-
土壤磷是植物生长与土壤发生的关键元素,在生物地球化学循环过程中发挥着重要作用(Vitousek et al.,2010; Costa et al.,2016)。土壤磷的有效性在大多数陆地生态系统中普遍较低,许多陆地生态系统往往受到磷限制(Vitousek et al.,2010)。在土壤高度风化的热带、亚热带地区,土壤中许多可利用性磷和土壤粘粒、铁铝氧化物等粒子结合紧密,导致植物难以吸收和利用(Fan et al.,2019),并且特殊的雨热同期气候导致土壤磷更易被淋溶从而加剧对植物生长的限制作用。因此,土壤对磷的固持能力以及土壤磷有效性的增加有利于改善人工林土壤质量、提高土地生产力,最大化地促进生态服务功能。
-
土壤中的磷以无机磷和有机磷的形式存在。磷的生物有效性取决于植物吸收的无机磷和作为土壤可溶性磷库的有机磷含量,磷组分的测定对于判断土壤磷的有效性至关重要(Redel et al.,2008; Williams et al.,2013)。在森林生态系统中,有机磷来源于有机质的输入(如凋落叶)、微生物生物量和土壤有机磷库(Vincent et al.,2010),可占总磷的20%~80%(Dalai,1977)。矿化后的有机磷可作为植物和微生物可利用的磷源,尤其是在热带和亚热带等高度风化的土壤中(Vincent et al.,2010)。然而,长期以来并没有直接的方法量化土壤中的有机磷,或由于分析上的局限性,对有机磷的研究少于无机磷(Turner et al.,2005)。生物介导的磷转化,如胞外磷酸酶引起的磷矿化,对植物获得磷尤其重要(Liu et al.,2021)。Oberson等(2001)认为,微生物通过分泌磷酸酶,促使某些有机磷水解为无机磷。另外,微生物将磷固定在自身体内,防止土壤无机胶体对磷酸盐的吸附(Conte et al.,2002),而微生物死亡后,其体内的磷被释放以供植物利用(Martinazzo et al.,2007),土壤微生物和有机磷转化是影响土壤磷生物有效性的主要因素(Achat et al.,2010b)。因此,研究土壤中有机磷组分及其分布特征将有助于我们深入了解土壤磷循环,为解决热带和亚热带地区的磷限制问题提供新思路。
-
团聚体是土壤结构的基本单元(Kravchenko et al.,2013),团聚体的分布影响着土壤生物地球化学循环过程及土壤生态功能的发挥(Wang et al.,2017)。根据团聚体大小进行分类,以0.25 mm粒径为分界线,>0.25 mm粒径的分为大团聚体,<0.25 mm粒径的分为小团聚体(Tisdall &Oades,1982)。不同粒级团聚体对土壤磷的吸附、固定和释放能力不同,使得在不同团聚体粒级中土壤磷水平存在差异(Six et al.,2004; Alagöz &Yilmaz,2009)。文倩等(2004)在半干旱地区土壤磷分布的研究中表明,有机磷和土壤微生物生物量磷在大团聚体中均高于小团聚体,而有机磷组分在不同径级团聚体中的分布也存在差异。吴雯等(2017)研究了退耕植茶有机磷组分的变化特征,发现土壤有机磷组分的保持能力在不同团聚体径级中存在明显差异。但是,Zhang等(2022)研究发现,在不同林龄杉木人工林的团聚体径级中,全磷、无机磷和有机磷的含量无显著差异。土壤有机磷及其组分在团聚体内的分布特征受区域及环境等因素影响。因此,从土壤团聚体的角度出发,探讨有机磷组分的分布特征具有重要意义。
-
马尾松(Pinus massoniana)是我国重要的乡土树种之一,在亚热带地区广泛种植。然而,长期的马尾松纯林种植模式不利于土壤养分的良性循环,造成生态系统结构和功能退化等诸多问题(李鹏等,2023)。因此,为提高马尾松人工林土壤质量及土地生产力,人们开始寻求更为合理的高效人工林改造方式。目前,近自然化的混交改造模式得到了广泛应用,该模式是通过间伐针叶人工林后套种多种阔叶树种,经改造而成的异龄复层混交模式(陆元昌和甘敬,2002)。针叶人工林经近自然化改造后,其树种组成及物种多样性发生了改变,从而导致根系分泌物、凋落物性质及土壤微生物群落等发生了连锁反应。近年来的一些研究表明,近自然化改造可以促进林分结构的优化,改善土壤质量,提高木材产量,更好地发挥生态系统的功能(孙冬婧等,2015;明安刚等,2017)。然而,针叶人工纯林近自然化改造后,其土壤有机磷组分在团聚体中的积累、转化以及潜在影响机制尚不清楚。因此,本研究选择近自然化改造后的马尾松-阔叶树种混交林作为对象,以未改造的马尾松人工纯林为对照,以土壤团聚体为切入点,重点探讨:(1)马尾松人工纯林近自然化改造对土壤有机磷组分产生的影响;(2)其最主要的影响因素。以期为马尾松人工林土壤磷有效性的提升,以及人工林土壤的可持续利用提供理论依据。
-
1 材料与方法
-
1.1 试验地概况
-
试验地位于广西壮族自治区凭祥市广西友谊关森林生态系统国家定位观测研究站内(106°39′50″—106°59′30″ E、21°57′47″—22°19′27″ N)。该区位于亚热带地区,属于亚热带季风气候,年平均气温为21℃,年平均降水量约为1 400 mm,主要发生在4—9月。根据综合调查结果,该区土壤类型为花岗岩高度风化后形成的酸性红壤,主要地貌类型为低山丘陵。种植模式以纯林和混交林为主且人工林类型丰富。
-
本研究选取马尾松近自然化改造后形成的针阔异龄复层混交林(CP)作为对象,并以邻近的林分管理和立地条件一致的马尾松纯林(PP)作为对照。其中,CP于1993年种植,是由密度为2 500 plants·hm-2的马尾松纯林经过2000年、2004年和2007年3次间伐,并于2008年春季补植1年生红锥和香梓楠实生苗后改造而成的,马尾松经过近自然化改造后最终林分密度为1 200 plants·hm-2,同时选择邻近未改造林分密度为1 200 plants·hm-2的PP作为对照。试验采用随机区组设计,设置4个区组,每个区组内均包含1个大小为400 m2(20 m × 20 m)PP和CP的样方。2020年7月对样地的植被进行调查,并在每个样方中随机安装6个1 m × 1 m大小的尼龙网收集框(尼龙网孔径为1 mm)来收集凋落物,凋落物收集框距离地面0.5 m,收集到的凋落物用来测定凋落物量。样地基本信息如表1所示。
-
注:数值=平均值±标准误,n=4。PP. 马尾松纯林; CP. 混交林; TH. 树高; DBH. 胸径; BD. 容重; LF. 凋落物量。同一列不同小写字母代表PP和CP间存在显著差异(P<0.05)。下同。
-
Note: Value= , n = 4. PP. Pinus massoniana pure plantation; CP. Mixed plantation; TH. Tree height; DBH. Diameter at breast height; BD. Bulk density; LF. Litterfall mass. Different lowercase letters in the same column indicate significant differences between PP and CP (P<0.05) . The same below.
-
1.2 土壤样品的采集和处理
-
于2020年8月进行土壤样品的采集,采用系统性样点布设法确定土壤采样点,将每个20 m × 20 m的样方分为16个大小相等的5 m × 5 m网格,网格的交叉点即为土壤采样点。采样前首先轻轻地将土壤表面的枯落物和其他腐殖质、石块等杂质拨开,在尽量不破坏土壤结构的条件下采集每个采样点0~10 cm土层的原状土,然后将原状土放于方形硬质塑料盒中以防运输过程中土壤原状结构被挤压破坏,所有土样均放置在含有冰块的隔热容器中,并把土壤样品带回处理室。在处理室内将采集到的土壤样品中的根、小石块等杂质剔除,并沿着土壤自身的纹理结构轻轻地将土块掰至直径为5 mm及5 mm以下大小的土块。为保证样品的均匀性,我们需要在处理样品时将9个采样点采集到的土样摊开并均匀地混合为1个土壤样品。混合土壤样品后将其放置在低温环境条件下风干,当含水率大约为10%时过筛,将其分为>2 mm的大团聚体、0.25~2 mm的小团聚体和<0.25 mm的微团聚体。最后将土壤样品一分为二:一份保存于-20℃环境条件下用来测定土壤有机磷(organic phosphorus,Po)组分、土壤微生物生物量磷(microbial biomass phosphorus,MBP)含量和土壤酸性磷酸酶(acid phosphatase,ACP)活性等指标;另一份则是自然风干后用来测定土壤的基本理化性质。
-
1.3 样品测定
-
1.3.1 土壤理化性质
-
参考《土壤农化分析》中描述的方法对土壤理化性质进行测定(鲍士旦,2000)。土壤容重(bulk density,BD)采用环刀法测定;土壤有机碳(soil organic carbon,SOC)采用K2Cr2O7-H2SO4氧化法,土壤总氮(TN)采用凯氏定氮法测定;土壤无机氮(NO3-和NH4+)使用2 mol·L-1 KCl提取,得到提取液后用连续流动分析仪(SEAL Auto Analyzer 3)测定;土壤全磷(total phosphorus,TP)采用HClO4-H2SO4法提取,土壤速效磷(available phosphorus,AP)则采用HCl-H2SO4法提取,两者提取方法不同,但得到提取液后均使用钼锑抗比色法显色,并在多功能酶标仪(infinite M200 PRO)上(波长为882 nm)进行测定。使用pH计在m(土壤)∶V(水)=1∶2.5的水土混合液中测定土壤pH。相关测定指标如表2所示。
-
1.3.2 土壤有机磷组分
-
我们采用Bowman和Cole(1978)的方法将土壤Po分为4个组分,即活性有机磷(labile organic phosphorus,LO-P)、中度活性有机磷(moderately labile organic phosphorus,MLO-P)、中度稳定性有机磷(moderately recalcitrant organic phosphorus,MRO-P)和高稳定性有机磷(highly recalcitrant organic phosphorus,HRO-P),采用0.5 mol·L-1 NaHCO3溶液、0.1 mol·L-1 NaOH溶液、1.0 mol·L-1 H2SO4依次将这4种Po组分浸提出来。
-
1.3.3 土壤微生物生物量磷及土壤酸性磷酸酶
-
土壤MBP含量采用氯仿熏蒸浸提法提取(Ruiz et al.,2003),具体操作如下:土样熏蒸24 h后,使用50 mL 0.5 mol·L-1 NaHCO3作为浸提液[m(土壤)∶V(浸提液)=1∶20],在振荡器上振荡30 min,浸提完成后过滤,滤液使用钼蓝比色法测定。计算公式如下:
-
式中: Ept为熏蒸和未熏蒸土壤的磷含量差值;Kp为转换系数,取值为0.4;Kb为添加KH2PO4后的磷回收率。
-
土壤ACP活性测定参照Saiya-Cork等(2002)的方法。先称取1.25 g新鲜土样并加入125 mL 50 mol·L-1的醋酸钠缓冲液(pH=4.5),使用搅拌器搅拌1 min后制得土壤悬浮液,再将土壤悬浮液移入96孔微孔板中,用伞形酮作为反应底物,在25℃黑暗环境下培养3 h后用5 μL 0.5 mol·L-1 NaOH 溶液终止反应,最后使用多功能酶标仪(infinite M200 PRO)在365~450 nm波长下进行测定(Looby &Treseder,2018),每个样品设置8个重复。酶活性大小用nmol·g-1·h-1表示。
-
注: SOC. 土壤有机碳; TN. 全氮; NH4+-N. 铵态氮; NO3--N. 硝态氮; TP. 全磷; AP. 有效磷; pH. 土壤酸碱度; MWD. 平均重量直径。
-
Note: SOC. Soil organic carbon; TN. Total nitrogen; NH4+-N. Ammonium nitrogen; NO3--N. Nitrate nitrogen; TP. Total phosphorus; AP. Available phosphorus; pH. Soil pH value; MWD. Mean weight diameter.
-
1.4 数据处理
-
土壤团聚体平均重量直径(MWD,mm)的计算公式如下(Fattet et al.,2011):
-
式中: Xi为i粒径中团聚体直径的平均值(mm);Wi为i粒径中团聚体的重量占总团聚体重量的百分比(%)。
-
本研究采用独立样本t检验对PP 和 CP 之间的土壤理化性质、土壤Po组分、土壤MBP以及土壤ACP活性的差异程度进行检验;采用单因素方差分析(one-way ANOVA)比较不同林分中原土及各团聚体粒径之间的差异程度,其均数比较采用最小显著差异(LSD)法检验;采用Pearson相关性分析土壤Po组分之间,土壤Po组分与MWD、MBP和ACP之间的相关性。上述统计分析在SPSS 25.0(IBM,Chicago,IL,USA)软件中进行,显著性水平均为P<0.05。对土壤Po组分进行主成分分析,确定土壤Po组分是否因为林分改变而不同。环境因子对土壤Po组分的影响采用冗余分析,通过蒙特卡洛检验,确定各环境因子在排序中的重要性(P<0.05),主成分分析和冗余分析程序均在 Canoco 5.0 软件上进行。绘图在 Origin 2022 软件上完成。
-
2 结果与分析
-
2.1 土壤有机磷组分含量特征
-
由图1可知,马尾松纯林在进行近自然化改造后土壤Po组分发生了变化。CP与PP相比,LO-P和MRO-P没有显著变化(P>0.05)。PP的LO-P在原土及各粒径团聚体中的含量为1.56~1.67 mg·kg-1,CP为1.61~1.91 mg·kg-1。此外,PP的MRO-P在原土及各粒径团聚体中含量为3.44~4.24 mg·kg-1,CP为3.06~4.45 mg·kg-1。但是,CP与PP相比,MLO-P和HRO-P在原土及各粒径团聚体中均显著升高(P<0.05)。PP的MLO-P在原土及各粒径团聚体中含量为3.12~3.67 mg·kg-1,CP为5.64~6.46 mg·kg-1,CP比PP在原土和>2 mm、0.25~2 mm、<0.25 mm粒径中分别提高了96.70%、99.55%、84.64%、53.84%。PP的HRO-P在原土及各粒径团聚体中含量为12.22~16.63 mg·kg-1,CP为20.34~24.41 mg·kg-1,CP比PP在原土和>2 mm、0.25~2 mm、<0.25 mm粒径中分别提高了70.41%、39.47%、30.58%、46.79%。
-
PP和CP各组分Po所占比例如图2所示,PP各Po组分占比大小为HRO-P>MRO-P>MLO-P>LO-P,其中LO-P平均占总Po含量的6.85%,MLO-P平均占总Po的14.05%,MRO-P平均占总Po的16.56%,HRO-P平均占总Po的62.54%。而CP各Po组分占比大小为HRO-P>MLO-P>MRO-P>LO-P,其中LO-P平均占总Po的5.40%,MLO-P平均占总Po的18.35%,MRO-P平均占总Po的10.97%,HRO-P平均占总Po的65.28%。HRO-P与LO-P、MLO-P之间存在显著的正相关关系(P<0.05)(表3)。
-
图1 PP和CP的原土和各粒径土壤团聚体各有机磷组分的变化
-
Fig.1 Changes of soil organic phosphorus fractions in PP and CP bulk soil and soil aggregates of different particle sizes
-
2.2 土壤微生物生物量磷和酸性磷酸酶
-
CP中土壤MBP在原土及各粒径土壤团聚体中均显著高于PP(P<0.05,图3:A)。PP中MBP含量为12.80~14.65 mg·kg-1,而CP中MBP含量为18.96~19.70 mg·kg-1。CP的ACP活性在原土及各团聚体径级中均显著高于PP(P<0.05)(图3:B),并且PP和CP的ACP活性均随团聚体径级的减小而有升高的趋势,但整体来看并无显著差异。PP中ACP活性为125.20~143.29 nmol·g-1·h-1,而CP中ACP活性为145.17~206.46 nmol·g-1·h-1。
-
2.3 土壤有机磷组分的影响因素
-
MWD的大小能够表示土壤物理结构的稳定性。由图4可知,各Po组分在原土及各团聚体径级中与MWD的关系相似。其中,LO-P和MRO-P与MWD之间没有显著的相关关系(图4:A,C),而MLO-P在>2 mm、0.25~2 mm径级中存在显著正相关关系(P<0.05),在<0.25 mm径级中存在极显著正相关关系(P<0.01)(图4:B)。此外,HRO-P在原土和>2 mm径级中存在极显著正相关关系(P<0.01),并且在<0.25 mm径级中存在显著正相关关系(P<0.05)(图4:D)。
-
图2 PP和CP的原土和各粒径土壤团聚体各有机磷组分所占比例
-
Fig.2 Proportion of soil organic phosphorus fractions in PP and CP buck soil and soil aggregates of different particle sizes
-
注:* 表示在P<0.05水平上差异显著; ** 表示在P<0.01水平上差异极显著。
-
Note: * indicates significant differences at 0.05 level; ** indicates extremely significant differences at 0.01 level.
-
由图5可知,MBP与土壤Po组分间存在相关关系。MBP与MRO-P无显著相关关系(图5:C),但MBP与LO-P、MLO-P和HRO-P存在显著正相关关系(P<0.05)(图5:A,B,D)。此外,由图6可知,ACP与土壤Po组分之间存在相关性。ACP与LO-P和MRO-P之间没有显著相关关系(图6:A,C),但ACP与MLO-P和HRO-P之间存在极显著正相关关系(P<0.01)(图6:B,D)。
-
对PP和CP的土壤Po组分进行冗余分析,前两主轴共同解释了变量的65.60%,其中第一主轴解释了变量的60.47%,第二主轴解释率为5.13%。对环境因子进行排序后可以确定AP、MWD、MBP、TN是影响土壤Po组分的4个主要环境因子(P<0.05),分别解释了Po组分变化的50.3%、6.7%、5.1%和3.8%(图7)。
-
3 讨论
-
3.1 近自然化改造对马尾松人工林土壤有机磷积累的影响
-
在高度风化的热带、亚热带土壤中,有机磷周转可以维持土壤磷的供应,其分布状况和转化方式决定着土壤有效磷的高低(Fan et al.,2017)。在本研究中,针阔异龄复层混交林的高稳定性有机磷与中度活性有机磷显著高于马尾松纯林,与陆宇明等(2020)和郑威等(2020)的研究结果一致,混交林比纯林拥有更高的有机磷含量,较高的有机磷含量可能源于混交林中更多的有机质(凋落物、细根生物量等)输入(Slazak et al.,2010)。有研究表明,凋落物数量和质量是影响土壤磷形态和有效性变化的重要原因(Redel et al.,2008; Sardans &Peñuelas,2013)。本研究发现在有机磷组分中,高稳定性有机磷含量最高,这与陆宇明等(2020)的研究结果相似。其余有机磷组分中活性有机磷含量最低,中稳定性有机磷和中度活性有机磷含量则介于两者之间。与郑威等(2020)的研究结果不同,在桉树人工林与典型乡土树种人工林中,有机磷组分含量表现为中度活性有机磷>中稳定性有机磷与高稳定性有机磷>活性有机磷。而陈立新(2003)发现落叶松中土壤有机磷组分含量表现为中稳定性有机磷>中度活性有机磷和高稳定性有机磷>活性有机磷。这说明不同树种人工林中土壤有机磷组分含量的比例关系并没有统一的规律,可能是由不同植被类型、土壤类型和地理环境条件等所造成的差异。此外,本研究发现各有机磷组分在原土和各团聚体径级中并无明显的变化规律,这与前人的一些研究结果不一致。例如,吴雯等(2017)在退耕植茶地土壤团聚体有机磷组分的研究中发现,小团聚体中有效性高的有机磷含量较高,而大团聚体中则是稳定态有机磷含量更高;而文倩等(2004)研究发现,大团聚体微生物生物量磷及有机磷含量较高,磷的转化多发生于大团聚体中,而小团聚体中则是有效磷及有机磷活性较高,小团聚体可能是土壤磷的主要来源。冯跃华等(2010)认为,中度活性有机磷的生物有效性在土壤有机磷组分中最高,本研究中混交林的中度活性有机磷与有效磷均显著高于混交林,表明混交林具有更高的磷有效性且中度活性有机磷短期内可作为活性磷的潜在来源(叶钰倩等,2018)。本研究发现混交林中高稳定性有机磷显著高于纯林,说明此时高稳定性有机磷处于养分积累阶段,这可能与混交林相比于纯林有更高的凋落物输入有关。此外,混交林的中度活性有机磷占比高于中度稳定性有机磷,而在纯林中则是中度稳定性有机磷占比高于中度活性有机磷,说明马尾松在近自然化改造后部分的中度稳定性有机磷可以转化为中度活性有机磷。此外,混交林的活性有机磷与纯林相比并无显著差异,可能是因为混交林具有更发达的根系及微生物活性,加速对活性有机磷的获取,使增加的活性有机磷不断补充林木吸收。在高风化土壤的生态系统中,有机磷的矿化是传递磷酸盐的主要过程(Tiecher et al.,2012),这导致土壤溶液中无机磷的释放,但目前我们对无机磷组分的变化情况还不清楚,后续还需对无机磷组分进行深入研究,以更好揭示土壤中磷的动态过程。
-
图3 PP和CP的原土和各粒径土壤团聚体微生物生物量磷与酸性磷酸酶的变化
-
Fig.3 Changes of soil microbial biomass phosphorus and acid phosphatase in PP and CP bulk soil and soil aggregates of different particle sizes
-
3.2 近自然化改造对马尾松人工林土壤磷转化的影响
-
土壤微生物作为陆地生态系统中的重要组成部分对土壤中养分含量的变化具有敏锐的感知能力。微生物生物量磷是土壤磷库的重要组成部分,占表层(0~15 cm)土壤总磷的8%~11%(Achat et al.,2010a)。有机磷中最活跃的部分当属微生物生物量磷,当微生物生物量磷与有机磷的比例增高时,说明土壤有机磷的活性高、转化快(文倩等,2004)。马尾松纯林经近自然化改造后,土壤微生物生物量磷显著高于纯林,这是因为改造后的马尾松人工林土壤养分状况优于马尾松纯林,利于微生物的生长,导致微生物生物量磷显著提高,从而影响到土壤不同形态磷的含量(陆宇明等,2020)。本研究与以前的研究结果相似,发现微生物生物量磷与活性有机磷、中度活性有机磷和高稳定性有机磷之间存在显著的正相关关系。经历了长期的成壤过程,风化释放的大部分磷被土壤微生物和植物利用(Helfenstein et al.,2018)。因此,土壤微生物量的变化可能会影响相关土壤中磷的周转,进而影响土壤磷的有效性,特别是在热带和亚热带土壤中(Fan et al.,2017,2021)。微生物能够产生土壤酶以调节自身的资源限制,土壤磷酸酶在调节土壤磷的有效性方面发挥着关键作用(Fan et al.,2021),它能将磷酸肌醇、磷脂等有机化合物水解为植物可吸收利用的无机磷,促进磷的转化。磷酸酶活性代表土壤系统释放磷的潜在能力(陈立新,2003;Chodak et al.,2021),所以该指标经常被用来评价土壤磷有效性(Spears et al.,2001)。本研究中,马尾松近自然化改造后,磷酸酶活性显著提高且有效磷含量也显著提高,说明混交林可能通过提高磷酸酶活性来提高土壤磷的有效性,这表明马尾松人工林经近自然化改造后其有机磷矿化作用得以增强(郑威等,2020)。此外,马尾松人工林经近自然化改造后,其林分结构发生了改变,凋落物数量增多,大量养分得到了归还,使得土壤环境发生变化,利于土壤微生物的繁殖生长,微生物活性提高,并导致微生物分泌的磷酸酶增多,使磷组分中难分解磷更多地被矿化为无机磷,从而提高了有效磷的含量(叶钰倩等,2018)。本研究表明,部分有机磷组分与磷酸酶呈显著正相关,这与Wang等(2021)提出磷酸酶活性与易溶态有机磷呈显著负相关的结论不同。原因可能是本研究中混交林的基质浓度较高,导致微生物活性提高,促进磷酸酶的分泌从而吸收和利用更多有机磷(Schaap et al.,2021)。而前人的一些研究也发现,土壤中磷矿化的数量随着有机磷浓度的增加而增加(Wu et al.,2019),矿化速率可能更依赖于有机磷的供应而不是无机磷的需求,无论磷酸酶的活性是需求驱动抑或是供应驱动,都与有机磷组分的变化相关,从而影响磷的有效性(Schaap et al.,2021),这也表明了土壤磷转化过程的复杂性,不同环境条件下土壤磷转化状况并不一致。
-
图4 PP和CP的原土及土壤团聚体有机磷组分与土壤团聚体平均重量直径的相关性
-
Fig.4 Correlation between soil organic phosphorus fractions in PP and CP bulk soil and mean weight diameter of soil aggregates
-
图5 PP和CP的土壤有机磷组分与土壤微生物生物量磷的关系
-
Fig.5 Relationship between soil organic phosphorus fractions and soil microbial biomass phosphorus in PP and CP
-
在土壤形成和生态系统演替过程中,影响土壤磷转化的因素很多,未施肥土壤磷的转化和分布在很大程度上受到植被的影响(Zhu et al.,2020)。本研究中的植被类型的变化可能通过改变土壤的非生物因子(如pH、SOC、TN)和生物因子(如MBP、ACP)来影响土壤有机磷组分的积累和转化。冗余分析发现,AP、MWD、MBP和TN是土壤有机磷组分的最主要驱动因子。AP与土壤磷组分存在正相关关系,AP含量高则说明更多的有机磷组分转化为AP,不同形态的有机磷直接影响土壤磷的有效性(Richardson,2001)。MWD与各有机磷组分的线性相关表明,大部分原土及各粒级团聚体均与中度活性有机磷及高稳定性有机磷呈显著正相关,并且冗余分析也表明MWD显著影响土壤有机磷组分,这进一步说明了马尾松人工林近自然改造后可以通过改善土壤的团聚体结构来提高土壤有机磷含量。这与Six等(2004)的研究发现相似,改善土壤结构可以提高土壤有机磷含量,其原因可能是提高土壤团聚体的稳定性,即通过物理作用保护土壤中有机化合物免受生物或物理的降解和侵蚀来增加土壤有机质的储存和养分循环。MBP是影响有机磷组分的主要环境因子,这与陆宇明等(2020)的研究结果相似,表明MBP影响土壤中不同形态的磷积累。此外,ACP分别与各磷组分呈正相关,可能是因为林分结构改善土壤环境使土壤微生物活性增强,从而提高土壤ACP活性,进而促进有机磷的转化(陈莉莉等,2014;陆宇明等,2020;王亚茹等,2021)。不同于林惠瑛等(2021)的报道,ACP活性与各磷组分间存在负相关关系,ACP活性的提升是由于磷限制导致的。土壤有机磷的含量与有机质含量相关,当土壤中磷含量较低或固持较严重时,土壤AP主要来自有机质中有机磷的矿化(Frizano et al.,2002;曹娟等,2016;陆宇明等,2020)。SOC可以为土壤磷提供吸附位点以及碳源,供微生物利用,促进难溶性土壤磷的矿化,从而提高土壤AP含量(曹娟等,2016)。本研究中,冗余分析表明SOC仅解释了0.6%的有机磷组分变化,在单独效应中,SOC的解释率高达45.9%。这表明SOC可能与其他因子(如AP、MWD、MBP和TN等)对土壤有机磷变化的解释具有重叠。本研究还发现,pH与大多有机磷组分呈负相关,这与刘津等(2020)的研究结果相似,有机磷组分在不同pH条件下溶解性不同,当pH降低时有机磷的沉淀速度会加快。
-
图6 PP和CP的土壤有机磷组分和酸性磷酸酶的关系
-
Fig.6 Relationship between soil organic phosphorus fractions and acid phosphatase in PP and CP
-
图7 土壤有机磷组分与土壤理化性质的冗余分析
-
Fig.7 Redundancy analysis of soil organic phosphorus fractions and soil physicochemical properties
-
图8 马尾松近自然化改造对土壤磷组分及磷有效性影响的概念图
-
Fig.8 Conceptual map of the effects of close-to-nature transformation of Pinus massoniana plantations on soil phosphorus fractions and phosphorus availabilities
-
综上所述,马尾松近自然化改造后凋落物量增多,土壤有机质的提高有利于有机磷的积累,土壤环境更利于土壤微生物的生存,增强微生物活性,分泌更多的磷酸酶,促进有机磷矿化为无机态有效磷,植物和微生物对有机磷的吸收利用率能得到最大化,并且微生物体内本身存在一部分微生物生物量磷,在微生物死亡后会被释放出来,成为有机磷的一部分(图8)。后期的研究还应关注土壤无机磷组分,更直观反映土壤磷转化的状况,并且微生物对磷转化起到关键性作用,还需进一步探讨微生物在调节土壤磷组分中发挥的作用及其关键机制。
-
4 结论
-
马尾松人工林近自然化改造后,土壤有机磷组分发生了显著变化,土壤有效磷、团聚体平均重量直径、微生物生物量磷和全氮均是驱动土壤有机磷组分发生变化的主要影响因子,这表明改造后的马尾松人工林提高了土壤质量,微生物活性增强,分泌更多酸性磷酸酶,有利于将有机磷矿化为无机磷,提升土壤磷的有效性,从而有效缓解该地区人工林生态系统的磷限制。本研究结果对打造土壤质量更好、生产力更高、生态系统结构更稳定和生态服务功能更强的马尾松人工林生态系统具有重要的现实意义。
-
参考文献
-
ACHAT DL, BAKKER MR, ZELLER B, et al. , 2010a. Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization [J]. Soil Biol Biochem, 42(9): 1479-1490.
-
ACHAT DL, MOREL C, BAKKER MR, et al. , 2010b. Assessing turnover of microbial biomass phosphorus: Combination of an isotopic dilution method with a mass balance model [J]. Soil Biol Biochem, 42(12): 2231-2240.
-
ALAGÖZ Z, YILMAZ E, 2009. Effects of different sources of organic matter on soil aggregate formation and stability: A laboratory study on a Lithic Rhodoxeralf from Turkey [J]. Soil Till Res, 103: 419-424.
-
BAO SD, 2000. Soil agrochemical analysis [M]. Beijing: China Agriculture Press: 1-120. [鲍士旦, 2000. 土壤农化分析 [M]. 北京: 中国农业出版社: 1-120. ]
-
BOWMAN RA, COLE CV, 1978. An exploratory method for fractionation of organic phosphorus from grassland soils [J]. Soil Sci, 125(2): 95-101.
-
CAO J, YAN WD, XIANG WH, et al. , 2016. Characteristics of soil organic phosphorus in different aged stands of Chinese fir plantations [J]. Chin J Soil Sci, 47(3): 681-687. [曹娟, 闫文德, 项文化, 等, 2016. 不同年龄杉木人工林土壤有机磷的形态特征 [J]. 土壤通报, 47(3): 681-687. ]
-
CHEN LL, WANG DX, YU F, et al. , 2014. The relationship among microbial quantities, enzyme activities and nutrients in soil of pine-oak mixed forest [J]. Chin J Soil Sci, 45(1): 77-84. [陈莉莉, 王得祥, 于飞, 等, 2014. 松栎混交林土壤微生物数量与土壤酶活性及土壤养分关系的研究 [J]. 土壤通报, 45(1): 77-84. ]
-
CHEN LX, 2003. Relationship between soil organic phosphorus forms in larch plantations and tree growth [J]. Chin J Appl Ecol, 14(12): 2157-2161. [陈立新, 2003. 落叶松土壤有机磷形态与林木生长量的关系 [J]. 应用生态学报, 14(12): 2157-2161. ]
-
CHODAK M, SROKA K, PIETRZYKOWSKI M, 2021. Activity of phosphatases and microbial phosphorus under various tree species growing on reclaimed technosols [J]. Geoderma, 401: 115320.
-
CONTE E, ANGHINONI I, RHEINHEIMER DS, 2002. Fósforo da biomassa microbiana e atividade de fosfatase ácida após aplicação de fosfato em solo no sistema plantio direto [J]. Rev Bras Ciênc Solo, 26(4): 925-930.
-
COSTA MG, GAMA-RODRIGUES AC, GONÇALVES JLM, et al. , 2016. Labile and non-labile fractions of phosphorus and its transformations in soil under eucalyptus plantations [J]. Brazil For, 7(1): 15.
-
DALAI R, 1977. Soil organic phosphorus [J]. Adv Agron, 29: 83-117.
-
FAN YX, LIN F, YANG LM, et al. , 2017. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem [J]. Biol Fert Soils, 54(1): 149-161.
-
FAN YX, LU SX, HE M, et al. , 2021. Long-term throughfall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest [J]. Geoderma, 404: 115309.
-
FAN YX, ZHONG XJ, LIN F, et al. , 2019. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots [J]. Geoderma, 337: 246-255.
-
FATTET M, FU Y, GHESTEM M, et al. , 2011. Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength [J]. Catena, 87(1): 60-69.
-
FENG YH, ZHANG YZ, HUANG YX, 2010. Effects of phosphatezation on organic phosphorus fractions and their seasonal variations and bioavailabilities of paddy soils in Hunan Province [J]. J Plant Nutr Fert, 16(3): 634-641. [冯跃华, 张杨珠, 黄运湘, 2010. 湖南稻田土壤有机磷组分的施磷效应、季节变化及生物有效性研究 [J]. 植物营养与肥料学报, 16(3): 634-641. ]
-
FRIZANO J, JOHNSON AH, VANN DR, et al. , 2002. Soil phosphorus fractionation during forest development on Landslide Scars in the Luquillo Mountains, Puerto Rico1 [J]. Biotropica, 34(1): 17-26.
-
HELFENSTEIN J, TAMBURINI F, VON SPERBER C, et al. , 2018. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil [J]. Nat Commun, 9(1): 3226.
-
KRAVCHENKO A, CHUN HC, MAZER M, et al. , 2013. Relationships between intra-aggregate pore structures and distributions of Escherichia coli within soil macro-aggregates [J]. Appl Soil Ecol, 63: 134-142.
-
LI P, LING TW, YANG ZQ, et al. , 2023. Ecological stoichiometric characteristics of leaf-soil carbon, nitrogen and phosphorus in Pinus massoniana plantations with different forest ages [J]. J SW For Univ (Nat Sci), 43(1): 88-98. [李鹏, 零天旺, 杨章旗, 等, 2023. 不同林龄马尾松人工林叶片-土壤碳氮磷生态化学计量特征研究 [J]. 西南林业大学学报(自然科学), 43(1): 88-98. ]
-
LIN HY, YUAN XC, ZHOU JC, et al. , 2021. Effects of different elevational gradients on soil phosphorus fractions and availability in Pinus taiwanensis forest on Wuyi Mountain [J]. Acta Ecol Sin, 41(14): 5611-5621. [林惠瑛, 元晓春, 周嘉聪, 等, 2021. 海拔梯度变化对武夷山黄山松林土壤磷组分和有效性的影响 [J]. 生态学报, 41(14): 5611-5621. ]
-
LIU J, LI CY, XING YW, et al. , 2020. Effects of long-term fertilization on soil organic phosphorus fractions and wheat yield in farmland of loess plateau [J]. Chin J Appl Ecol, 31(1): 157-164. [刘津, 李春越, 邢亚薇, 等, 2020. 长期施肥对黄土旱塬农田土壤有机磷组分及小麦产量的影响 [J]. 应用生态学报, 31(1): 157-164. ]
-
LIU Y, ZHANG GH, LUO XZ, et al. , 2021. Mycorrhizal fungi and phosphatase involvement in rhizosphere phosphorus transformations improves plant nutrition during subtropical forest succession [J]. Soil Biol Biochem, 153: 108099.
-
LOOBY CI, TRESEDER KK, 2018. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest [J]. Soil Biol Biochem, 117: 87-96.
-
LU YC, GAN J, 2002. Development of forest management in the 21st century [J]. World For Res, 15(1): 1-11. [陆元昌, 甘敬, 2002. 21世纪的森林经理发展动态 [J]. 世界林业研究, 15(1): 1-11. ]
-
LU YM, WU DM, XU EL, et al. , 2020. Effects of Chinese fir interplanting with broadleaved trees on soil phosphorus fractions [J]. J Soil Water Conserv, 34(1): 275-282. [陆宇明, 吴东梅, 许恩兰, 等, 2020. 不同林龄杉木林下套种阔叶树对土壤磷组分的影响 [J]. 水土保持杂志, 34(1): 275-282. ]
-
MARTINAZZO R, SANTOS DR, GATIBONI LC, et al. , 2007. Fósforo microbiano do solo sob sistema plantio direto em resposta à adição de fosfato solúvel [J]. Rev Bras Ciênc Solo, 31(3): 563-570.
-
MING AG, LIU SR, LI H, et al. , 2017. Effects of close-to-nature transformation on biomass and its allocation in Pinus massoniana and Cunninghamia lanceolata plantations [J]. Acta Ecol Sin, 37(23): 7833-7842. [明安刚, 刘世荣, 李华, 等, 2017. 近自然化改造对马尾松和杉木人工林生物量及其分配的影响 [J]. 生态学报, 37(23): 7833-7842. ]
-
OBERSON A, FRIESEN DK, RAO IM, et al. , 2001. Phosphorus transformations in an Oxisol under contrasting land-use systems: the role of the soil microbial biomass [J]. Plant Soil, 237: 197-210.
-
REDEL Y, RUBIO R, GODOY R, et al. , 2008. Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems [J]. Geoderma, 145(3/4): 216-221.
-
RICHARDSON AE, 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants [J]. Funct Plant Biol, 28(9): 897-906.
-
RUIZ R, NICKEL B, KOCH N, et al. , 2003. Dynamic scaling, island size distribution, and morphology in the aggregation regime of submonolayer pentacene films [J]. Phys Rev Lett, 91(13): 136102.
-
SAIYA-CORK KR, SINSABAUGH RL, ZAK DR, 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biol Biochem, 34(9): 1309-1315.
-
SARDANS J, PEÑUELAS J, 2013. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood [J]. Global Ecol Biogeogr, 22(4): 494-507.
-
SCHAAP KJ, FUCHSLUEGER L, HOOSBEEK MR, et al. , 2021. Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon [J]. Plant Soil, 469(1/2): 423-441.
-
SIX J, BOSSUYT H, DEGRYZE S, et al. , 2004. A history of research on the link between(micro)aggregates, soil biota, and soil organic matter dynamics [J]. Soil Till Res, 79: 7-31.
-
SLAZAK A, FREESE D, DA SILVA MATOS E, et al. , 2010. Soil organic phosphorus fraction in pine-oak forest stands in Northeastern Germany [J]. Geoderma, 158(3/4): 156-162.
-
SPEARS JDH, LAJTHA K, CALDWELL BA, et al. , 2001. Species effects of Ceanothus velutinus versus Pseudotsuga menziesii, Douglas-fir, on soil phosphorus and nitrogen properties in the Oregon cascades [J]. For Ecol manage, 149(1/2/3): 205-216.
-
SUN DJ, WEN YG, LUO YH, et al. , 2015. Effect of close-to-nature management on species diversity in a Cunninghamia lanceolata plantation [J]. For Res, 28(2): 202-208. [孙冬婧, 温远光, 罗应华, 等, 2015. 近自然化改造对杉木人工林物种多样性的影响 [J]. 林业科学研究, 28(2): 202-208. ]
-
TIECHER T, DOS SANTOS DR, CALEGARI A, 2012. Soil organic phosphorus forms under different soil management systems and winter crops, in a long term experiment [J]. Soil Till Res, 124: 57-67.
-
TISDALL JM, OADES JM, 1982. Organic matter and water-stable aggregates in soils [J]. Eur J Soil Sci, 33(2): 141-163.
-
TURNER BL, CADE-MENUN BJ, CONDRON LM, et al. , 2005. Extraction of soil organic phosphorus [J]. Talanta, 66(2): 294-306.
-
VINCENT AG, TURNER BL, TANNER EVJ, 2010. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest [J]. Eur J Soil Sci, 61(1): 48-57.
-
VITOUSEK PM, PORDER S, HOULTON BZ, et al. , 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecol Appl, 20(1): 5-15.
-
WANG CQ, XUE L, JIAO RZ, 2021. Soil phosphorus fractions, phosphatase activity, and the abundance of phoC and phoD genes vary with planting density in subtropical Chinese fir plantations [J]. Soil Till Res, 209: 104946.
-
WANG SQ, LI TX, ZHENG ZC, 2017. Distribution of microbial biomass and activity within soil aggregates as affected by tea plantation age [J]. Catena, 153: 1-8.
-
WANG YR, LIN XY, HUI H, et al. , 2021. Effects of poplar plantation types on soil phosphorus fractions [J]. Chin J Ecol, 40(6): 1549-1556. [王亚茹, 林鑫宇, 惠昊, 等, 2021. 杨树人工林类型对土壤磷组分的影响 [J]. 生态学杂志, 40(6): 1549-1556. ]
-
WEN Q, ZHAO XR, CHEN HW, et al. , 2004. Distribution characteristics of microbial biomass phosphorus in different soil aggregates in semi-arid area [J]. Sci Agric Sin, 37(10): 1504-1509. [文倩, 赵小蓉, 陈焕伟, 等, 2004. 半干旱地区不同土壤团聚体中微生物量碳的分布特征 [J]. 中国农业科学, 37(10): 1504-1509. ]
-
WILLIAMS A, BÖRJESSON G, HEDLUND K, 2013. The effects of 55 years of different inorganic fertiliser regimes on soil properties and microbial community composition [J]. Soil Biol Biochem, 67: 41-46.
-
WU HL, XIANG WH, CHEN L, et al. , 2019. Soil phosphorus bioavailability and recycling increased with stand age in Chinese fir plantations [J]. Ecosystems, 23(5): 973-988.
-
WU W, ZHENG ZC, LI TX, 2017. Characteristics of organic phosphorus fractions within soil aggregates in soils returned from farmland to tea [J]. Mt Res, 35(4): 459-468. [吴雯, 郑子成, 李廷轩, 2017. 退耕植茶地土壤团聚体中有机磷组分分布特征 [J]. 山地学报, 35(4): 459-468. ]
-
YE YQ, ZHAO JH, LIU C, et al. , 2018. Effects of thinning on phosphorus fractions of rhizosphere soil in Pinus massoniana plantations [J]. Chin J Ecol, 37(5): 1364-1370. [叶钰倩, 赵家豪, 刘畅, 等, 2018. 间伐对马尾松人工林根际土壤磷组分的影响 [J]. 生态学杂志, 37(5): 1364-1370. ]
-
ZHANG Z, HUANG YZ, ZHANG C, et al. , 2022. Distribution of phosphorus fractions in soil aggregates in Chinese fir plantations with different stand ages [J]. J Appl Ecol, 33(4): 939-948.
-
ZHENG W, LI CX, TAN L, et al. , 2020. Comparison of Eucalyptus plantation and typical native species plantations in soil phosphorus fractions and sorption characteristics in south subtropical China [J]. Soils, 52(5): 1017-1024. [郑威, 李晨曦, 谭玲, 等, 2020. 南亚热带桉树人工林与典型乡土树种人工林土壤磷组分及磷吸附特性比较 [J]. 土壤, 52(5): 1017-1024. ]
-
ZHU XY, ZHAO XR, LIN QM, et al. , 2020. Distribution characteristics of soil organic phosphorus fractions in the Inner Mongolia steppe [J]. J Soil Sci Plant Nutr, 20(4): 2394-2405.
-
摘要
有机磷(Po)是土壤磷库的重要组成部分。为探究马尾松人工林近自然化改造对土壤团聚体Po分布特征的影响,该研究以南亚热带的马尾松纯林(PP)和近自然化改造后的马尾松-阔叶树种混交林(CP)为对象,采集0~10 cm土样后利用干筛法将其筛分为>2 mm、0.25~2 mm和<0.25 mm三部分粒径团聚体,并测定原土及各粒径团聚体中各Po组分、微生物生物量磷(MBP)含量和酸性磷酸酶(ACP)活性。结果表明:(1)CP的土壤Po组分与PP相比发生了变化,高稳定性有机磷(HRO-P)和中度活性有机磷(MLO-P)在原土以及各团聚体径级中均显著高于PP(P<0.05),而活性有机磷(LO-P)和中度稳定性有机磷(MRO-P)在CP和PP中并无显著差异,PP和CP各组分Po在原土和各团聚体径级中无明显变化规律。(2)各形态Po在PP中占比大小为HRO-P>MRO-P>MLO-P>LO-P,而在CP中为HRO-P>MLO-P>MRO-P>LO-P。(3)CP中的MBP含量和ACP活性在原土及各团聚体径级中均显著高于PP,并且随着团聚体径级的减小,ACP活性上升。(4)冗余分析发现,土壤有效磷(AP)、土壤团聚体平均重量直径(MWD)、MBP和全氮(TN)为土壤Po组分的主要驱动因子。综上认为,近自然化改造有利于马尾松人工林土壤中磷的积累与转化,该研究结果为马尾松人工林土壤质量和生产力的提升提供了理论依据。
Abstract
Organic phosphorus (Po) is an important part of soil phosphorus reservoir. In order to investigate the effects of soil aggregate Po distribution properties in Pinus massoniana plantations after close-to-nature transformation, the pure P. massoniana plantations (PP) and P. massoniana-broad-leaved mixed plantations (CP) after close-to-nature transformation were investigated in southern subtropical China. Soil samples collected from 1-10 cm were screened into >2 mm, 0.25-2 mm and <0.25 mm three-part aggregates using the dry-sieving method. The Po fraction, microbial biomass phosphorus (MBP) content and acid phosphatase (ACP) activity in the bulk soil and aggregates were measured to understand the distribution of the Po fraction and its drivers. The results were as follows: (1) Soil Po fractions changed in CP compared to PP, with highly recalcitrant organic phosphorus (HRO-P) and moderately labile organic phosphorus (MLO-P) significantly greater in the bulk soil and soil aggregates than in PP (P<0.05), while labile organic phosphorus (LO-P) and moderately recalcitrant organic phosphorus (MRO-P) were not significantly different in CP and PP. In addition, there was no consistent pattern of change in Po fractions in the bulk soil and soil aggregates between PP and CP. (2) The size of the proportion of each form of Po in PP was HRO-P>MRO-P>MLO-P>LO-P, while CP was HRO-P>MLO-P>MRO-P>LO-P. (3) The MBP content and ACP activity in CP were significantly greater than that of PP in the bulk soil and soil aggregates, and there was a tendency for the ACP activity to increase with the decrease in the size of aggregates. (4) Redundancy analysis revealed that soil available phosphorus (AP), soil aggregate mean weight diameter (MWD), MBP and total nitrogen (TN) were the main drivers of soil Po fractions. In conclusion, the close-to-nature transformation is beneficial to the accumulation and transformation of soil phosphorus in P. massoniana plantation. This study provides a theoretical reference for the improvement of soil quality and productivity in P. massoniana plantations.