波, 王先宏, 何丽莲, 等, 2022. 甘蔗茎叶的化学成分及抗氧化活性研究 [J]. 广西植物, 42(11): 1875-1883. ]
参考文献
NAKAMURA S, FUJIMOTO K, MATSUMOTO T, et al. , 2013. Acylated sucroses and acylated quinic acids analogs from the flower buds of Prunus mume and their inhibitory effect on melanogenesis [J]. Phytochemistry, 92(9): 128-136.
参考文献
OUYANG JR, WANG QF, LI MM, et al. , 2022. Chemical constituents isolated from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities [J]. Biochem Syst Ecol, 102: 104424.
参考文献
QI C, ZHENG ZF, LI Y, et al. , 2020. Isolation and identification of chemical constituents from Paeonia veitchii [J]. Chin J Exp Tradit Med Form, 26(6): 152-157. [亓超, 郑重飞, 李莹, 等, 2020. 川赤芍的化学成分分离鉴定 [J]. 中国实验方剂学杂志, 26(6): 152-157. ]
参考文献
REED LJ, MUENCH H, 1938. A simple method of estimating fifty percent endpoints [J]. Am J Epidemiol, 27(3): 493-497.
参考文献
ŞOHRETOGLU D, SAKAR MK, SABUNCUOGLU SA, et al. , 2011. Polyphenolic constituents and antioxidant potential of Geranium stepporum Davis [J]. Rec Nat Prod, 5: 22-28.
参考文献
SUDJAROEN Y, HULL WE, ERBEN G, et al. , 2012. Isolation and characterization of ellagitannins as the major polyphenolic components of longan (Dimocarpus longan Lour) seeds [J]. Phytochemistry, 77(4): 226-237.
参考文献
XIAO CR, HUANG WM, CHEN FY, et al. , 2022. Chemical constituents from the fruits of Vitex trifolia var. simplicifolia [J]. Chin Med Mat, 45(1): 96-100. [肖春荣, 黄伟明, 陈芳有, 等, 2022. 单叶蔓荆果实的化学成分研究 [J]. 中药材, 45(1): 96-100. ]
参考文献
XIE JM, DUAN Z, LIU X, 2023. Research progress of anti-tumor effects of luteolin [J/OL]. Anti-Tumor Pharm: 1-6 [2023-08-22]. http: //kns. cnki. net/kcms/detail/43. 1507. R. 20230801. 1713. 010. html. [解举民, 段卓, 刘欣, 2023. 木犀草素抗肿瘤作用的研究进展 [J/OL]. 肿瘤药学: 1-6 [2023-08-22]. http: //kns. cnki. net/kcms/detail/43. 1507. R. 20230801. 1713. 010. html. ]
参考文献
XU S, 2022. Tangeretin promotes regulatory T cell differentiation by inhibiting Notch1/Jagged1 signaling in allergic rhinitis [D]. Wuhan: Wuhan University: 1-80. [续珊, 2022. 桔皮素抑制Notch1/Jagged1信号促进Treg细胞分化减轻变应性鼻炎发生发展 [D]. 武汉: 武汉大学: 1-80. ]
参考文献
YAN J, YANG XW, 2005. Study on the chemical constituents of Ludwigia octovalvis [J]. Chin J Chin Mat Med, 30(24): 1923-1926. [闫静, 杨秀伟, 2005. 毛草龙化学成分的研究 [J]. 中国中药杂志, 30(24): 1923-1926. ]
参考文献
YANG DS, LI ZL, WANG X, et al. , 2015. Chemical constituents from roots of Campanumoea javanica and their antiangiogeneic activities [J]. Chin Tradit Herb Drugs, 46(4): 470-475. [杨大松, 李资磊, 王雪, 等, 2015. 土党参的化学成分及其抗血管生成活性研究 [J]. 中草药, 46(4): 470-475. ]
参考文献
YANG JF, LI MY, QIN YQ, et al. , 2023. Research progress on pharmacological activity of nobiletin [J]. Acta Chin Med, 38(4): 719-725. [杨静帆, 李敏艳, 秦燕勤, 等, 2023. 川陈皮素的药理活性研究进展 [J]. 中医学报, 38(4): 719-725. ]
参考文献
YAO HL, GAO H, YAN SD, et al. , 2016. Chemical constituents from Spiraea pubescens [J]. Chin Tradit Herb Drugs, 47(9): 1486-1491. [姚慧丽, 高华, 颜世达, 等, 2016. 土庄绣线菊化学成分研究 [J]. 中草药, 47(9): 1486-1491. ]
参考文献
YUE ZG, QIN H, LI YH, et al. , 2013. Chemical constituents of the root of Jasminum giraldii [J]. Molecules, 18(4): 4766-4775.
参考文献
ZHANG JY, LIU C, WEI JH, et al. , 2019. Cytotoxic compounds from Ludwigia hyssopifolia [J]. Nat Prod Commun, 14(9): 1-8.
参考文献
ZHANG JY, LIU C, LV YB, et al. , 2022. A pair of new isocoumarin enantiomers of Ludwigia hyssopifolia [J]. Nat Prod Res, 36(7): 1749-1756.
参考文献
ZHANG T, PIAO JH, YUAN L, et al. , 2012. Chemical constituents of Acanthopanax senticosus and their free radical scavenging activities [J]. Chin Tradit Herb Drugs, 43(6): 1057-1060. [张涛, 朴俊虹, 袁蕾, 等, 2012. 刺五加化学成分及自由基清除活性研究 [J]. 中草药, 43(6): 1057-1060. ]
参考文献
ZHANG Q, WANG AH, FAN SP, et al. , 2017. Phenolic acid derivatives of Euphorbia ebracteolata [J]. Chin J Chin Mat Med, 42(15): 2995-2998. [张倩, 王安华, 范三鹏, 等, 2017. 月腺大戟中酚酸类化学成分的研究 [J]. 中国中药杂志, 42(15): 2995-2998. ]
参考文献
ZHONG WL, XIONG Y, WANG XW, et al. , 2021. Anti-tumor effect and mechanism of kaempferol: A review [J]. Chin J Exp Tradit Med Form , 27(20): 219-226. [钟文良, 熊雨, 王贤文, 等, 2021. 山柰酚抗肿瘤效应与机制研究进展 [J]. 中国实验方剂学杂志, 27(20): 219-226. ]
参考文献
ZHU H, 2017. Picture identification to Zhuang Medicine of China: Vol. 1 [M]. Nanning: Guangxi Science and Technology Press: 805. [朱华, 2017. 中国壮药图鉴: 上 [M]. 南宁: 广西科学技术出版社: 805. ]
目录contents

    摘要

    为探究毛草龙(Ludwigia octovalvis)中的活性成分,该研究采用硅胶、Sephadex LH-20、C18中低压和半制备液相等色谱方法对毛草龙的80%乙醇提取物进行分离纯化,根据理化性质及波谱数据鉴定化合物结构,并通过MTS法检测单体化合物对5种肿瘤细胞增殖的抑制活性。结果表明:(1)从毛草龙中分离得到20个化合物,分别鉴定为(-)-南烛木树脂酚(1)、8, 8′-bisdihydrosiringenin(2)、5-甲氧基-(-)-异落叶松脂素(3)、(-)-isolariciresinol(4)、3,4′-二甲氧基鞣花酸(5)、3,3′,4′-三甲氧基鞣花酸(6)、1,3,6-tri-O-galloyl-β-glucospyranose(7)、柯里拉京(8)、没食子酸甲酯(9)、没食子酸乙酯(10)、terminaliate A(11)、丁香酸(12)、3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone(13)、木犀草素(14)、山柰酚(15)、5,8-dihydroxy-7-methoxyflavone(16)、川陈皮素(17)、桔皮素(18)、α-托可醌(19)、5-O-(E)-p-coumaroyl quinic acid ethyl ester(20)。其中,化合物1-578111316-20为首次从该属植物中分离得到,化合物69101215为首次从该植物中分离得到。(2)化合物19对白血病HL-60细胞显示细胞毒活性,IC50为10.31 μmol·L-1;化合物6-819对非小细胞肺癌细胞A549显示细胞毒活性,IC50分别为25.82、42.05、36.94、17.54 μmol·L-1;化合物67111419对肝癌SMMC-7721显示细胞毒活性,IC50分别为24.24、26.35、26.51、33.34、20.44 μmol·L-1;化合物6和化合物19对乳腺癌MDA-MB-231显示细胞毒活性,IC50分别为34.91、21.13 μmol·L-1;化合物6719对结肠癌SW480显示细胞毒活性,IC50分别为36.03、39.97、5.52 μmol·L-1。该研究结果丰富了毛草龙的化学成分,为毛草龙抗肿瘤活性研究奠定了基础。

    Abstract

    To study the chemical constituents of Ludwigia octovalvis, the 80% ethanol extract from L.octovalvis was isolated by silica gel, Sephadex LH-20, Flash C18 and semi-preparative liquid chromatography, and the structures of obtained compounds were identified by physicochemical properties and spectral data. The cytotoxic activity of the isolates were evaluated by MTS method. The results were as follows: (1) Twenty compounds were isolated from L. octovalvis, and their structures were identified as (-)-lyoniresinol (1), 8,8′-bisdihydrosiringenin (2), 5-methoxy-(-)-isolariciresinol (3), (-)-isolariciresinol (4), 3,4′-di-O-methylellagic acid (5), 3,3′,4′-tri-O-methylellagic acid (6), 1,3,6- tri-O-galloyl-β-glucospyranose (7), corilagin (8), methyl gallate (9), ethyl gallate (10), terminaliate A (11), syringic acid (12), 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone (13), luteolin (14), kaempferol (15), 5,8-dihydroxy-7-methoxyflavone (16), nobiletin (17), tangeretin (18), α-tocopherolquinone (19), 5-O-(E)-p-coumaroyl quinic acid ethyl ester (20). Compounds 1-5, 7, 8, 11, 13, 16-20 were isolated from Ludwigia for the first time. Compounds 6, 9, 10, 12, 15 were isolated from this plant for the first time. (2) Compound 19 showed inhibitory activity against the leukemia HL-60 with the IC50 value of 10.31 μmol·L-1. Compounds 6-8, 19 showed inhibitory activity against the lung cancer cells A549 with the IC50 values of 25.82, 42.05, 36.94, 17.54 μmol·L-1, respectively. Compounds 6, 7, 11, 14, 19 showed inhibitory activity against the liver cancer SMMC-7721 with the IC50 values of 24.24, 26.35, 26.51, 33.34, 20.44 μmol·L-1, respectively. Compounds 6, 19 showed inhibitory activity against the breast cancer MDA-MB-231 with the IC50 values of 34.91, 21.13 μmol·L-1, respectively. Compounds 6, 7, 19 showed inhibitory activity against the colon cancer SW480 with the IC50 values of 36.03, 39.97, 5.52 μmol·L-1, respectively. The results of this study enrich the chemical constituents of L. octovalvis and provide a basis for the development of anti-tumor activity.

  • 毛草龙为柳叶菜科丁香蓼属植物毛草龙(Ludwigia octovalvis)的干燥全草,产于广西、广东、海南和云南等地,也分布于非洲、南美洲及亚热带等地区,生于田边、湖边等阴凉湿润处,野生资源丰富(朱华,2017)。毛草龙主要以全草和根入药,具有清热利湿、解毒消肿、利尿的功效(艾铁民和李世晋,2018)。据《壮药选编》记载,毛草龙是广西壮族常用解毒药材,壮名为Gvahgyabwn,习称锁匙筒、针筒草,其性寒、味苦,具有清热毒、除湿毒、消肿痛、利谷道的功效(黄瑞松,2019)。壮族民间以及中医壮医医院等民族医院将毛草龙及同属植物草龙和复方水煎服用于治疗恶性肿瘤。目前,从毛草龙分离得到的成分主要为委陵菜酸、齐墩果酸、2α-羟基熊果酸、(23Z)-coumaroylhederagenin、(23E)-coumaroylhederagenin等三萜和香豆素类型成分(Chang et al.,2004;闫静和杨秀伟,2005)。其中,(23Z)-coumaroylhederagenin、(23E)-coumaroylhederagenin具有抗肿瘤活性,对口腔表皮样癌KB和结直肠癌HT29这两种人肿瘤细胞株均有明显的细胞毒作用(Chang et al.,2004)。

  • 本课题组前期对同属植物草龙的化学成分及药理作用开展了研究。从草龙(L. hyssopifolia)(壮名Gvahgya)中分离鉴定出新化合物(+)草龙氯内酯、(-)草龙氯内酯和已知化合物齐墩果酸、ozoroalide、de-O-methyllasiodiplodin、异荭草素、荭草素、异牡荆素等40多个单体化合物,其中大环内酯类化合物ozoroalide和de-O-methyllasiodiplodin具有较好的抗肿瘤活性(Zhang et al.,2019;Zhang et al.,2022)。前期预实验显示毛草龙和草龙的成分类型相似,均为黄酮、酚酸、三萜、内酯等类型成分。但是,毛草龙化学成分及药理活性研究尚未深入,其抗肿瘤活性的药效物质有待进一步研究并加以阐明。因此,为丰富毛草龙的化学成分库并探索其抗肿瘤活性,本研究在课题组前期研究基础上,继续以寻找毛草龙抗肿瘤活性成分为研究目标,依托广西高校中药提取纯化与质量分析重点实验室研究平台,综合采用各种色谱和波谱学方法对其进行分离鉴定,并采用 MTS 法评价所得化合物的肿瘤细胞毒活性,拟探讨以下问题:(1)柳叶菜科丁香蓼属植物毛草龙的化学成分;(2)分离得到的单体化合物的肿瘤细胞毒活性。

  • 1 材料与方法

  • 1.1 药材

  • 毛草龙药材于2020年8月采集于南宁市良庆区,经广西中医药大学梁子宁教授鉴定为柳叶菜科丁香蓼属植物毛草龙(Ludwigia octovalvis)全草。

  • 1.2 仪器和试剂

  • Waters Autospec Premier p776质谱仪(美国Waters公司);Agilent G6230质谱仪(美国Agilent公司);Bruker AVANCE III 500 MHz核磁共振仪(瑞士Bruker公司);Agilent 1100高效液相色谱仪(美国Agilent公司);LC-20AR制备型高效液相色谱仪(日本岛津公司);REVELERIS X2中低压半制备型液相色谱仪(美国Grace公司);分析型色谱柱(GL Sciences Inc.,ODS-3, 4.6 mm × 250 mm,5 μm);半制备型色谱柱(YMC-Pack ODS-A,21.2 mm × 250 mm,5 μm);CCA-1112A旋转蒸发仪(上海爱朗仪器有限公司);分析天平(德国Sartorius公司);色谱柱(各种不同规格普通开口玻璃柱);HVE-50高压灭菌器(日本Hirayama公司);MULTISKAN FC酶标仪、Pico 17台式高速离心机、370二氧化碳培养箱(美国Thermo公司);Primo vert显微镜(德国ZEISS公司);柱层析硅胶100~200目、200~300目、薄层层析硅胶G(青岛海洋化工有限公司);Sephadex LH-20(美国Pharmacia公司);YMC反向填料(日本Y处);95%乙醇、石油醚(60~90℃)、乙酸乙酯、正丁醇、氯仿、丙酮、甲醇等试剂(分析纯,西陇化工股份有限公司);色谱甲醇、乙腈[赛默飞世尔科技(中国)有限公司];二甲基亚砜(B821BA0018)购自以色列生物公司;紫杉醇(D1106A)、阳性药顺铂(N1001A)购自大连美仑生物科技有限公司;MTS试剂盒(0000219904)购自普洛麦格公司;肝癌SMMC-7721、非小细胞肺癌A549、乳腺癌MDA-MB-231、白血病HL-60、结肠癌SW480、人正常肺上皮细胞BEAS-2B(购自美国模式菌种收集中心ATCC)。

  • 1.3 研究方法

  • 1.3.1 提取分离

  • 毛草龙药材18 kg,用 80%乙醇回流提取4次,每次2 h,提取液减压浓缩得浸膏2 175 g,加适量水混悬,依次用石油醚、乙酸乙酯、正丁醇进行萃取使部位分离,回收溶剂,得到石油醚部位219 g、乙酸乙酯部位523 g和正丁醇部位599 g。

  • 石油醚部位200 g经硅胶柱色谱分离,用石油醚∶乙酸乙酯(9∶1→8∶2→7∶3→6∶4→5∶5→0∶10,V/V)梯度洗脱,合并得到11个组分Fr.s1~Fr.s11。Fr.s5经中低压液相色谱,用甲醇-水梯度洗脱,合并得到Fr.s5-1~Fr.s5-10。Fr.s5-10用硅胶柱色谱和半制备液相色谱分离,得到化合物19(4.5 mg)。乙酸乙酯部位450 g经大孔树脂色谱分离,用乙醇-水(30%→50%→70%→90%,V/V)洗脱,得到5个组分Fr.y1~Fr.y5。Fr.y1经硅胶柱色谱,用二氯甲烷-甲醇梯度洗脱,合并得到Fr.y1-1~Fr.y1-10。Fr.y1-3经中低压液相色谱、硅胶柱色谱和半制备液相色谱分离,得到化合物12(154.8 mg)和化合物13(149.7 mg);Fr.y1-4经中低压液相色谱和半制备液相色谱分离,得到化合物9(11.7 mg)、化合物1(150.0 mg)和化合物10(493.4 mg);Fr.y1-10经中低压液相色谱和半制备液相色谱分离,得到化合物7(42.7 mg)和化合物8(16.8 mg)。Fr.y2经硅胶柱色谱,用二氯甲烷-甲醇梯度洗脱,合并得到Fr.y2-1~Fr.y2-8。Fr.y2-3经中低压液相色谱和半制备液相色谱分离,得到化合物3(7.1 mg)、化合物11(5.1 mg)、化合物4(16.8 mg)、化合物2(6.8 mg)和化合物20(10.1 mg)。Fr.y3经硅胶柱色谱,二氯甲烷-甲醇梯度洗脱,合并得到Fr.y3-1~Fr.y3-10。Fr.y3-4经中低压液相色谱、凝胶柱色谱和半制备液相色谱分离,得到化合物5(3.0 mg)、化合物15(4.0 mg)和化合物6(2.0 mg);Fr.y3-5经中低压液相色谱,用凝胶柱色谱和半制备液相色谱分离,得到化合物14(5.0 mg)。Fr.y4经硅胶柱色谱,用二氯甲烷-甲醇梯度洗脱,合并得到Fr.y4-1~Fr.y4-4。Fr.y4-2经中低压液相色谱分离,得到化合物16(2.0 mg);Fr.y4-3经中低压液相色谱分离,得到化合物17(16.0 mg)和化合物18(2.0 mg)。

  • 1.3.2 化合物细胞毒活性筛选实验

  • 细胞毒活性测试参考Kaumda等(2020)中的MTS法筛选。取对数生长期人肝癌SMMC-7721、非小细胞肺癌A549、乳腺癌MDA-MB-231、白血病HL-60、结肠癌SW480细胞,调整悬液浓度为3 000~5 000 cells·mL-1并接种到96孔板中,每孔体积为100 μL并培养24 h后弃去旧培养液,用PBS 清洗。分组给药,每组3个复孔,空白组加入新的完全培养液,实验组则分别加入含有待测样品的完全培养液,每孔200 μL。单体化合物1-20分别用二甲亚砜进行溶解,再用培养液稀释到相应的浓度,单体化合物初次筛选的终浓度为50 μmol·L-1,根据初筛的结果进行复筛,单体化合物的终浓度分别为50、10、2、0.4、0.08 μmol·L-1;设紫杉醇(Taxol)和顺铂(DDP)2个阳性对照组。给药后放入恒温培养箱中培养48 h后,弃去贴壁细胞孔内的旧培养液,并分别加入20 μL MTS溶液和100 μL新的培养液;弃去悬浮在细胞孔内的100 μL培养上清液,然后加入20 μL MTS溶液。分别加入20 μL MTS溶液和100 μL培养液,设置3个空白复孔,放入培养箱中继续孵育2~4 h后测定其吸光值。

  • 采用多功能酶标仪,波长设置为492 nm,读取并记录各孔OD值。细胞的生长抑制率= [1-(OD实验组-OD空白组)/(OD对照组-OD空白组)]×100%。初筛数据经处理后,以分离得到的化合物编号为横坐标、肿瘤细胞抑制率为纵坐标绘制细胞的抑制率图。复筛结果处理后,以分离得到的化合物浓度为横坐标、肿瘤细胞存活率为纵坐标绘制细胞生长曲线,应用Reed和Muench(1938)的方法计算化合物的 IC50值。

  • 2 结果与分析

  • 2.1 结构鉴定

  • 化合物1-20的结构式见图1。

  • 化合物1   白色固体,ESI-MS m/z:443 [M + Na]+。分子式为C22H28O8[α]D25-399.82(c = 0.005,MeOH)。1H-NMR(500 MHz,CD3OD)δ:6.59(1H,s,H-2),6.36(2H,s,H-2′,6′),4.29(1H,d,J= 5.4 Hz,H-7′),3.85(3H,s,3-OCH3),3.72(6H,s,3′,5′-OCH3),3.59(1H,m,H-9a),3.47(3H,m,H-9b,9′),3.35(3H,s,5-OCH3),2.72(1H,m,H-7a),2.55(1H,m,H-7b),1.97(1H,m,H-8′),1.62(1H,m,H-8);13C-NMR(125 MHz,CD3OD)δ:130.2(C-1),107.7(C-2),148.5(C-3),138.5(C-4),147.4(C-5),125.9(C-6),33.2(C-7),42.0(C-8),66.6(C-9),139.1(C-1′),106.5(C-2′,6′),148.8(C-3′,5′),134.1(C-4′),42.0(C-7′),40.5(C-8′),64.0(C-9′),56.7(3-OCH3),60.2(5-OCH3),56.6(3′,5′-OCH3)。以上波谱数据与文献(李孟等,2020)报道基本一致,鉴定为(-)-南烛木树脂酚[(-)-lyoniresinol]。

  • 化合物2   无色固体,ESI-MS m/z:445 [M + Na]+。分子式为C22H30O8[α]D25-119.63(c = 0.005,MeOH)。1H-NMR(500 MHz,CD3OD)δ:6.32(4H,s,H-2,2′,6,6′),3.74(12H,s,3,5,3′,5′-OCH3),3.66(2H,dd,J=11.1,4.9 Hz,H-9a,9′a),3.56(2H,dd,J=11.0,5.6 Hz,H-9b,9′b),2.70(2H,dd,J=13.7,6.3 Hz,H-7a,7′a),2.52(2H,dd,J=13.6,8.5 Hz,H-7b,7′b),1.90(2H,m,H-8,8′);13C-NMR(125 MHz,CD3OD)δ:134.4(C-1,1′),107.1(C-2,2′,6,6′),149.0(C-3,5,3′,5′),133.1(C-4,4′),36.7(C-7,7′),44.0(C-8,8′),62.3(C-9,9′),56.6(3,5,3′,5′-OCH3)。以上波谱数据与文献(张涛等,2012)报道基本一致,鉴定为8,8′-bisdihydrosiringenin。

  • 化合物3   白色粉末,EI-MS m/z:390 [M]+。分子式为C21H26O7[α]D25-199.60(c = 0.005,MeOH)。1H-NMR(500 MHz,CD3OD)δ:6.66(1H,s,H-2′),6.43(2H,s,H-2,6),6.21(1H,s,H-5′),3.81(3H,s,3′-OCH3),3.79(1H,d,J=11.0 Hz,H-7),3.78(6H,s,3,5-OCH3),3.69(3H,m,H-9a,9′),3.41(1H,dd,J=11.3,3.9 Hz,H-9b),2.78(2H,d,J=7.7 Hz,H-7′),2.01(1H,m,H-8′),1.79(1H,m,H-8);13C-NMR(125 MHz,CD3OD)δ:137.8(C-1),107.7(C-2,6),149.2(C-3,5),135.0(C-4),48.6(C-7),47.8(C-8),62.2(C-9),129.0(C-1′),112.4(C-2′),147.3(C-3′),145.3(C-4′),117.3(C-5′),134.0(C-6′),33.6(C-7′),40.0(C-8′),65.9(C-9′),56.9(3,5-OCH3),56.7(3′-OCH3)。以上波谱数据与文献(姚慧丽等,2016)报道基本一致,鉴定为5-甲氧基-(-)-异落叶松脂素[5-methoxy-(-)-isolariciresinol]。

  • 化合物4   白色粉末,EI-MS m/z:360 [M]+。分子式为C20H24O6[α]D25-199.60(c = 0.005,MeOH)。1H-NMR(500 MHz,CD3OD)δ:6.74(1H,d,J=8.0 Hz,H-5),6.68(1H,d,J=1.6 Hz,H-2),6.65(1H,s,H-2′),6.61(1H,dd,J=8.0,1.7 Hz,H-6),6.18(1H,s,H-5′),3.80(1H,d,J=10.7 Hz,H-7),3.77(3H,s,3′-OCH3),3.74(3H,s,3-OCH3),3.68 (3H,m,H-9a,9′),3.40 (1H,dd,J=11.2,4.2Hz,H-9b),2.77(2H,d,J=7.7 Hz,H-7′),2.00(1H,m,H-8′),1.77(1H,m,H-8);13C-NMR(125 MHz,CD3OD)δ:138.6(C-1),113.8(C-2),149.0(C-3),145.9(C-4),116.0(C-5),123.2(C-6),48.0(C-7),48.0(C-8),62.2(C-9),129.0(C-1′),112.3(C-2′),147.2(C-3′),145.2(C-4′),117.3(C-5′),134.1(C-6′),33.6(C-7′),40.0(C-8′),65.9(C-9′),56.4(3-OCH3),56.3(3′-OCH3)。以上波谱数据与文献(陈烨等,2018;刘艳等,2022)报道基本一致,鉴定为(-)-异落叶松树脂醇[(-)-isolariciresinol]。

  • 图1 化合物 1-20的结构式

  • Fig.1 Structural formulas of compounds 1-20

  • 化合物5   白色无定形粉末,ESI-MS m/z:329 [M-H]-。分子式为C16H10O81H-NMR(500 MHz,DMSO-d6δ:7.51(1H,s,H-5),7.50(1H,s,H-5′),4.03(3H,s,3-OCH3),3.95(3H,s,4′-OCH3);13C-NMR(125 MHz,DMSO-d6δ:111.7(C-1),141.9(C-2),140.1(C-3),152.4(C-4),111.4(C-5),113.1(C-6),159.0(C-7),106.8(C-1′),140.1(C-2′),135.9(C-3′),150.5(C-4′),106.6(C-5′),113.9(C-6′),159.0(C-7′),61.0(3-OCH3),56.5(4′-OCH3)。以上波谱数据与文献(张倩等,2017)报道基本一致,鉴定为3,4′-二甲氧基-鞣花酸(3,4′-di-O-methylellagic acid)。

  • 化合物6   淡黄色无定形粉末,ESI-MS m/z:343 [M-H]-。分子式为C17H12O81H-NMR(500 MHz,Pyridine-d5δ:8.08(1H,s,H-5′),7.85(1H,s,H-5),4.23(3H,s,3-OCH3),4.17(3H,s,3′-OCH3),3.88(3H,s,4′-OCH3); 13C-NMR(125 MHz,Pyridine-d5δ:114.8(C-1),142.8(C-2),142.1(C-3),154.9(C-4),112.1(C-5),113.6(C-6),159.7(C-7),114.2(C-1′),142.4(C-2′),141.8(C-3′),154.9(C-4′),108.5(C-5′),113.2(C-6′),159.6(C-7′),61.9(3-OCH3),61.7(3′-OCH3),57.0(4′-OCH3)。以上波谱数据与文献(林道伯等,2021)报道基本一致,鉴定为3,3′,4′-三甲氧基鞣花酸(3,3′,4′-tri-O-methylellagic acid)。

  • 化合物7   无定形粉末,EI-MS m/z:636 [M]+。分子式为C27H24O181H-NMR(500 MHz,CD3OD)δ:7.17(2H,s,Galloylring C-2,6),7.15(2H,s,Galloylring A-2,6),7.10(2H,s,Galloylring B-2,6),5.84(1H,d,J=8.2 Hz,Glucose-1),5.30(1H,t,J=9.3 Hz,Glucose-3),4.78(1H,dd,J=12.0,4.8 Hz,Glucose-6b),4.60(1H,dd,J=12.0,2.0 Hz,Glucose-6a),3.89(1H,dd,J=4.8,2.0 Hz,Glucose-5),3.82(2H,m,Glucose-4),3.80(1H,m,Glucose-2);13C-NMR(125 MHz,CD3OD)δ:95.8(Glucose-1),72.5(Glucose-2),78.8(Glucose-3),69.6(Glucose-4),76.3(Glucose-5),64.2(Glucose-6),121.5(Galloylring A-1),110.4(Galloylring A-2,6),146.3(Galloylring A-3,5),140.4(Galloylring A-4),166.8(Galloylring A-7),120.4(Galloylring B-1),110.2(Galloylring B-2,6),146.4(Galloylring B-3,5),139.8(Galloylring B-4),168.1(Galloylring B-7),121.2(Galloylring C-1),110.6(Galloylring C-2,6),146.4(Galloylring C-3,5),139.7(Galloylring C-4),168.2(Galloylring C-7)。以上波谱数据与文献(Şöhretoğlu et al.,2011)报道基本一致,鉴定为1,3,6-tri-O-galloyl-β-glucospyranose。

  • 化合物8   无定形粉末,EI-MS m/z:634 [M]+。分子式为C27H22O181H-NMR(500 MHz,CD3OD)δ:7.06(2H,s,Galloylring C-2,6),6.69(1H,s,ring A-6),6.66(1H,s,ring B-6),6.36(1H,d,J=1.5 Hz,Glucose-1),4.96(1H,t,J=10.9 Hz,Glucose-6b),4.81(1H,s,Glucose-3),4.52(1H,m,Glucose-5),4.46(1H,m,Glucose-4),4.15(1H,dd,J=11.0,8.1 Hz,Glucose-6a),3.98(1H,s,Glucose-2);13C-NMR(125 MHz,CD3OD)δ:95.0(Glucose-1),69.5(Glucose-2),71.7(Glucose-3),62.5(Glucose-4),76.2(Glucose-5),65.0(Glucose-6),125.4(ring A-1),117.2(ring A-2),145.3(ring A-3),138.2(ring A-4),145.6(ring A-5),110.1(ring A-6),168.5(ring A-7),125.5(ring B-1),116.7(ring B-2),145.2(ring B-3),137.7(ring B-4),146.0(ring B-5),108.3(ring B-6),170.1(ring C-7),120.6(Galloylring C-1),110.9(Galloylring C-2,6),146.4(Galloylring C-3,5),140.4(Galloylring C-4),166.7(Galloylring C-7)。以上波谱数据与文献(Sudjaroen et al.,2012)报道基本一致,鉴定为柯里拉京(corilagin)。

  • 化合物9   无定形粉末,EI-MS m/z:184 [M]+。分子式为C8H8O51H-NMR(500 MHz,CD3OD)δ:7.04(2H,s,H-2,6),3.81(3H,s,H-8); 13C-NMR(125 MHz,CD3OD)δ:121.4(C-1),110.0(C-2,6),146.5(C-3,5),139.7(C-4),169.1(C-7),52.3(C-8)。以上波谱数据与文献(亓超等,2020)报道基本一致,鉴定为没食子酸甲酯(methyl gallate)。

  • 化合物10   无定形粉末,EI-MS m/z:198 [M]+。分子式为C9H10O51H-NMR(500 MHz,CD3OD)δ:7.04(2H,s,H-2,6),4.26(2H,q,J=7.1 Hz,H-8),1.33(3H,t,J=7.1 Hz,H-9);13C-NMR(125 MHz,CD3OD)δ:121.7(C-1),110.0(C-2,6),146.5(C-3,5),139.7(C-4),168.5(C-7),61.7(C-8),14.6(C-9)。以上波谱数据与文献(何瑞杰等,2020)报道基本一致,鉴定为没食子酸乙酯(ethyl gallate)。

  • 化合物11   无定形粉末,EI-MS m/z:278 [M]+。分子式为C13H10O71H-NMR(500 MHz,CD3OD)δ:9.58(1H,s,H-1′),7.40(1H,d,J=3.6 Hz,H-3′),7.07(2H,s,H-2,6),6.75(1H,d,J=3.6 Hz,H-4′),5.32(2H,s,H-5′);13C-NMR(125 MHz,CD3OD)δ:140.2(C-1),110.2(C-2,6),146.6(C-3,5),136.7(C-4),167.5(C-7),179.7(C-1′),154.4(C-2′),124.1(C-3′),113.6(C-4′),157.8(C-5′),59.0(C-6′)。以上波谱数据与文献(Ouyang et al.,2022)报道基本一致,鉴定为terminaliate A。

  • 化合物12   无定形粉末,ESI-MS m/z:198 [M]+。分子式为C9H10O51H-NMR(500 MHz,CD3OD)δ:7.32(2H,s,H-2,6),3.88(6H,s,3,5-OCH3);13C-NMR(125 MHz,CD3OD)δ:121.6(C-1),108.3(C-2,6),148.6(C-3,5),141.6(C-4),170.3(C-7),56.8(3,5-OCH3)。以上波谱数据与文献(陈根振等,2022)报道基本一致,鉴定为丁香酸(syringic acid)。

  • 化合物13   无定形粉末,ESI-MS m/z:226 [M]+。分子式为C11H14O51H-NMR(500 MHz,CD3OD)δ:7.29(2H,s,H-2,6),3.93(2H,m,H-8),3.90(6H,s,3,5-OCH3),3.15(2H,m,H-9);13C-NMR(125 MHz,CD3OD)δ:129.0(C-1),107.1(C-2,6),148.8(C-3,5),142.1(C-4),198.7(C-7),40.7(C-8),59.0(C-9),57.0(3,5-OCH3)。以上波谱数据与文献(黄宇飞等,2020)报道基本一致,鉴定为3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone。

  • 化合物14   黄色粉末,EI-MS m/z:286 [M]+。分子式为C15H10O61H-NMR(500 MHz,CD3SOCD3δ:7.39(1H,d,J=2.2 Hz,H-2′),7.41(1H,dd,J=8.3,2.2 Hz,H-6′),6.89(1H,d,J=8.3 Hz,H-5′),6.66(1H,s,H-3),6.44(1H,s,H-8),6.18(1H,s,H-6);13C-NMR(125 MHz,CD3SOCD3δ:164.2(C-2),102.8(C-3),181.7(C-4),161.5(C-5),98.9(C-6),164.2(C-7),93.9(C-8),157.3(C-9),103.7(C-10),121.5(C-1′),113.4(C-2′),145.8(C-3′),149.8(C-4′),116.0(C-5′),119.0(C-6′)。以上波谱数据与文献(Jin et al.,2022)报道基本一致,鉴定为木犀草素(luteolin)。

  • 化合物15   黄色粉末,EI-MS m/z:286 [M]+。分子式为C15H10O61H-NMR(500 MHz,CD3OD)δ:8.09(2H,d,J=8.6 Hz,H-2′,6′),6.91(2H,d,J=8.6 Hz,H-3′,5′),6.40(1H,s,H-8),6.19(1H,s,H-6);13C-NMR(125 MHz,CD3OD)δ:148.1(C-2),137.2(C-3),177.4(C-4),162.5(C-5),99.3(C-6),165.6(C-7),94.5(C-8),158.3(C-9),104.6(C-10),123.7(C-1′),130.7(C-2′,6′),160.6(C-3′,5′),116.3(C-4′)。以上波谱数据与文献(娄红波等,2022)报道基本一致,鉴定为山柰酚(kaempferol)。

  • 化合物16   黄色粉末,EI-MS m/z:284 [M]+。分子式为C16H12O51H-NMR(500 MHz,CD3OD)δ:7.99(2H,dd,J=8.0,1.5 Hz,H-2′,6′),7.57(3H,m,H-3′,5′),6.74(1H,s,H-6),6.60(1H,s,H-3),3.88(3H,m,7-OCH3);13C-NMR(125 MHz,CD3OD)δ:165.7(C-2),105.6(C-3),184.3(C-4),159.6(C-5),95.6(C-6),130.3(C-7),154.9(C-8),154.0(C-9),105.9(C-10),132.6(C-1′),126.9(C-2′,6′),127.5(C-3′,5′),133.1(C-4′),60.9(7-OCH3′)。以上波谱数据与文献(Bai et al.,2018)报道基本一致,鉴定为5,8-dihydroxy-7-methoxyflavone。

  • 化合物17   黄色粉末,EI-MS m/z:402 [M]+。分子式为C21H22O81H-NMR(500 MHz,CD3OD)δ:7.62(1H,dd,J=8.4,2.1 Hz,H-6′),7.51(1H,d,J=2.0 Hz,H-2′),7.10(1H,d,J=8.4 Hz,H-5′),6.67(1H,s,H-3),4.11(3H,s,5-OCH3),4.02(3H,s,6-OCH3),3.93(3H,s,7-OCH3),3.92(3H,s,8-OCH3),3.91(3H,s,3′-OCH3),3.89(3H,s,4′-OCH3);13C-NMR(125 MHz,CD3OD)δ:163.5(C-2),106.9(C-3),179.6(C-4),145.6(C-5),139.6(C-6),153.3(C-7),149.4(C-8),149.1(C-9),115.3(C-10),124.7(C-1′),110.2(C-2′),150.8(C-3′),153.9(C-4′),112.8(C-5′),121.2(C-6′),62.7(5-OCH3),62.6(6-OCH3),62.2(7,8-OCH3),56.2(3′-OCH3),56.5(4′-OCH3)。以上波谱数据与文献(Yue et al.,2013)报道基本一致,鉴定为川陈皮素(nobiletin)。

  • 化合物18   黄色粉末,EI-MS m/z:372 [M]+。分子式为C20H20O71H-NMR(500 MHz,DMSO-d6δ:8.00(2H,d,J =8.8 Hz,H-2′,6′),7.14(2H,d,J=8.9 Hz,H-3′,5′),6.76(1H,s,H-3),4.02(3H,s,5-OCH3),3.96(3H,s,4′-OCH3),3.86(3H,s,8-OCH3),3.84(3H,s,6-OCH3),3.78(3H,s,7-OCH3);13C-NMR(125 MHz,DMSO-d6δ:162.0(C-2),106.1(C-3),175.8(C-4),147.5(C-5),143.6(C-6),151.0(C-7),137.7(C-8),147.2(C-9),114.7(C-10),123.1(C-1′),127.8(C-2′,6′),114.3(C-3′,5′),160.4(C-4′),61.9(5-OCH3),61.5(6-OCH3),61.9(7-OCH3),61.4(8-OCH3),55.5(4′-OCH3)。以上波谱数据与文献(肖春荣等,2022)报道基本一致,鉴定为桔皮素(tangeretin)。

  • 化合物19   黄色油状物,ESI-MS m/z:469 [M+Na]+。分子式为C29H50O31H-NMR(500 MHz,CD3OD)δ:2.53(2H,dd,J=11.3,5.9 Hz,H-1′),2.02(3H,s,5-CH3),2.00(6H,s,2,3-CH3),1.21(3H,s,3′-CH3),0.91(3H,d,J=6.6 Hz,11′-CH3),0.88(9H,d,J=6.6 Hz,7′,15′,16′-CH3);13C-NMR(125 MHz,CD3OD)δ:188.2(C-1),141.2(C-2),141.6(C-3),188.8(C-4),141.6(C-5),145.8(C-6),22.4(C-1′),41.0(C-2′),73.4(C-3′),42.7(C-4′),22.4(C-5′),38.8(C-6′),34.0(C-7′),38.5(C-8′),25.5(C-9′),38.4(C-10′),34.0(C-11′),38.4(C-12′),25.9(C-13′),40.6(C-14′),29.2(C-15′),23.0(C-16′),12.3(CH3-2,5),12.0(CH3-3),26.9(CH3-3′),20.2(CH3-7′),20.3(CH3-11′),23.1(CH3-15′)。以上波谱数据与文献(杨大松等,2015)报道基本一致,鉴定为α-托可醌(α-tocopherolquinone)。

  • 化合物20   白色粉末,EI-MS m/z:366 [M]+。分子式为C18H22O81H-NMR(500 MHz,CD3OD)δ:7.60(1H,d,J=15.9 Hz,H-7′),7.46(2H,d,J=8.6 Hz,H-2′,6′),6.81(2H,d,J=8.6 Hz,H-3′,5′),6.29(1H,d,J=15.9 Hz,H-8′),5.28(1H,dd,J=12.2,7.4 Hz,H-5),4.14(2H,tq,J=7.5,4.2 Hz,H-8),4.09(1H,m,H-3),3.72(1H,dd,J=3.1,7.5 Hz,H-4),2.18(2H,m,H-6),2.01(2H,dd,J=8.6,13.7 Hz,H-2),1.24(3H,t,J=7.0 Hz,H-9);13C-NMR(125 MHz,CD3OD)δ:75.8(C-1),38.0(C-2),70.4(C-3),72.7(C-4),72.2(C-5),37.8(C-6),175.0(C-7),62.5(C-8),14.3(C-9),127.1(C-1′),131.2(C-2′,6′),116.9(C-3′,5′),161.4(C-4′),146.8(C-7′),115.1(C-8′),168.3(C-9′)。以上波谱数据与文献(Nakamura et al.,2013)报道基本一致,鉴定为5-O-(E)-p-coumaroyl quinic acid ethyl ester。

  • 2.2 化合物细胞毒活性实验结果

  • 对分离鉴定的20个单体化合物进行人肝癌SMMC-7721、非小细胞肺癌A549、乳腺癌MDA-MB-231、白血病HL-60、结肠癌SW480五种肿瘤细胞株以及人正常肺上皮细胞BEAS-2B毒活性测试。在50 μmol·L-1初筛浓度下,6个化合物(6-8111419)对肿瘤细胞的抑制率超过50%,具有抗肿瘤作用,其余14个化合物(1-5910121315-1820)对肿瘤细胞的抑制率低于50%,抗肿瘤作用较弱,因此选择化合物6-8111419并测定其IC50值,结果见表1。

  • 表1 化合物6-8、11、14、19的IC50

  • Table1 IC50 values of compounds 6-8, 11, 14, 19

  • 注: — 表示未进行筛选。

  • Note: — indicates no filtering.

  • 4 讨论与结论

  • 本研究从毛草龙的乙醇提取物中分离鉴定出20个单体化合物,包括4个木脂素、5个黄酮、4个鞣质、5个酚酸以及2个其他类型成分,与文献报道同属植物草龙、水龙、毛草龙、L. leptocarpa等的成分类型相似,但又有所区别,如木脂素类(化合物1-4)成分是首次在该属植物中发现。经查阅文献,化合物1可改善Aβ25-35诱导N9细胞损伤,具有抗AD作用(郝凤霄等,2023),化合物81415具有较广谱的抗癌活性,如肺癌、乳腺癌、肝癌、结肠癌、食管癌等(Gupta et al.,2019;钟文良等,2021;解举民等,2023),化合物17对应变性鼻炎有较好的抑制作用(续珊,2022),化合物18具有抗肿瘤、抗炎、降血压、降血糖等作用(杨静帆等,2023)。本研究对得出的20个单体化合物进行了肿瘤细胞毒活性筛选,结果表明,鞣质类化合物3,3′,4′-三甲氧基鞣花酸(6)、1,3,6-tri-O-galloyl-β-glucospyranose(7)和柯里拉京(8)均对多种肿瘤细胞株显示较强的抗肿瘤作用,并且化合物7和化合物8对人正常肺上皮细胞BEAS-2B的影响较小,选择性较强;醌类成分α-托可醌(19)对5种肿瘤细胞增殖具有显著的抑制作用,并且对人肝癌SMMC-7721、肺癌A549、白血病HL-60、结肠癌SW480的抑制作用优于阳性药顺铂的作用,但其对人正常肺上皮细胞BEAS-2B也有一定的抑制作用,存在药物安全性。黄酮类化合物14和酚类成分terminaliate A(11)对肝癌SMMC-7721显示较好的抑制作用且对人正常肺上皮细胞BEAS-2B的影响较小,选择性较强。

  • 综上认为,毛草龙的抗肿瘤作用可能是多种成分共同作用的结果。但不同化合物对不同种类的肿瘤细胞系敏感程度存在差异,在今后研究中应选择多种类型肿瘤细胞系进行筛选,并进一步深入开展体内抗肿瘤活性及作用机制研究。毛草龙在壮医临床中常用为治疗肿瘤的解毒药,本研究从毛草龙乙醇提取物中发现了具有抗肿瘤活性的单体化合物,为壮族传统用药的科学性提供了理论依据。

  • 参考文献

    • AI TM, LI SJ, 2018. Medicinal flora of China: Vol. 7 [M]. Beijing: Peking University Medical Press: 199. [艾铁民, 李世晋, 2018. 中国药用植物志: 第七卷 [M]. 北京: 北京大学医学出版社: 199. ]

    • BAI M, ZHENG CJ, WU LJ, et al. , 2018. Bioactive flavonoid derivatives from Scutellaria luzonica [J]. Chem Nat Compd, 54(11): 350-353.

    • CHANG CI, KUO CC, CHANG JY, et al. , 2004. Three new oleanane-type triterpenes from Ludwigia octovalvis with cytotoxic activity against two human cancer cell lines [J]. J Nat Prod, 67 (1): 91-93.

    • CHEN GZ, WANG HD, PEI D, et al. , 2022. Chemical components of antioxidant extract in Olea europaea pomace [J]. Guihaia, 42(9): 1498-1506. [陈根振, 王蝴蝶, 裴栋, 等, 2022. 油橄榄果渣抗氧化部位化学成分的研究 [J]. 广西植物, 42(9): 1498-1506. ]

    • CHEN Y, FAN CL, WANG Y, et al. , 2018. Chemical constituents from roots of Isatis indigotica [J]. Chin J Chin Mat Med, 43(10): 2091-2096. [陈烨, 范春林, 王英, 等, 2018. 板蓝根的化学成分研究 [J]. 中国中药杂志, 43(10): 2091-2096. ]

    • GUPTA A, SINGH AK, KUMAR R, et al. , 2019. Corilagin in cancer: a critical evaluation of anticancer activities and molecular mechanisms [J]. Molecules, 24(18): 3399.

    • HAO FX, ZENG MN, CAO B, et al. , 2023. Effect of aqueous extract of Corni Fructus on Aβ25-35-induced brain injury and neuroinflammation in mice with Alzheimer's disease [J]. Chin J Chin Mat Med, 4(17): 401-413. [郝凤霄, 曾梦楠, 曹兵, 等, 2023, 山茱萸水提物对Aβ25-35诱导阿尔茨海默病小鼠脑损伤和神经炎症的作用 [J]. 中国中药杂志, 4(17): 401-413. ]

    • HE RJ, WANG YF, LI DP, et al. , 2020. Phenolic constituents from Melastoma normale [J]. Guihaia, 40(5): 641-647. [何瑞杰, 王亚凤, 李典鹏, 等, 2020. 展毛野牡丹酚类化学成分的研究 [J]. 广西植物, 40(5): 641-647. ]

    • HUANG RS, 2019. Selected edition of Zhuang Medicine: Vol. 2 [M]. Nanning: Guangxi Science and Technology Press: 128. [黄瑞松, 2019. 壮药选编: 下册 [M] . 南宁: 广西科学技术出版社: 128. ]

    • HUANG YF, ZHANG N, ZHOU ZY, et al. , 2020. Phenolic constituents from Kalimeris shimadae and their antitumor activity [J]. Chin Tradit Pat Med, 42(11): 2922-2926. [黄宇飞, 张楠, 周忠玉, 等, 2020. 毡毛马兰酚性成分及其抗肿瘤活性 [J]. 中成药, 42(11): 2922-2926. ]

    • JIN YJ, LI SC, XUE X, et al. , 2022. Bioactive chemical constituents of Adonis amurensis [J]. Chem Nat Compd, 58(1): 116-118.

    • KAUMDA JS, QIN XJ, ZHANG XZ, et al. , 2020. Ten new glycosides, carissaedulosides A-J from the root barks of Carissa edulis and their cytotoxicities [J]. Bioorg Chem, 102: 104097.

    • LI M, ZHANG ZG, SHI JY, et al. , 2020. Isolation and identification of chemical constituents from Chaenomeles sinensis [J]. Chin J Med Chem, 30(8): 481-486. [李孟, 张志广, 石静亚, 等, 2020. 光皮木瓜化学成分的分离与鉴定 [J]. 中国药物化学杂志, 30(8): 481-486. ]

    • LIU Y, LIU S, PENG ZQ, et al. , 2022. Chemical constituents from roots of Schisandra chinensis [J]. Chin Tradit Herb Drugs, 53(19): 5959-5971. [刘艳, 刘爽, 彭紫琪, 等, 2022. 五味子根的化学成分研究 [J]. 中草药, 53(19): 5959-5971. ]

    • LIN DB, YANG JY, ZHANG B, et al. , 2021. Chemical constituents from the rattans of Sarcostemma acidaum [J]. Chin Med Mat, 44(6): 1380-1385. [林道伯, 杨静雨, 张斌, 等, 2021. 肉珊瑚化学成分研究 [J]. 中药材, 44(6): 1380-1385. ]

    • LOU HB, WANG XH, HE LL, et al. , 2022. Chemical constituents and antioxidant activities form the stems and leaves of Saccharum officinarum [J]. Guihaia, 42(11): 1875-1883. [娄红波, 王先宏, 何丽莲, 等, 2022. 甘蔗茎叶的化学成分及抗氧化活性研究 [J]. 广西植物, 42(11): 1875-1883. ]

    • NAKAMURA S, FUJIMOTO K, MATSUMOTO T, et al. , 2013. Acylated sucroses and acylated quinic acids analogs from the flower buds of Prunus mume and their inhibitory effect on melanogenesis [J]. Phytochemistry, 92(9): 128-136.

    • OUYANG JR, WANG QF, LI MM, et al. , 2022. Chemical constituents isolated from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities [J]. Biochem Syst Ecol, 102: 104424.

    • QI C, ZHENG ZF, LI Y, et al. , 2020. Isolation and identification of chemical constituents from Paeonia veitchii [J]. Chin J Exp Tradit Med Form, 26(6): 152-157. [亓超, 郑重飞, 李莹, 等, 2020. 川赤芍的化学成分分离鉴定 [J]. 中国实验方剂学杂志, 26(6): 152-157. ]

    • REED LJ, MUENCH H, 1938. A simple method of estimating fifty percent endpoints [J]. Am J Epidemiol, 27(3): 493-497.

    • ŞOHRETOGLU D, SAKAR MK, SABUNCUOGLU SA, et al. , 2011. Polyphenolic constituents and antioxidant potential of Geranium stepporum Davis [J]. Rec Nat Prod, 5: 22-28.

    • SUDJAROEN Y, HULL WE, ERBEN G, et al. , 2012. Isolation and characterization of ellagitannins as the major polyphenolic components of longan (Dimocarpus longan Lour) seeds [J]. Phytochemistry, 77(4): 226-237.

    • XIAO CR, HUANG WM, CHEN FY, et al. , 2022. Chemical constituents from the fruits of Vitex trifolia var. simplicifolia [J]. Chin Med Mat, 45(1): 96-100. [肖春荣, 黄伟明, 陈芳有, 等, 2022. 单叶蔓荆果实的化学成分研究 [J]. 中药材, 45(1): 96-100. ]

    • XIE JM, DUAN Z, LIU X, 2023. Research progress of anti-tumor effects of luteolin [J/OL]. Anti-Tumor Pharm: 1-6 [2023-08-22]. http: //kns. cnki. net/kcms/detail/43. 1507. R. 20230801. 1713. 010. html. [解举民, 段卓, 刘欣, 2023. 木犀草素抗肿瘤作用的研究进展 [J/OL]. 肿瘤药学: 1-6 [2023-08-22]. http: //kns. cnki. net/kcms/detail/43. 1507. R. 20230801. 1713. 010. html. ]

    • XU S, 2022. Tangeretin promotes regulatory T cell differentiation by inhibiting Notch1/Jagged1 signaling in allergic rhinitis [D]. Wuhan: Wuhan University: 1-80. [续珊, 2022. 桔皮素抑制Notch1/Jagged1信号促进Treg细胞分化减轻变应性鼻炎发生发展 [D]. 武汉: 武汉大学: 1-80. ]

    • YAN J, YANG XW, 2005. Study on the chemical constituents of Ludwigia octovalvis [J]. Chin J Chin Mat Med, 30(24): 1923-1926. [闫静, 杨秀伟, 2005. 毛草龙化学成分的研究 [J]. 中国中药杂志, 30(24): 1923-1926. ]

    • YANG DS, LI ZL, WANG X, et al. , 2015. Chemical constituents from roots of Campanumoea javanica and their antiangiogeneic activities [J]. Chin Tradit Herb Drugs, 46(4): 470-475. [杨大松, 李资磊, 王雪, 等, 2015. 土党参的化学成分及其抗血管生成活性研究 [J]. 中草药, 46(4): 470-475. ]

    • YANG JF, LI MY, QIN YQ, et al. , 2023. Research progress on pharmacological activity of nobiletin [J]. Acta Chin Med, 38(4): 719-725. [杨静帆, 李敏艳, 秦燕勤, 等, 2023. 川陈皮素的药理活性研究进展 [J]. 中医学报, 38(4): 719-725. ]

    • YAO HL, GAO H, YAN SD, et al. , 2016. Chemical constituents from Spiraea pubescens [J]. Chin Tradit Herb Drugs, 47(9): 1486-1491. [姚慧丽, 高华, 颜世达, 等, 2016. 土庄绣线菊化学成分研究 [J]. 中草药, 47(9): 1486-1491. ]

    • YUE ZG, QIN H, LI YH, et al. , 2013. Chemical constituents of the root of Jasminum giraldii [J]. Molecules, 18(4): 4766-4775.

    • ZHANG JY, LIU C, WEI JH, et al. , 2019. Cytotoxic compounds from Ludwigia hyssopifolia [J]. Nat Prod Commun, 14(9): 1-8.

    • ZHANG JY, LIU C, LV YB, et al. , 2022. A pair of new isocoumarin enantiomers of Ludwigia hyssopifolia [J]. Nat Prod Res, 36(7): 1749-1756.

    • ZHANG T, PIAO JH, YUAN L, et al. , 2012. Chemical constituents of Acanthopanax senticosus and their free radical scavenging activities [J]. Chin Tradit Herb Drugs, 43(6): 1057-1060. [张涛, 朴俊虹, 袁蕾, 等, 2012. 刺五加化学成分及自由基清除活性研究 [J]. 中草药, 43(6): 1057-1060. ]

    • ZHANG Q, WANG AH, FAN SP, et al. , 2017. Phenolic acid derivatives of Euphorbia ebracteolata [J]. Chin J Chin Mat Med, 42(15): 2995-2998. [张倩, 王安华, 范三鹏, 等, 2017. 月腺大戟中酚酸类化学成分的研究 [J]. 中国中药杂志, 42(15): 2995-2998. ]

    • ZHONG WL, XIONG Y, WANG XW, et al. , 2021. Anti-tumor effect and mechanism of kaempferol: A review [J]. Chin J Exp Tradit Med Form , 27(20): 219-226. [钟文良, 熊雨, 王贤文, 等, 2021. 山柰酚抗肿瘤效应与机制研究进展 [J]. 中国实验方剂学杂志, 27(20): 219-226. ]

    • ZHU H, 2017. Picture identification to Zhuang Medicine of China: Vol. 1 [M]. Nanning: Guangxi Science and Technology Press: 805. [朱华, 2017. 中国壮药图鉴: 上 [M]. 南宁: 广西科学技术出版社: 805. ]

  • 参考文献

    • AI TM, LI SJ, 2018. Medicinal flora of China: Vol. 7 [M]. Beijing: Peking University Medical Press: 199. [艾铁民, 李世晋, 2018. 中国药用植物志: 第七卷 [M]. 北京: 北京大学医学出版社: 199. ]

    • BAI M, ZHENG CJ, WU LJ, et al. , 2018. Bioactive flavonoid derivatives from Scutellaria luzonica [J]. Chem Nat Compd, 54(11): 350-353.

    • CHANG CI, KUO CC, CHANG JY, et al. , 2004. Three new oleanane-type triterpenes from Ludwigia octovalvis with cytotoxic activity against two human cancer cell lines [J]. J Nat Prod, 67 (1): 91-93.

    • CHEN GZ, WANG HD, PEI D, et al. , 2022. Chemical components of antioxidant extract in Olea europaea pomace [J]. Guihaia, 42(9): 1498-1506. [陈根振, 王蝴蝶, 裴栋, 等, 2022. 油橄榄果渣抗氧化部位化学成分的研究 [J]. 广西植物, 42(9): 1498-1506. ]

    • CHEN Y, FAN CL, WANG Y, et al. , 2018. Chemical constituents from roots of Isatis indigotica [J]. Chin J Chin Mat Med, 43(10): 2091-2096. [陈烨, 范春林, 王英, 等, 2018. 板蓝根的化学成分研究 [J]. 中国中药杂志, 43(10): 2091-2096. ]

    • GUPTA A, SINGH AK, KUMAR R, et al. , 2019. Corilagin in cancer: a critical evaluation of anticancer activities and molecular mechanisms [J]. Molecules, 24(18): 3399.

    • HAO FX, ZENG MN, CAO B, et al. , 2023. Effect of aqueous extract of Corni Fructus on Aβ25-35-induced brain injury and neuroinflammation in mice with Alzheimer's disease [J]. Chin J Chin Mat Med, 4(17): 401-413. [郝凤霄, 曾梦楠, 曹兵, 等, 2023, 山茱萸水提物对Aβ25-35诱导阿尔茨海默病小鼠脑损伤和神经炎症的作用 [J]. 中国中药杂志, 4(17): 401-413. ]

    • HE RJ, WANG YF, LI DP, et al. , 2020. Phenolic constituents from Melastoma normale [J]. Guihaia, 40(5): 641-647. [何瑞杰, 王亚凤, 李典鹏, 等, 2020. 展毛野牡丹酚类化学成分的研究 [J]. 广西植物, 40(5): 641-647. ]

    • HUANG RS, 2019. Selected edition of Zhuang Medicine: Vol. 2 [M]. Nanning: Guangxi Science and Technology Press: 128. [黄瑞松, 2019. 壮药选编: 下册 [M] . 南宁: 广西科学技术出版社: 128. ]

    • HUANG YF, ZHANG N, ZHOU ZY, et al. , 2020. Phenolic constituents from Kalimeris shimadae and their antitumor activity [J]. Chin Tradit Pat Med, 42(11): 2922-2926. [黄宇飞, 张楠, 周忠玉, 等, 2020. 毡毛马兰酚性成分及其抗肿瘤活性 [J]. 中成药, 42(11): 2922-2926. ]

    • JIN YJ, LI SC, XUE X, et al. , 2022. Bioactive chemical constituents of Adonis amurensis [J]. Chem Nat Compd, 58(1): 116-118.

    • KAUMDA JS, QIN XJ, ZHANG XZ, et al. , 2020. Ten new glycosides, carissaedulosides A-J from the root barks of Carissa edulis and their cytotoxicities [J]. Bioorg Chem, 102: 104097.

    • LI M, ZHANG ZG, SHI JY, et al. , 2020. Isolation and identification of chemical constituents from Chaenomeles sinensis [J]. Chin J Med Chem, 30(8): 481-486. [李孟, 张志广, 石静亚, 等, 2020. 光皮木瓜化学成分的分离与鉴定 [J]. 中国药物化学杂志, 30(8): 481-486. ]

    • LIU Y, LIU S, PENG ZQ, et al. , 2022. Chemical constituents from roots of Schisandra chinensis [J]. Chin Tradit Herb Drugs, 53(19): 5959-5971. [刘艳, 刘爽, 彭紫琪, 等, 2022. 五味子根的化学成分研究 [J]. 中草药, 53(19): 5959-5971. ]

    • LIN DB, YANG JY, ZHANG B, et al. , 2021. Chemical constituents from the rattans of Sarcostemma acidaum [J]. Chin Med Mat, 44(6): 1380-1385. [林道伯, 杨静雨, 张斌, 等, 2021. 肉珊瑚化学成分研究 [J]. 中药材, 44(6): 1380-1385. ]

    • LOU HB, WANG XH, HE LL, et al. , 2022. Chemical constituents and antioxidant activities form the stems and leaves of Saccharum officinarum [J]. Guihaia, 42(11): 1875-1883. [娄红波, 王先宏, 何丽莲, 等, 2022. 甘蔗茎叶的化学成分及抗氧化活性研究 [J]. 广西植物, 42(11): 1875-1883. ]

    • NAKAMURA S, FUJIMOTO K, MATSUMOTO T, et al. , 2013. Acylated sucroses and acylated quinic acids analogs from the flower buds of Prunus mume and their inhibitory effect on melanogenesis [J]. Phytochemistry, 92(9): 128-136.

    • OUYANG JR, WANG QF, LI MM, et al. , 2022. Chemical constituents isolated from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities [J]. Biochem Syst Ecol, 102: 104424.

    • QI C, ZHENG ZF, LI Y, et al. , 2020. Isolation and identification of chemical constituents from Paeonia veitchii [J]. Chin J Exp Tradit Med Form, 26(6): 152-157. [亓超, 郑重飞, 李莹, 等, 2020. 川赤芍的化学成分分离鉴定 [J]. 中国实验方剂学杂志, 26(6): 152-157. ]

    • REED LJ, MUENCH H, 1938. A simple method of estimating fifty percent endpoints [J]. Am J Epidemiol, 27(3): 493-497.

    • ŞOHRETOGLU D, SAKAR MK, SABUNCUOGLU SA, et al. , 2011. Polyphenolic constituents and antioxidant potential of Geranium stepporum Davis [J]. Rec Nat Prod, 5: 22-28.

    • SUDJAROEN Y, HULL WE, ERBEN G, et al. , 2012. Isolation and characterization of ellagitannins as the major polyphenolic components of longan (Dimocarpus longan Lour) seeds [J]. Phytochemistry, 77(4): 226-237.

    • XIAO CR, HUANG WM, CHEN FY, et al. , 2022. Chemical constituents from the fruits of Vitex trifolia var. simplicifolia [J]. Chin Med Mat, 45(1): 96-100. [肖春荣, 黄伟明, 陈芳有, 等, 2022. 单叶蔓荆果实的化学成分研究 [J]. 中药材, 45(1): 96-100. ]

    • XIE JM, DUAN Z, LIU X, 2023. Research progress of anti-tumor effects of luteolin [J/OL]. Anti-Tumor Pharm: 1-6 [2023-08-22]. http: //kns. cnki. net/kcms/detail/43. 1507. R. 20230801. 1713. 010. html. [解举民, 段卓, 刘欣, 2023. 木犀草素抗肿瘤作用的研究进展 [J/OL]. 肿瘤药学: 1-6 [2023-08-22]. http: //kns. cnki. net/kcms/detail/43. 1507. R. 20230801. 1713. 010. html. ]

    • XU S, 2022. Tangeretin promotes regulatory T cell differentiation by inhibiting Notch1/Jagged1 signaling in allergic rhinitis [D]. Wuhan: Wuhan University: 1-80. [续珊, 2022. 桔皮素抑制Notch1/Jagged1信号促进Treg细胞分化减轻变应性鼻炎发生发展 [D]. 武汉: 武汉大学: 1-80. ]

    • YAN J, YANG XW, 2005. Study on the chemical constituents of Ludwigia octovalvis [J]. Chin J Chin Mat Med, 30(24): 1923-1926. [闫静, 杨秀伟, 2005. 毛草龙化学成分的研究 [J]. 中国中药杂志, 30(24): 1923-1926. ]

    • YANG DS, LI ZL, WANG X, et al. , 2015. Chemical constituents from roots of Campanumoea javanica and their antiangiogeneic activities [J]. Chin Tradit Herb Drugs, 46(4): 470-475. [杨大松, 李资磊, 王雪, 等, 2015. 土党参的化学成分及其抗血管生成活性研究 [J]. 中草药, 46(4): 470-475. ]

    • YANG JF, LI MY, QIN YQ, et al. , 2023. Research progress on pharmacological activity of nobiletin [J]. Acta Chin Med, 38(4): 719-725. [杨静帆, 李敏艳, 秦燕勤, 等, 2023. 川陈皮素的药理活性研究进展 [J]. 中医学报, 38(4): 719-725. ]

    • YAO HL, GAO H, YAN SD, et al. , 2016. Chemical constituents from Spiraea pubescens [J]. Chin Tradit Herb Drugs, 47(9): 1486-1491. [姚慧丽, 高华, 颜世达, 等, 2016. 土庄绣线菊化学成分研究 [J]. 中草药, 47(9): 1486-1491. ]

    • YUE ZG, QIN H, LI YH, et al. , 2013. Chemical constituents of the root of Jasminum giraldii [J]. Molecules, 18(4): 4766-4775.

    • ZHANG JY, LIU C, WEI JH, et al. , 2019. Cytotoxic compounds from Ludwigia hyssopifolia [J]. Nat Prod Commun, 14(9): 1-8.

    • ZHANG JY, LIU C, LV YB, et al. , 2022. A pair of new isocoumarin enantiomers of Ludwigia hyssopifolia [J]. Nat Prod Res, 36(7): 1749-1756.

    • ZHANG T, PIAO JH, YUAN L, et al. , 2012. Chemical constituents of Acanthopanax senticosus and their free radical scavenging activities [J]. Chin Tradit Herb Drugs, 43(6): 1057-1060. [张涛, 朴俊虹, 袁蕾, 等, 2012. 刺五加化学成分及自由基清除活性研究 [J]. 中草药, 43(6): 1057-1060. ]

    • ZHANG Q, WANG AH, FAN SP, et al. , 2017. Phenolic acid derivatives of Euphorbia ebracteolata [J]. Chin J Chin Mat Med, 42(15): 2995-2998. [张倩, 王安华, 范三鹏, 等, 2017. 月腺大戟中酚酸类化学成分的研究 [J]. 中国中药杂志, 42(15): 2995-2998. ]

    • ZHONG WL, XIONG Y, WANG XW, et al. , 2021. Anti-tumor effect and mechanism of kaempferol: A review [J]. Chin J Exp Tradit Med Form , 27(20): 219-226. [钟文良, 熊雨, 王贤文, 等, 2021. 山柰酚抗肿瘤效应与机制研究进展 [J]. 中国实验方剂学杂志, 27(20): 219-226. ]

    • ZHU H, 2017. Picture identification to Zhuang Medicine of China: Vol. 1 [M]. Nanning: Guangxi Science and Technology Press: 805. [朱华, 2017. 中国壮药图鉴: 上 [M]. 南宁: 广西科学技术出版社: 805. ]