-
土壤团聚体是土壤结构的基本单元,有着协调土壤水肥气热、影响土壤酶的种类和活性以及维持和稳定土壤疏松熟化层的作用(卢金伟和李占斌,2002;Six et al.,2004)。一般认为,>0.25 mm水稳定性团聚体的数量是判定土壤肥沃的关键标志之一,可以反映土壤的养分供给、通气持水能力,决定土壤生产力水平和抗侵蚀能力(蔡立群等,2008;Delelegn et al.,2017)。
-
土壤团聚体稳定性是影响土壤结构的重要因素,也是土壤肥力和质量的关键指标(Six et al.,2000;Bronick &Lal,2005)。作为一种土壤物理特性,改善土壤团聚体稳定性有助于抵御土壤破坏,并在土壤受到不同破坏性物理应力(包括降雨和地表径流)时保持其特定的结构(Besalatpour et al.,2013;Li et al.,2013);提高土壤团聚体稳定性可以极大地改善土壤结构和肥力,防止土壤退化引起的土壤侵蚀和其他环境问题(Zhu et al.,2017)。土壤团聚体稳定性与土壤有机质含量(Bronick &Lal,2005)、土壤微生物数量和活性(Lin et al.,2019)、土地利用方式、管理措施、气候条件及植被类型等(董莉丽,2020)密切相关。国内外学者对团聚体稳定性的研究主要集中在团聚体稳定性量化理论与方法(Ding &Zhang,2016;Aksakal et al.,2020)和团聚体稳定性影响因素及其机制等(董莉丽,2020),涉及农田、湿地、草原、森林等生态系统(刘亚龙等,2023)。团聚体稳定性的测定方法主要有干筛法、湿筛法和Le Bissonnais法等,干筛法用于评估团聚体机械稳定性,湿筛法用于评估团聚体水稳定性,而Le Bissonnais法则用于探究团聚体破碎机制(董莉丽,2020)。湿筛法所得的大团聚体比例往往会低于干筛法,两种方法在团聚体粒径分布方面的差异可能主要在于两种方法施加到土壤上的能量不同(Zhu et al.,2021)以及团聚体破裂的方式不同(王秀颖等,2011)。
-
桉树(Eucalyptus)具有适应性广、抗逆性强、生长迅速等特点,在广西、广东、海南及福建等沿海省区被广泛种植,产生了巨大的经济效益(温远光等,2018)。随着桉树人工林产业不断地发展,各种生态问题逐渐显现,如不合理的经营措施(短周期、高次代纯林连栽、大量施肥和使用除草剂等)导致的土壤退化、林地生产力下降、林下植物多样性降低等(黄国勤和赵其国,2014;温远光等,2018),严重制约了桉树人工林的发展。基于上述背景,改善桉树人工林生态环境状况、减缓其土壤退化、维持且提高其土壤养分含量已成为研究热点。已有的对桉树人工林土壤的研究大多集中于土壤养分循环及调控机制(Huang et al.,2017;唐健等,2021;邵文哲等,2022),但对团聚体粒径分布及稳定性机制仍缺乏深入研究。因此,探究桉树人工林土壤团聚体粒径分布及稳定性对其土壤肥力维持及恢复具有重要意义。
-
Wang等(2022)的研究发现,随着桉树的连续种植,土壤退化加剧,抗侵蚀能力降低,土壤团聚体稳定性下降;林立文等(2020)对比了杉木、马尾松和桉树等南亚热带地区5种典型人工林的土壤团聚体稳定性发现,桉树人工林土壤结构相对较差,团聚体稳定性最低。因此,寻找提高桉树人工林土壤团聚体稳定性的营林措施显得尤为重要。前人研究表明,在退化林地引种固氮树种,如旱冬瓜(Alnus nepalensis)、顶果木(Acrocarpus fraxinifolius)和降香黄檀(Dalbergia odorifera)等,可以显著提升土壤有机质、总氮和磷素有效性,有效改善林地土壤肥力状况(李茂萍等,2022;李萌等,2022); 莫雪青等(2022)研究发现,在桉树人工林中引入固氮树种后,土壤团聚体的酶活性和化学计量比得到改善,土壤N、P限制得到缓解;Huang 等(2017)研究发现,在桉树人工林中引入固氮树种改善了土壤微生物群落结构与土壤胞外酶活性,进而增加了土壤碳储量和惰性碳含量。然而,固氮树种在改善土壤理化性质的同时,能否提高桉树人工林土壤团聚体稳定性,其与土壤理化性质之间有何关系,其影响机制及关键驱动因子是什么,我们对这些问题都缺乏深入的认识。因此,本研究以中国林业科学研究院热带林业实验中心的巨尾桉(Eucalyptus grandis × urophylla)纯林(pure plantation,PP)和巨尾桉(E. grandis × urophylla)/马占相思(Acacia mangium)混交林(mixed plantation,MP)为研究对象,采用干筛和湿筛相结合的方法,综合分析两种林分的土壤团聚体的粒径分布及稳定性特征,以期阐明固氮树种马占相思对巨尾桉人工林土壤团聚体稳定性的影响机制及其关键驱动因子,为桉树人工林土壤养分管理和可持续经营提供理论基础。
-
1 材料与方法
-
1.1 研究区概况
-
本研究区位于广西凭祥市中国林业科学研究院热带林业实验中心的实验场内(106°56′E、22°03′N)。凭祥市地处中国南部,地貌以山区丘陵地形为主,属亚热带季风型气候,受太阳辐射热能多,水热资源丰富,干湿季节明显,年均温度21℃,年均降雨量1 400 mm,年均无霜期340 d;土壤类型以花岗岩风化后形成的红壤为主,土壤呈酸性,土壤有机质及全氮含量中等偏低,磷、钾养分含量不丰富,有效锌、硼和钼的含量不高。
-
选取17年生的巨尾桉纯林(PP)和巨尾桉/马占相思混交林(MP)作为研究对象,每种林分分别设置5个20 m × 20 m的独立样方。MP由相同树龄的巨尾桉和马占相思构成,混交比例为1∶1,混交方式为行间混交。2种林分均是在2004年将1977年种植的马尾松林皆伐后经炼山整地后同时种植,在整个研究过程中均采用相似的林分管理制度。在造林前,每株施基肥500 g,并在前2年每半年人工除草和施肥1次,施肥总量为氮200 kg·hm-2、磷150 kg·hm-2、钾100 kg·hm-2。样地基本情况如表1所示。
-
1.2 样品采集和处理
-
根据植物生长的特点,于2021年8月初植物生长旺季采集土壤样品。以 0°为起始,每隔45°设置一条方向线,在每条方向线上距样方中心点5 m处设置一个采样点;清除土壤表面的凋落物、动植物残体、石块等杂质后,每个采样点从土壤表层向下按照0~10 cm和10~20 cm分2层采集原状土,将8个采样点的土壤混合后保存于硬质塑料盒内,防止运输过程中土壤原有结构被挤压破坏。此外,还需用体积为100 cm3 的环刀分层采集土壤,用于测定土壤容重(bulk density,BD)和土壤孔隙度(soil porosity,SP)。土壤样品运回实验室后,剔除土壤内砂石和动植物残体,一部分于常温下晾干至田间含水量的20%,按其天然纹理掰成直径约1 cm的小块,用于土壤团聚体指标的测定;另一部分经研磨过筛,用于土壤理化性质的测定。
-
1.3 样品测定方法
-
1.3.1 干筛法
-
参考林立文等(2020)的方法,取500 g土样,依次过孔径为2.00、1.00、0.50 mm和0.25 mm的套筛后,测得>2.00 mm、1.00~2.00 mm、0.50~1.00 mm、0.25~0.50 mm和<0.25 mm粒径团聚体质量,计算各粒径团聚体的百分比含量及团聚体机械稳定性指标。
-
1.3.2 湿筛法
-
参考Elliott(1986)的方法,将干筛法获得的各粒径团聚体按比例配制50 g土样用于湿筛。湿筛孔径大小与干筛一致,在筛分之前,将土壤置于去离子水中浸泡30 min,之后启动团粒分析仪,在振幅为38 mm、振动频率为30 times·min-1的设置下运行30 min,待分析过程结束后,将各粒径团聚体转入铝盒,于105℃烘箱中烘干后测得各粒径团聚体质量,计算各粒径团聚体的百分比含量及团聚体水稳定性指标。
-
1.3.3 土壤理化性质的测定
-
参考《土壤农化分析》对土壤理化性质进行测定(鲍士旦,2000)。采用pH计测定土壤pH(1∶2.5土水比);采用环刀法测定土壤容重(BD)、土壤孔隙度(SP);采用重铬酸钾-外加热法测定土壤有机碳(soil organic carbon,SOC);采用凯氏定氮法测定土壤全氮(total nitrogen,TN);采用钼锑抗比色法测定土壤全磷(total phosphorus,TP)。
-
1.4 数据处理和分析
-
单一指标往往不能全面反映团聚体稳定性,为综合评价土壤团聚体稳定性,以平均重量直径(mean weight diameter,MWD)(Bravel,1950)、几何平均直径(geometric mean diameter,GMD)(Mazurak,1950)、分形维数(mass fractal dimension,Dm)(Tyler et al.,1992;杨培岭等,1993)、水稳定性团聚体含量(water stable aggregates,WSA)(冷暖等,2021)、团聚体破坏率(percentage of aggregates destruction,PAD)(韦慧等,2022)和团聚体稳定性指数(aggregates stability index,ASI)(石辉,2006)作为评价团聚体稳定性的指标。其中,MWD和GMD是表征土壤团聚体直径大小组成情况的综合指标,MWD和GMD越大表明团聚体越稳定;WSA表征水稳定性团聚体的含量,WSA越高,说明团聚体水稳定性越强;Dm通常表示团聚体的均匀程度,Dm越小表明大团聚体比例越高,团聚体稳定性越好;PAD结合干湿筛法表征机械稳定性大团聚体(>0.25 mm)经湿筛后破损为小团聚体(<0.25 mm)的比例,PAD越小表明团聚体越稳定;ASI结合干湿筛法表征各粒径机械稳定性团聚体经湿筛筛分后仍保存在原粒径的概率,是表征团聚体稳定性的综合指标,ASI越大,团聚体越稳定。
-
计算公式如下:
-
(1)平均重量直径(MWD,mm)与几何平均直径(GMD,mm):
-
式中:xi为任一粒径团聚体的平均直径(mm);wi为第i粒径团聚体的质量占总团聚体的百分比(%)。
-
(2) 分形维数(Dm):分形维数计算方法参考Tyler等(1992)和杨培岭等(1993)提出的方法。
-
以为横坐标、为纵坐标进行拟合,直线斜率K为(3-Dm),分形维数Dm=3-K。
-
式中: xi为任一粒径团聚体的平均直径(mm);M(r<xi)为小于第i粒径团聚体的质量;MT为团聚体总质量(g);xmax为团聚体最大粒径的平均直径(mm);Dm为分形维数。
-
(3)水稳定性团聚体含量(WSA)与团聚体破坏率(PAD):
-
式中: WM>0.25为湿筛>0.25 mm团聚体质量(g);DM>0.25为干筛>0.25 mm团聚体质量(g);MT为湿筛团聚体总质量(g)。
-
(4) 团聚体稳定性指数(ASI):采用石辉(2006)提出的转移矩阵法,充分利用团聚体分析所得的信息,通过计算机械稳定性团聚体转化水稳定性团聚体过程中各粒径团聚体的保存概率,进一步反映团聚体稳定性。假设将i个粒径范围的机械稳定性团聚体百分比构成矩阵Mi,湿筛后对应的水稳定性团聚体百分比为矩阵Ni,每个粒径在筛分时保存在原有粒径的概率为X1、X2、···、Xi,可得MX=N,以各径级保存概率Xi的和作为土壤团聚体稳定指数ASI。
-
式中: X为各粒径团聚体保存概率,由于<0.25 mm的径级是最小的粒径,在湿筛的过程中不可能再破坏为其下一个径级,因此其保存概率为1。
-
采用Excel 2019和SPSS 25软件对数据进行统计和分析。运用独立样本t检验比较相同土层不同林分间土壤理化性质、团聚体粒径分布及稳定性特征的差异,显著性水平设置为P<0.05。利用R 4.0.3的vegan程序包中的Mantel函数进行Mantel检验,分析土壤理化性质与土壤团聚体稳定性的相关性,显著性水平设置为P<0.05。利用 Canoco 5软件,以土壤团聚体稳定性特征为响应变量、土壤理化性质为解释变量进行冗余分析。利用Origin Pro 2023和R 4.0.3软件绘图,图表中所有结果均为平均值±标准误,n=5。
-
2 结果与分析
-
2.1 不同林分土壤理化性质
-
由表2可知,相较于PP,在0~10 cm土层,MP的pH、SOC、TN和SP分别显著提高了18.93%、63.17%、88.70%和11.63%(P<0.05);在10~20 cm土层,MP的pH、SOC、TN分别显著提高了19.71%、40.16% 和60.24%(P<0.05),而TP、BD分别显著降低了31.25% 和9.52%(P<0.05)。
-
2.2 不同林分土壤团聚体粒径分布特征
-
由图1可知,不同筛分方式下,两种林分的土壤团聚体粒径分布特征各有差异,但均以大团聚体(>0.25 mm)为主。
-
由表3可知,干筛条件下,PP和MP土壤团聚体粒径分布在0~10 cm和10~20 cm土层均以>2.00 mm粒径团聚体为主,占整个团聚体含量的68.04%~75.66%。相较于PP,在0~10 cm土层中,MP的>2.00 mm粒径团聚体显著提升(P<0.05),而0.50~1.00 mm粒径团聚体显著降低(P<0.05);在10~20 cm土层,MP的0.50~1.00 mm和0.25~0.50 mm粒径团聚体均显著降低(P<0.05)。
-
由表4可知,湿筛条件下,PP和MP的土壤团聚体粒径分布在0~10 cm土层中,从大到小均依次为>2.00 mm、<0.25 mm、0.50~1.00 mm、1.00~2.00 mm、0.25~0.50 mm;相较于PP,MP的>2.00 mm和0.25~0.50 mm粒径团聚体均显著提高(P<0.05),而<0.25 mm粒径团聚体显著降低(P<0.05)。PP和MP的土壤团聚体粒径分布在10~20 cm土层呈现出不同的规律,PP占比最高的团聚体粒径为<0.25 mm,MP为>2.00 mm;相较于PP,MP的>2.00 mm和0.25~0.50 mm粒径团聚体均显著提高(P<0.05),而<0.25 mm粒径团聚体显著降低(P<0.05)。
-
2.3 不同林分土壤团聚体稳定性特征
-
干筛条件下,MP的MWD和GMD在0~10 cm土层显著高于PP(P<0.05)(图2:A,B)。湿筛条件下,MP的MWD、GMD和WSA在0~10 cm和10~20 cm土层均显著高于PP(P<0.05),分形维数均显著低于PP(P<0.05)(图2:A,B,C;图3:A)。
-
统计分析结果显示,MP的PAD在0~10 cm和10~20 cm土层均显著低于PP(P<0.05)(图3:B),而ASI显著高于PP(P<0.05)(图3:C),表明MP团聚体综合稳定性显著优于PP。
-
2.4 土壤团聚体稳定性与理化性质相关性分析
-
采用Mantel检验对不同林分土壤理化性质与团聚体稳定性的相关性进行分析。图4结果表明,pH、SOC、TN、TP、BD和SP与团聚体稳定性特征均有不同程度的相关性。TN与团聚体稳定性相关性最强,而与PAD呈不显著相关(P>0.05);TP与团聚体稳定性相关性最弱,而与WSA呈显著相关(P<0.05)。
-
注:同列不同字母表示相同土层不同林分间差异性显著 (P<0.05)。
-
Note: Different letters in the same column indicate significant differences in the same soil layer among different stand types (P<0.05) .
-
以土壤团聚体稳定性指标为响应变量、土壤理化性质为解释变量进行冗余分析(RDA)。图5结果表明,第一主轴和第二主轴分别解释了土壤团聚体稳定性变异的92.75%和5.50%。第一主轴将PP与MP明显分开,表明固氮树种马占相思的引入能显著改变土壤团聚体稳定性。TN(F=16.3,P=0.002)可以解释团聚体稳定性变异的47.50%(表5),是驱动团聚体稳定性变异的最关键因子。
-
3 讨论
-
3.1 固氮树种马占相思对巨尾桉人工林土壤团聚体粒径分布及稳定性特征的影响
-
土壤团粒结构有着良好的水分和空气协调能力以及养分贮存能力,是最理想的土壤结构。本研究中,干筛与湿筛测得的结果有所区别,2种林分的团聚体机械稳定性仅在0~10 cm土层有显著差异,团聚体水稳定性在0~10 cm和10~20 cm土层均有显著差异,说明巨尾桉纯林引入固氮树种后,团聚体机械稳定性得到一定改善,但更多的是促进水稳定性团聚体的形成,并使其具有较好的水稳定性团聚体粒径分布及水稳定性;PAD与ASI从团聚体破碎的角度进一步表明团聚体综合稳定性得到显著提高。此外,随着土层深度增加,团聚体粒径分布及稳定性呈降低的趋势,这与童晨晖等(2022)的研究结果基本一致,其原因主要归结于表层土壤相较于底层土壤具有更高的有机质含量。
-
土壤团聚体的形成过程是土壤颗粒在各种胶结物质作用下团聚以及团聚体受外力破坏这两个过程不断平衡的结果(余洁等,2022)。林分类型对土壤团聚体的形成有重要影响,本质上是受土壤肥力、凋落物及根系等因素的综合影响(杨洪炳等,2022)。本研究中,MP的土壤团聚体稳定性有较大改善,其原因可能有以下3个方面: (1)相对于PP,MP具有更丰富的植物多样性,更高的地上生物量和枯落物量对降水和径流有更好的截留作用(申卫军等,2001),有效减缓了降水引起的消散作用对团聚体的破坏(韦慧等,2022);(2)MP具有更高质量和数量的凋落物,增加了土壤有机质的输入(Huang et al.,2014),而土壤有机质作为团聚体重要的胶结物质为大团聚体的形成及稳定起到了促进作用(刘亚龙等,2023);(3)与马占相思混交种植后可能产生更多的根系分泌物和真菌菌根,有助于微团聚体黏合成大团聚体(Demenois et al.,2018)。
-
3.2 土壤团聚体稳定性与土壤理化性质关系
-
王磊等(2022)研究发现,与人工纯林相比,混交林可以提高凋落物分解速率,增加土壤养分的归还量,进而引起土壤理化性质的差异。本研究中,马占相思与巨尾桉混交主要对pH、SOC和TN产生了显著影响,这与Wang等(2010)的研究结果类似,固氮树种在土壤C、N恢复方面有积极作用,与非固氮树种相比,固氮树种对土壤有机质和总氮含量的提高具有更明显的促进作用,并且马占相思在重建中国南方退化土地的碳氮循环方面更为有效。这可能是固氮树种通过其根系与固氮菌共生的固氮作用来提高土壤氮含量,促进桉树人工林地上植被的生长,提高林地生产力,增加凋落物输入量和凋落物质量,进而改善土壤理化性质(Kelty,2006;Huang et al.,2014;Huang et al.,2017)。这一观点也被Marron和Epron(2019)的研究证明,其在全球尺度上统计了34个实验人工林的148个案例,并通过荟萃分析发现固氮树种混交林的生物量比非固氮树种纯林提高了18%。
-
图1 不同林分类型的土壤团聚体粒径分布特征
-
Fig.1 Particle size distribution characteristics of soil aggregates in different stand types
-
注:同列不同字母表示相同土层相同粒径不同林分间差异性显著 (P<0.05)。下同。
-
Note: Different letters in the same column indicate significant differences in the same soil layer among different stand types with the same particle size (P<0.05) . The same below.
-
图2 不同林分类型的土壤团聚体平均重量直径 (A)、几何平均直径(B)和分形维数(C)
-
Fig.2 MWD (A) , GMD (B) and Dm (C) of soil aggregates in different stand types
-
图3 不同林分类型的土壤团聚体水稳定性团聚体含量 (A)、团聚体破坏率 (B)和团聚体稳定性指数 (C)
-
Fig.3 WSA (A) , PAD (B) and ASI (C) of soil aggregates in different stand types
-
Mantel检验结果显示,pH、SOC、TN和BD均与土壤团聚体稳定性存在较强的显著相关性,说明固氮树种马占相思引起的土壤理化性质变化对土壤团聚体稳定性有着强烈的影响。pH的升高会加强土壤团聚作用,尤其是影响大团聚体的形成,进而提高团聚体稳定性(徐海东等,2020);BD是土壤结构的综合反映,BD越大,土壤越紧实,持水和通气能力越弱,从而限制了微生物的活动,不利于团聚体胶结物质的形成(刘亚龙等,2023)。土壤有机质作为团聚体胶结物质,已被广泛认为是团聚体稳定性诸多影响因子中最重要的影响因子之一;有机质可以促进团聚体的形成,而团聚体又作为有机质的储存场所,有利于有机质的累积,二者相互耦合(林立文等,2020)。但是,RDA结果表明,TN是影响团聚体稳定性的关键环境因子,解释了团聚体稳定性变异的47.50%。先前的研究表明,由于TN并不会对土壤团聚体稳定性产生直接影响,因此固氮树种马占相思可能是通过增加土壤N含量促进巨尾桉人工林SOC积累,间接影响团聚体稳定性。首先,TN的增加可以改善桉树人工林凋落物数量和凋落物N含量,促进土壤有机质的输入和养分归还量的增加(莫雪青等,2022);其次,结合生态化学计量理论(邢伟等,2015),TN的增加缓解了土壤N限制,尤其是在N限制的生态系统中;N有效性的增加导致微生物生物量及活性提升,促进凋落物分解初期稳定土壤有机质的形成(Cotrufo et al.,2013)。此外,Huang 等(2014)的研究表明,固氮树种的引入提高了桉树人工林土壤微生物生物量碳,而微生物生物量碳作为SOC形成的最重要前驱体(Liang et al.,2017),是SOC的重要来源,其对SOC形成的贡献可能在10%~27%之间(Fan et al.,2021)。因此,巨尾桉人工林土壤团聚体稳定性的变异是由固氮树种马占相思诱导的涉及生物和非生物因子的复杂生态过程相互作用引起的。
-
图4 土壤团聚体稳定性与理化性质的相关性
-
Fig.4 Correlation between soil aggregates stability and physicochemical properties
-
图5 土壤团聚体稳定性与理化性质的冗余分析
-
Fig.5 Redundancy analysis (RDA) between soil aggregates stability and physicochemical properties
-
图5 土壤团聚体稳定性与理化性质的冗余分析
-
Fig.5 Redundancy analysis (RDA) between soil aggregates stability and physicochemical properties
-
4 结论
-
综上所述,固氮树种马占相思与巨尾桉混交17年后,pH、SOC和TN等土壤理化性质得到显著改善。混交林土壤团聚体机械稳定性仅在0~10 cm土层显著提升,而土壤团聚体水稳定性在0~10 cm和10~20 cm土层均显著提升,说明马占相思对巨尾桉人工林土壤水稳定性团聚体的影响大于机械稳定性团聚体。此外,土壤团聚体机械稳定性和水稳定性均有随土层加深而降低的趋势。土壤团聚体稳定性与土壤理化性质存在较强的相关性,其中TN是驱动团聚体稳定性变异的最关键因子。
-
参考文献
-
AKSAKAL EL, ANGIN L, SARI S, 2020. A new approach for calculating aggregate stability: mean weight aggregate stability (MWAS) [J]. Catena, 194: 104708.
-
BAO SD, 2000. Soil agrochemical analysis [M]. Beijing: China Agriculture Press: 1-120. [鲍士旦, 2000. 土壤农化分析 [M]. 北京: 中国农业出版社: 1-120. ]
-
BAVEL CHMV, 1950. Mean weight-diameter of soil aggregates as a statistical index of aggregation 1 [J]. Soil Sci Soc Am J, 14: 20-23.
-
BESALATPOUR AA, AYOUBI S, HAJABBASI MA, et al. , 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed [J]. Catena, 111: 72-79.
-
BRONICK CJ, LAL R, 2005. Soil structure and management: a review [J]. Geoderma, 124(1/2): 3-22.
-
CAI LQ, QI P, ZHANG RZ, 2008. Effects of conservation tillage measures on soil aggregates stability and soil organic carbon in two sequence rotation system with spring wheat and field pea [J]. J Soil Water Conserv, 22(2): 141-145. [蔡立群, 齐鹏, 张仁陟, 2008. 保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响 [J]. 水土保持学报, 22(2): 141-145. ]
-
COTRUFO MF, WALLENSTEIN MD, BOOT CM, et al. , 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? [J]. Glob Change Biol, 19(4): 988-995.
-
DELELEGN YT, PURAHONG W, BLAZEVIC A, et al. , 2017. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia [J]. Sci Rep, 7(1): 1-12.
-
DEMENOIS J, CARRICONDE F, BONAVENTURE P, et al. , 2018. Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol [J]. Geoderma, 312: 6-16.
-
DING WF, ZHANG XC, 2016. An evaluation on using soil aggregate stability as the indicator of interrill erodibility [J]. J Mt Sci, 13(5): 831-843.
-
DONG LL, 2020. Hotspots and trends of soil aggregation research based on Citespace [J]. J Xianyang Norm Univ, 35(2): 48-56. [董莉丽, 2020. 基于Citespace的土壤团聚体研究热点和趋势分析 [J]. 咸阳师范学院学报, 35(2): 48-56. ]
-
ELLIOTT ET, 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Sci Soc Am J, 50(3): 627-633.
-
FAN XL, GAO DC, ZHAO CH, et al. , 2021. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool [J]. ISME J, 15(8): 2248-2263.
-
HUANG GQ, ZHAO QG, 2014. The history, status quo, ecological problems and countermeasures of Eucalyptus plantations in Guangxi [J]. Acta Ecol Sin, 34(18): 5142-5152. [黄国勤, 赵其国, 2014. 广西桉树种植的历史、现状、生态问题及应对策略 [J]. 生态学报, 34(18): 5142-5152. ]
-
HUANG XM, LIU SL, WANG H, et al. , 2014. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China [J]. Soil Biol Biochem, 73: 42-48.
-
HUANG XM, LIU SL, YOU YM, et al. , 2017. Microbial community and associated enzymes activity influence soil carbon chemical composition in Eucalyptus urophylla plantation with mixing N2-fixing species in subtropical China [J]. Plant Soil, 414(1/2): 199-212.
-
KELTY MJ, 2006. The role of species mixtures in plantation forestry [J]. For Ecol Manage, 233(2/3): 195-204.
-
LENG N, DENG YS, LIN LW, et al. , 2021. Characteristics and stability of soil aggregates developed from different parent materials in the south subtropical region [J]. J Soil Water Conserv, 35(5): 80-86. [冷暖, 邓羽松, 林立文, 等, 2021. 南亚热带不同母质发育土壤团聚体特征及其稳定性 [J]. 水土保持学报, 35(5): 80-86. ]
-
LI MP, MIAO N, LIU SR, 2022. Effects of nitrogen-fixing tree species Alnus nepalensis on the degraded soils and understory restoration in the upper reaches of the Jinsha River, China [J]. Acta Ecol Sin, 42(6): 2321-2330. [李茂萍, 缪宁, 刘世荣, 2022. 固氮树种旱冬瓜对退化林地土壤修复和林下植被重建的生态驱动效应 [J]. 生态学报, 42(6): 2321-2330. ]
-
LI M, TAN XM, XIAO N, et al. , 2022. Effects of introducing Dalbergia odorifera and Acricarpus fraxinifolius on soil phosphorus transformation and availability in rocky desertification mountainous regions [J]. Acta Ecol Sin, 42(4): 1594-1605. [李萌, 谭许脉, 肖纳, 等, 2022. 引种降香黄檀和顶果木对石漠化山区土壤磷素转化及其有效性的影响 [J]. 生态学报, 42(4): 1594-1605. ]
-
LI ZX, YANG W, CAI CF, et al. , 2013. Aggregate mechanical stability and relationship with aggregate breakdown under simulated rainfall [J]. Soil Sci, 178(7): 369-377.
-
LIANG C, SCHIMEL JP, JASTROW JD, 2017. The importance of anabolism in microbial control over soil carbon storage [J]. Nat Microbiol, 2(8): 1-6.
-
LIN YX, YE GP, KUZYAKOV Y, et al. , 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa [J]. Soil Biol Biochem, 134: 187-196.
-
LIN LW, DENG YS, WANG JY, et al. , 2020. Effects of plantation on aggregate distribution and stability of lateritic red soil in south subtropical China [J]. Chin J Appl Ecol, 31(11): 3647-3656. [林立文, 邓羽松, 王金悦, 等, 2020. 南亚热带人工林种植对赤红壤团聚体分布及稳定性的影响 [J]. 应用生态学报, 31(11): 3647-3656. ]
-
LIU YL, WANG P, WANG JK, 2023. Formation and stability mechanism of soil aggregates: progress and prospect [J]. Acta Pedol Sin, 60(3): 627-643. [刘亚龙, 王萍, 汪景宽, 2023. 土壤团聚体的形成和稳定机制: 研究进展与展望 [J]. 土壤学报, 60(3): 627-643. ]
-
LU JW, LI ZB, 2002. Advance in soil aggregates study [J]. Res Soil Water Conserv, 9(1): 81-85. [卢金伟, 李占斌, 2002. 土壤团聚体研究进展 [J]. 水土保持研究, 9(1): 81-85. ]
-
MARRON N, EPRON D, 2019. Are mixed-tree plantations including a nitrogen-fixing species more productive than monocultures? [J]. For Ecol Manage, 441: 242-252.
-
MAZURAK AP, 1950. Effect of gaseous phase on water-stable synthetic aggregates [J]. Soil Sci, 69(2): 135-148.
-
MO XQ, XIAO N, TAN XM, et al. , 2022. Effects of nitrogen-fixing tree species on soil aggregate-associated enzyme activities and ecoenzymatic stoichiometric ratios in Eucalyptus plantations [J]. Guihaia, 42(4): 569-579. [莫雪青, 肖纳, 谭许脉, 等, 2022. 固氮树种对桉树人工林土壤团聚体酶活性及其化学计量比的影响 [J]. 广西植物, 42(4): 569-579. ]
-
SHAO WZ, ZHOU XG, WEN YG, et al. , 2022. Effects of mixing Eucalyptus and Castanopsis hystrix on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry [J]. Guihaia, 42(4): 543-555. [邵文哲, 周晓果, 温远光, 等, 2022. 桉树与红锥混交对土壤水解酶活性及其化学计量特征的影响 [J]. 广西植物, 42(4): 543-555. ]
-
SHEN WJ, PENG SL, ZHOU GY, et al. , 2001. Ecohydrological functions of litter in man-made Acacia mangium and Pinus elliotii plantations [J]. Acta Ecol Sin, 21(5): 846-850. [申卫军, 彭少麟, 周国逸, 等, 2001. 马占相思 (Acacia mangium) 与湿地松 (Pinus elliotii)人工林枯落物层的水文生态功能 [J]. 生态学报, 21(5): 846-850. ]
-
SHI H, 2006. Using transition matrix to evaluate stability of soil aggregates [J]. Bull Soil Water Conserv, 26(3): 91-95. [石辉, 2006. 转移矩阵法评价土壤团聚体的稳定性 [J]. 水土保持通报, 26(3): 91-95. ]
-
SIX J, BOSSUYT H, DEGRYZE S, et al. , 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics [J]. Soil Till Res, 79(1): 7-31.
-
SIX J, ELLIOTT ET, PAUSTIAN K, 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture [J]. Soil Biol Biochem, 32(14): 2099-2103.
-
TANG J, ZHAO JY, QIN ZY, et al. , 2021. Soil fertility evolution characteristics in main Eucalyptus producing areas of Guangxi: 1993-2018 [J]. Chin Agric Sci Bull, 37(1): 94-99. [唐健, 赵隽宇, 覃祚玉, 等, 2021. 1993—2018年广西桉树主产区土壤肥力演变特征分析 [J]. 中国农学通报, 37(1): 94-99. ]
-
TONG CH, WANG H, TAN S, et al. , 2022. Effects of economic fruit forest planting on the stability of red soil aggregates in the subtropical hilly area [J]. Chin J Appl Ecol, 33(4): 1012-1020. [童晨晖, 王辉, 谭帅, 等, 2022. 亚热带丘岗区经果林种植对红壤团聚体稳定性的影响 [J]. 应用生态学报, 33(4): 1012-1020. ]
-
TYLER SW, WHEATCRAFT SW, 1992. Fractal scaling of soil particle-size distributions: analysis and limitations [J]. Soil Sci Soc Am J, 56(2): 362-369.
-
WANG L, WEN YG, ZHOU XG, et al. , 2022. Effects of mixing Eucalyptus urophylla × E. grandis with Castanopsis hystrix on understory vegetation and soil properties [J]. Ecol Environ Sci, 31(7): 1340-1349. [王磊, 温远光, 周晓果, 等, 2022. 尾巨桉与红锥混交对林下植被和土壤性质的影响 [J]. 生态环境学报, 31(7): 1340-1349. ]
-
WANG FM, LI ZA, XIA HP, et al. , 2010. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China [J]. Soil Sci Plant Nutr, 56(2): 297-306.
-
WANG JY, DENG YS, LI DY, et al. , 2022. Soil aggregate stability and its response to overland flow in successive Eucalyptus plantations in subtropical China [J]. Sci Total Environ, 807: 151000.
-
WANG XY, GAO XF, LIU HB, et al. , 2011. Review of analytical methods for aggregate size distribution and water-stability of soil macro-aggregates [J]. Sci Soil Water Conserv, 9(3): 106-113. [王秀颖, 高晓飞, 刘和平, 等, 2011. 土壤水稳性大团聚体测定方法综述 [J]. 中国水土保持科学, 9(3): 106-113. ]
-
WEI H, DENG YS, LIN LW, et al. , 2022. Comparative study on the stability of soil aggregates in typical microhabitats in karst ecologically fragile areas [J]. Acta Ecol Sin, 42(7): 2751-2762. [韦慧, 邓羽松, 林立文, 等, 2022. 喀斯特生态脆弱区典型小生境土壤团聚体稳定性比较研究 [J]. 生态学报, 42(7): 2751-2762. ]
-
WEN YG, ZHOU XG, YU SF, et al. , 2018. The predicament and countermeasures of development of global Eucalyptus plantations [J]. Guangxi Sci, 25(2): 107-116. [温远光, 周晓果, 喻素芳, 等, 2018. 全球桉树人工林发展面临的困境与对策 [J]. 广西科学, 25(2): 107-116. ]
-
XING W, WU HP, SHI Q, et al. , 2015. Ecological stoichiometry theory: a review about applications and improvements [J]. Ecol Sci, 34(1): 190-197. [邢伟, 吴昊平, 史俏, 等, 2015. 生态化学计量学理论的应用、完善与扩展 [J]. 生态科学, 34(1): 190-197. ]
-
XU HD, YUAN HJ, XIONG J, et al. , 2020. Effects of uneven-aged Cunninghamia lanceolata and evergreen broadleaved mixed plantations on soil aggregate stability and soil organic carbon and nutrients stocks [J]. For Res, 33(3): 107-115. [徐海东, 苑海静, 熊静, 等, 2020. 杉阔异龄复层林对土壤团聚体稳定性和有机碳及养分储量的影响 [J]. 林业科学研究, 33(3): 107-115. ]
-
YANG HB, XIAO YH, XU H, et al. , 2022. Distribution and stability of soil aggregates in different forest types under an urban-rural gradient [J]. For Res, 35(3): 82-92. [杨洪炳, 肖以华, 许涵, 等, 2022. 城乡梯度下不同林分类型土壤团聚体分布及其稳定性 [J]. 林业科学研究, 35(3): 82-92. ]
-
YANG PL, LUO YP, SHI YC, 1993. Soil fractal characteristics characterized by particle size weight distribution [J]. Chin Sci Bull, 38(20): 1896-1899. [杨培岭, 罗远培, 石元春, 1993. 用粒径的重量分布表征的土壤分形特征 [J]. 科学通报, 38(20): 1896-1899. ]
-
YU J, MIAO SJ, QIAO YF, 2022. The stabilization mechanism of different types of soil aggregates [J]. Chin Agric Sci Bull, 38(14): 89-95. [余洁, 苗淑杰, 乔云发, 2022. 不同类型土壤团聚体稳定机制的研究 [J]. 中国农学通报, 38(14): 89-95. ]
-
ZHU GY, SHANGGUAN ZP, DENG L, 2017. Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau [J]. Catena, 149: 253-260.
-
ZHU LX, LI LL, LIU TX, 2021. Soil aggregate stability under different land-use types in North China Plain [J]. ScienceAsia, 47(2): 228-234.
-
摘要
土壤团聚体稳定性是评价土壤结构和土壤肥力的重要指标。为探究固氮树种马占相思对巨尾桉人工林土壤团聚体粒径分布及稳定性的影响,该文以17年生的巨尾桉纯林(PP)与巨尾桉/马占相思(固氮树种)混交林(MP)为研究对象,采用干筛法和湿筛法分别测定0~10 cm和10~20 cm土层团聚体粒径分布及平均重量直径(MWD)、几何平均直径(GMD)、分形维数(Dm)、水稳定性团聚体含量(WSA)、团聚体破坏率(PAD)和团聚体稳定性指数(ASI)等稳定性指标。结果表明:(1)与PP相比,MP的土壤理化性质有不同程度的提升,其中以土壤pH、有机碳(SOC)及全氮(TN)最为显著。(2)MP的土壤团聚体粒径分布优于PP,差异主要体现在>2.00 mm和<0.25 mm粒径中,均以大团聚体(>0.25 mm)为主;相较于PP,MP的土壤团聚体机械稳定性仅在0~10 cm土层显著提高,但其团聚体水稳定性在0~10 cm和10~20 cm土层均显著提高。(3)Mantel分析结果显示团聚体稳定性与TN相关性最强,通过RDA分析进一步说明TN是驱动其团聚体稳定性变异的最关键因子。综上认为,固氮树种马占相思对巨尾桉人工林土壤团聚体稳定性具有明显改善作用,该研究结果为南亚热带桉树人工林水土保持、养分管理及可持续经营等提供了科学的理论依据。
Abstract
Soil aggregates are the basic unit of soil structure. The stability of soil aggregates is an important indicator for evaluating soil structure and soil fertility. In order to explore the effects of Acacia mangium on particle size distribution and stability of soil aggregates of Eucalyptus grandis × urophylla plantations, we measured the distribution and stability of aggregates indicators such as mean weight diameter (MWD), geometric mean diameter (GMD), mass fractal dimension (Dm), water stable aggregates (WSA), percentage of aggregates destruction (PAD) and aggregates stability index (ASI) in the 0-10 cm and 10-20 cm soil layers by the dry sieving method and the wet sieving method, and a pure plantation of E. grandis × urophylla (PP) and a mixed plantation containing E. grandis × urophylla and Acacia mangium (nitrogen-fixing tree species) (MP) were selected as the research objects. The results were as follows: (1) Compared with PP, the soil physicochemical properties of MP were improved in varying degrees, especially soil pH, organic carbon (SOC) and total nitrogen (TN). (2) The particle size distribution of soil aggregates in MP was better than that of PP, and the differences mainly in the particle sizes of >2.00 mm and <0.25 mm, but both were dominated by large aggregates (>0.25 mm). Compared with PP, the mechanical stability of aggregates in MP only increased significantly at 0-10 cm soil layer, but the water stability of aggregates in MP increased significantly at 0-10 cm and 10-20 cm soil layer. The mechanical stability and water stability of soil aggregates tended to decrease with the deepening of soil layer. (3) Mantel analysis showed that the stability of aggregates was significantly correlated with pH, SOC, TN, TP, BD and SP, and the stability of aggregates had the strongest correlation with TN. RDA analysis indicated that TN was the most critical factor driving the variation of stability aggregates. Our findings suggest that nitrogen-fixing tree species A. mangium can significantly improve proportion of macroaggregates (>0.25 mm) and the stability of soil aggregates in Eucalyptus plantations. This study can provide a theoretical reference for soil and water conservation, soil nutrient management and sustainable management of Eucalyptus plantations in the South Asian tropics.