-
膨胀素(expansin,EXP)是一种参与改变植物细胞壁发育过程的非水解活性松弛蛋白,又称扩展蛋白。EXP于1992年在酸诱导黄瓜下胚轴细胞壁伸长的研究中首次被发现(McQueen-Mason et al.,1992)。后续从植物细胞壁中纯化并鉴定出多种EXP,如拟南芥、番茄、烟草和水稻等(张安等,2013)。EXP广泛存在与植物中,主要包括EXPA(α-expansin)、EXPB(β-expansin)、EXLA(expansin-like A)和EXLB(expansin-like B)4个亚家族(Sampedro &Cosgrove,2005)。其中,EXPA和EXPB两个亚家族蛋白数量在植物中占多数,EXPA主要存在于双子叶植物和非禾本科单子叶植物中,而EXPB则多存在于禾本科单子叶植物中。对于EXLA和EXLB数量的相关研究较少,最初是在水稻和拟南芥中被发现(徐筱等,2010)。
-
研究表明,EXP基因在调节细胞大小(Yin et al.,2023)、种子萌发(Yan et al.,2014)、根伸长(Noh et al.,2013)、叶生长(Zhou et al.,2015)、茎节间伸长(Kuluev et al.,2014)、气孔开合(Wei et al.,2011)、花发育(Kuluev et al.,2012)、果实软化成熟(Brummell et al.,1999; Jiang et al.,2019)、营养吸收(Zhou et al.,2014)和种子产量(Calderini et al.,2021)等植物生长发育过程中发挥重要作用。此外,EXP基因参与调控植物非生物胁迫的研究也在逐渐开展。例如:干旱和缺磷条件能够诱导水稻OsEXPB2基因的表达(文文乙豪,2013);遭遇盐胁迫时,玉米抗盐品种中ZmExpB2、ZmExpB6和ZmExpB8的表达量上调(Geilfus et al.,2010);谷子SiEXPB5在干旱胁迫下表达量增加,其异源表达能够增强转基因拟南芥的抗旱性(王金荣,2020);野生大豆GsEXPB1对促进大豆根系生长及耐盐性的提高起到积极作用(Feng et al.,2022);野生大麦HvEXPB7通过促进根毛伸长来增强抗旱性(He et al.,2015);过表达小麦TaEXPB23使转基因烟草抗旱性得到提高(Li et al.,2011),而TaEXPB7-B则参与转基因拟南芥对低温胁迫的耐受性(Feng et al.,2019);拟南芥AtEXP3和AtEXP-β1的过表达则提高了转基因植株对盐胁迫的敏感性(Kwon et al.,2008)。
-
大豆是植物油和蛋白质的主要来源之一,其特殊的固氮能力使其成为轮作系统和间作栽培模式中的高利润作物(Liu et al.,2020)。大豆在生长过程中易受高盐、干旱和低温等非生物胁迫的危害,它们不仅影响大豆的生长发育,还影响其产量和品质(盖钧镒,2003; Wang et al.,2003)。因此,大豆抗逆基因的挖掘对于大豆抗性品种的选育具有十分重要的意义。目前,EXPB基因与植物抗逆性的相关研究大多集中于禾本科作物。大豆中仅发现GmEXPB2在非生物胁迫环境下与根系统的形态建成密切相关(Guo et al.,2011)。鉴于EXPB基因的研究可能对大豆抗逆性的改良及产量的提高发挥积极作用,而转录因子家族基因的功能又存在冗余性,因此有必要对大豆EXPB家族中的关键抗逆基因进行进一步的筛选和鉴定。本研究从大豆EXPB基因家族中选取GmEXPB5和GmEXPB7进行生物信息学分析,并对其在大豆根、茎、叶及非生物胁迫处理下的表达量进行检测,为大豆EXPB基因抗逆机制的研究及应用提供理论依据。
-
1 材料与方法
-
1.1 试验材料
-
所用试验材料为黑龙江省西部地区广泛种植的耐旱大豆品种‘克山1号’,由黑龙江省农业科学院克山分院提供。
-
1.2 试验方法
-
1.2.1 生物信息学分析
-
从NCBI数据库(https://www.ncbi.nlm.nih.gov/)中下载大豆GmEXPB5和GmEXPB7的基因编码序列及蛋白质氨基酸序列;使用在线网站ProtParam(https://web.expasy.org/protparam/)进行蛋白质的基本理化性质分析;利用在线网站PSORT(https://www.genscript.com/tools/psort)预测蛋白质的亚细胞定位;利用在线网站SMART(https://smart.embl-heidelberg.de/)分析预测蛋白质序列的保守结构域及所在位置;使用DNAMAN 8软件进行蛋白质序列比对;利用在线网站MEME(https://meme-suite.org/meme/tools/meme)预测蛋白质保守基序(Motif);使用在线数据库Phytozome(https://phytozome-next.jgi.doe.gov/blast-search)搜索并下载GmEXPB5和GmEXPB7的启动子序列,并利用在线软件PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)预测GmEXPB5和GmEXPB7启动子中的顺式作用元件;利用MEGA 7软件构建EXPB蛋白系统进化树。
-
1.2.2 大豆幼苗非生物胁迫处理
-
选择大小一致、饱满的大豆种子,于2022年10月均匀播撒在盛满无菌土的介质中,覆膜管理。待种子萌发,根长至6~8 cm时移入Hoagland营养液中培养,期间2~3 d更换一次营养液。待幼苗长至第1片三出复叶完全展开时对其分别进行盐、干旱和低温胁迫处理。盐胁迫处理时将幼苗放入NaCl终浓度为 250 mmoL·L-1的营养液中;将幼苗放置在终浓度为20% PEG8000的营养液中模拟干旱胁迫处理;低温处理时将幼苗放置于4℃恒温培养箱中。将未经处理的0 h以及胁迫处理后的1、2、5、10、24 h设置为取样时间点,在每个时间点分别取称0.1 g第1片三出复叶并于液氮中速冻。此外,分别称取0.1 g未处理的根和茎于液氮中速冻。所取样品材料均保存在-80℃超低温冰箱中。
-
1.2.3 RNA的提取及cDNA合成
-
利用TaKaRa公司的RNAiso Plus试剂分别提取上述各样本的总RNA;使用Innovagene公司的反转录试剂盒合成cDNA第一链,-20℃冻存。
-
1.2.4 实时荧光定量PCR(qRT-PCR)
-
利用Primer Premier 5.0软件,根据GmEXPB5和GmEXPB7的cDNA序列设计qRT-PCR引物。qRT-PCR内参基因选取大豆Gmβ-Tubulin基因(Qiu et al.,2020)。3对qRT-PCR引物序列如表1所示,引物由长春生工生物公司合成。以各样品的cDNA为模版,使用Innovagene公司的2×Taq SYBR Green qPCR Mix试剂盒,在BIO-RAD CFX96 Real-Time PCR仪上,对GmEXPB5和GmEXPB7在根、茎、叶及非生物胁迫下的表达量进行qRT-PCR检测。qRT-PCR的程序设置和体系参照Qiu等(2020),所有处理均采用3次重复,以2-ΔΔCt法计算GmEXPB5和GmEXPB7的基因相对表达量。
-
2 结果与分析
-
2.1 GmEXPB5和GmEXPB7基因及蛋白序列分析
-
2.1.1 GmEXPB5和GmEXPB7基本理化性质分析
-
从NCBI数据库中获取两个功能未被鉴定的大豆EXPB基因,即GmEXPB5(GenBank登录号:NM001261433)和GmEXPB7(GenBank登录号:NM001267069)。如表2所示,GmEXPB5和GmEXPB7基因分别位于大豆第10号和第12号染色体上,编码的蛋白序列长度分别为272和267个氨基酸。GmEXPB5蛋白分子量为29.07 kD,理论等电点为7.51;GmEXPB7蛋白分子量为29.09 kD,理论等电点为8.66。GmEXPB5和GmEXPB7蛋白的不稳定系数均小于40,亲水性指数均为负值,表明它们均为稳定的亲水蛋白。亚细胞定位预测结果显示,GmEXPB5和GmEXPB7蛋白均定位于细胞壁中。
-
2.1.2 GmEXPB5和GmEXPB7蛋白保守结构域及保守基序(Motif)分析
-
GmEXPB5和GmEXPB7蛋白的氨基酸序列如图1所示,它们的同源性为45.79%。在GmEXPB5和GmEXPB7蛋白序列的N端均含有一段信号肽序列[GmEXPB5(第1到第29 位氨基酸);GmEXPB7(第1到第31位氨基酸)],它们能够引导EXPB蛋白定位于细胞壁。此外,GmEXPB5和GmEXPB7蛋白均含有一个保守的由81个氨基酸残基组成的DPBB_1结构域[GmEXPB5(第83到第163位氨基酸);GmEXPB7(第78到第158位氨基酸)],此结构域是EXP家族蛋白的共有结构域。
-
蛋白保守基序(Motif)分析结果如图2所示,GmEXPB5和GmEXPB7蛋白共含有10个Motif。其中,Motif 3、Motif 1、Motif 5、Motif 2、Motif 7和Motif 4为GmEXPB5和GmEXPB7蛋白共有,并且它们在两个蛋白序列中的分布位置和顺序基本相同;Motif 10和Motif 9为GmEXPB5蛋白所特有,它们位于GmEXPB5蛋白序列N端;Motif 8和Motif 6为GmEXPB7蛋白所特有,它们同样也位于GmEXPB7蛋白序列N端。
-
2.1.3 植物EXPB蛋白系统进化分析
-
将16种植物中的36个EXPB蛋白构建系统进化树。由图3可知,GmEXPB5蛋白与鹰嘴豆CaEXPB15蛋白亲缘关系最近,GmEXPB7蛋白则与密花豆、赤豆和豇豆的EXPB3蛋白有着较高的亲缘关系。此外,除拟南芥外其他双子叶植物EXPB1蛋白均处于同一分支,说明同一基因在不同物种中仍具有较高同源性,但相同植物中的EXPB蛋白则存在较大差异,如GmEXPB5蛋白和GmEXPB7蛋白亲缘关系较远。
-
2.2 GmEXPB5和GmEXPB7在大豆根、茎和叶中的表达分析
-
qRT-PCR结果(图4)显示,GmEXPB5和GmEXPB7在大豆根、茎和叶中均有表达,但它们在根和叶中的表达量显著高于茎中的表达量。
-
2.3 GmEXPB5和GmEXPB7非生物胁迫表达分析
-
对大豆幼苗分别进行盐、干旱和低温胁迫处理。qRT-PCR检测结果如图5所示,盐胁迫处理后,GmEXPB5的表达量先升高,处理1 h时达到最大值,为对照0 h表达量的6.9倍,之后下降,处理24 h时与对照0 h时的表达量已无明显差异;GmEXPB7的表达量在处理后的1、5、24 h时均显著高于对照0 h时的表达量且24 h时的表达量达到最大值,为对照0 h表达量的14.2倍。干旱胁迫处理后,GmEXPB5和GmEXPB7的表达量均存在先降低后升高的趋势,处理24 h时GmEXPB5和GmEXPB7的表达量均达到最大值,分别为对照0 h表达量的3.9倍和5.6倍。低温胁迫处理后,GmEXPB5和GmEXPB7的表达量均下降,显著低于对照0 h时的表达量。由以上结果推测,GmEXPB5和GmEXPB7均可以参与大豆幼苗对非生物胁迫的应答。
-
图1 GmEXPB5和GmEXPB7蛋白氨基酸序列比对
-
Fig.1 Alignment of amino acid sequences of GmEXPB5 and GmEXPB7 proteins
-
图2 GmEXPB5和GmEXPB7蛋白Motif预测
-
Fig.2 Motif prediction of GmEXPB5 and GmEXPB7 proteins
-
图3 植物EXPB蛋白系统进化分析
-
Fig.3 Phylogenetic analysis of plant EXPB proteins
-
2.4 GmEXPB5和GmEXPB7启动子顺式作用元件预测分析
-
对GmEXPB5和GmEXPB7基因起始密码子ATG上游2 000 bp的启动子序列中潜在的逆境相关顺式作用元件进行预测分析。结果如表3所示,GmEXPB5的启动子区域含有2种与逆境有关的顺式作用元件,分别是2个脱落酸响应元件(ABRE)和3个厌氧诱导元件(ARE);GmEXPB7的启动子区域含有5种与逆境有关的顺式作用元件,分别是4个脱落酸响应元件(ABRE)、3个厌氧诱导元件(ARE)、1个茉莉酸甲酯响应元件(CGTCA-motif)、1个防御和胁迫响应元件(TC-rich repeats)以及1个干旱诱导的MYB转录因子结合位点(MBS)。
-
图4 GmEXPB5和GmEXPB7 在根、茎和叶中的相对表达量
-
Fig.4 Relative expression levels of GmEXPB5 and GmEXPB7 in root, stem and leaf
-
图5 GmEXPB5和GmEXPB7在盐、干旱和低温胁迫处理下的相对表达量
-
Fig.5 Relative expression levels of GmEXPB5 and GmEXPB7 under salt, drought and cold stresses
-
3 讨论与结论
-
细胞壁是植物响应和防御外界环境胁迫的首道屏障,细胞壁结构和组成的改变是植物适应外界环境胁迫的重要机制之一。EXP作为一种酶蛋白能够以非水解的方式作用于细胞壁,在不改变细胞壁共价结构的同时打断多糖间交联的氢键,从而增加细胞壁的柔韧性,促进细胞的生长和伸长(Feng et al.,2019)。因此,EXP可以通过重塑细胞壁的结构来协助植物抵御外界的不利环境条件(Lü et al.,2013; Li et al.,2015)。Zhu等(2014)发现大豆中存在9个EXPB基因,本研究对其中的GmEXPB5和GmEXPB7进行了生物信息学分析。在GmEXPB5和GmEXPB7蛋白序列N端均预测到信号肽序列,同样亚细胞定位预测结果也显示它们定位在细胞壁中,这与大多数已报道的EXPB蛋白属于细胞壁蛋白这一结论相吻合(Choi et al.,2008)。但是,本研究中的亚细胞定位结果仅为软件预测,在后续的基因功能研究中应选择合适的表达系统进行实验验证。蛋白系统进化分析结果显示,尽管GmEXPB5蛋白和GmEXPB7蛋白的亲缘关系并不近,但与它们各自亲缘关系较近的EXPB蛋白仍来自豆科植物。
-
前人研究发现,部分EXP基因在植物中的表达具有一定的组织特异性。例如:水稻OsEXPB5和大麦HvEXPB1在根毛中特异性表达(Won et al.,2010);小麦EXP基因在不同组织器官中也存在差异表达且具有表达偏好性,在根中的表达量普遍较高(Han et al.,2019);烟草NtabEXPA12则主要在叶片中表达,可能参与烟叶生长发育的调控(丁安明等,2021)。在本研究中,尽管GmEXPB5和GmEXPB7的表达不具有组织特异性,但它们在根和叶中的表达量仍显著高于茎中的表达量,推测GmEXPB5和GmEXPB7在大豆的根、叶以及茎中均能够发挥转录调控作用。
-
GmEXPB5和GmEXPB7可以参与大豆幼苗对非生物胁迫的应答,但它们的转录对盐、干旱和低温胁迫的响应不同。总体而言,盐和干旱胁迫可以诱导GmEXPB5和GmEXPB7的表达,但低温胁迫则抑制了GmEXPB5和GmEXPB7的表达。冯珊珊等(2020)推测,TaEXPB12-A/B/D基因在低温胁迫下表达量的下降可能是为了通过减少根的表面积来减少低温胁迫所造成的伤害,而干旱胁迫下基因表达量的升高可能是植物为了增强吸水能力而促进根毛生长的缘故。Han等(2019)推测,小麦EXP基因在盐胁迫下的上调表达还可能在维持细胞内Na+和K+的平衡起重要作用。由此可以预见,GmEXPB5和GmEXPB7可能在大豆抗盐和抗旱基因工程育种中存在潜在的应用价值。Han等(2019)报道,不同EXP基因亚家族之间存在较大的结构差异,但同一亚家族内EXP基因具有较高的保守性,结构比较相似。尽管本研究中GmEXPB5蛋白和GmEXPB7蛋白的亲缘关系较远,但它们的组织表达模式和非生物胁迫表达模式总体来说仍比较类似,由此推测它们在功能上可能也存在一定的相似性。当然,同一基因在植物不同组织中执行的功能也并不完全相同,其转录水平的差异也并不一定代表其发挥作用的大小(Feng et al.,2022)。
-
基因的表达调控与基因启动子中的顺式作用元件密切相关(Lu et al.,2018)。GmEXPB5和GmEXPB7的基因表达均受非生物胁迫的调控,于是我们对它们启动子中逆境相关的顺式作用元件进行预测分析,所得结果与预期相符,GmEXPB5和GmEXPB7的启动子区域均含有多个激素和逆境响应相关的顺式作用元件。杨瑞瑞等(2022)研究表明,脱落酸和茉莉酸等植物激素及其信号转导途径在环境胁迫过程中均起重要作用。GmEXPB5和GmEXPB7启动子中脱落酸和茉莉酸甲酯响应元件的存在表明它们可能通过响应一种或多种激素参与大豆对逆境胁迫的应答。盐和干旱胁迫能够显著诱导小麦部分EXP基因的表达也与它们启动子区含有数量不等的逆境相关顺式元件有关(Han et al.,2019)。预测分析结果显示,GmEXPB7启动子中逆境响应元件的种类及数量均大于GmEXPB5启动子,推测这是导致GmEXPB7对盐和干旱胁迫的响应程度强于GmEXPB5的原因。
-
综上所述,GmEXPB5和GmEXPB7均能参与大豆对非生物胁迫的应答,本研究为GmEXPB5和GmEXPB7基因的后续功能研究提供了理论依据。此外,大豆EXP基因家族成员众多,后续也有必要对其他基因的功能进行深入的挖掘和研究。
-
参考文献
-
BRUMMELL DA, HARPSTER MH, CIVELLO PM, et al. , 1999. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening [J]. Plant Cell, 11(11): 2203-2216.
-
CALDERINI DF, CASTILLO FM, ARENAS MA, et al. , 2021. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential [J]. New Phytol, 230(2): 629-640.
-
CHOI D, KIM JH, LEE Y, 2008. Expansins in plant development [J]. Adv Bot Res, 47: 47-97.
-
DING AM, CHEN ZH, YANG YD, et al. , 2021. Overexpression of NtabEXPA12 affects leaf development and abiotic stress tolerance in tobacco [J]. Chin Tobacco Sci, 42(4): 58-66. [丁安明, 陈志华, 杨懿德, 等, 2021. NtabEXPA12基因过表达对烟草叶片发育及抗逆性的影响 [J]. 中国烟草科学, 42(4): 58-66. ]
-
FENG SS, XU YQ, ZHAO ZY, et al. , 2020. Cloning and function verification of TaEXPB12 homologous genes in frigid region winter wheat [J]. Acta Agric Boreal-Sin, 35(6): 74-80. [冯珊珊, 徐永清, 赵梓颐, 等, 2020. 寒地冬小麦膨胀素基因TaEXPB12同源基因的克隆及功能分析 [J]. 华北农学报, 35(6): 74-80. ]
-
FENG X, XU YQ, PENG LN, et al. , 2019. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana [J]. J Plant Physiol, 240: 153004.
-
FENG X, LI C, HE F, et al. , 2022. Genome-wide identification of expansin genes in wild soybean (Glycine soja) and functional characterization of Expansin B1 (GsEXPB1) in soybean hair root [J]. Int J Mol Sci, 23(10): 5407.
-
GAI JY, 2003. Expanding and enhancing the research allocation on soybean breeding and genetics for the establishment of market supply based on domestic production [J]. Eng Sci, 5(5): 1-6. [盖钧镒, 2003. 发展我国大豆遗传改良事业解决国内大豆供给问题 [J]. 中国工程科学, 5(5): 1-6. ]
-
GEILFUS CM, ZÖRB C, MÜHLING KH, 2010. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L. ) [J]. Plant Physiol Biochem, 48(12): 993-998.
-
GUO WB, ZHAO J, LI XX, et al. , 2011. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses [J]. Plant J, 66(3): 541-552.
-
HAN ZS, LIU YL, DENG X, et al. , 2019. Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L. ) [J]. BMC Genom, 20(1): 101.
-
HE XY, ZENG JB, CAO FB, et al. , 2015. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress [J]. J Exp Bot, 66(22): 7405-7419.
-
JIANG FL, LOPEZ A, JEON S, et al. , 2019. Disassembly of the fruit cell wall by the ripening-associated poly-galacturonase and expansin influences tomato cracking [J]. Hortic Res, 6: 17.
-
KULUEV BR, KNYAZEV AB, LEBEDEV YP, et al. , 2012. Morphological and physiological characteristics of transgenic tobacco plants expressing expansin genes: AtEXP10 from Arabidopsis and PnEXPA1 from poplar [J]. Russ J Plant Physiol, 59(1): 97-104.
-
KULUEV BR, KNYAZEV AV, NIKONOROV LM, et al. , 2014. Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco leaf growth [J]. Russ J Genet, 50(5): 560-569.
-
KWON YR, LEE HJ, KIM KH, et al. , 2008. Ectopic expression of Expansin 3 or Expansin β1 causes enhanced hormone and salt stress sensitivity in Arabidopsis [J]. Biotechnol Lett, 30(7): 1281-1288.
-
LI F, XING SC, GUO QF, et al. , 2011. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco [J]. J Plant Physiol, 168(9): 960-966.
-
LI WQ, WANG FQ, WANG J, et al. , 2015. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice [J]. PLoS ONE, 10(3): e0119867.
-
LIU SL, ZHANG M, FENG F, et al. , 2020. Toward a “green revolution” for soybean [J]. Mol Plant, 13(5): 688-697.
-
LU SJ, YI SS, ZHANG JQ, et al. , 2018. Isolation and functional characterization of the promoter of SEPALLATA3 gene in London plane and its application in genetic engineering of sterility [J]. Plant Cell Tiss Org, 136(6): 109-121.
-
LÜ PT, KANG M, JIANG XQ, et al. , 2013. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis [J]. Planta, 237(6): 1547-1559.
-
MCQUEEN-MASON S, DURACHKO DM, COSGROVE DJ, 1992. Two endogenous proteins that induce cell wall extension in plants [J]. Plant Cell, 4(11): 1425-1433.
-
NOH SA, LEE HS, KIM YS, et al. , 2013. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato [J]. J Exp Bot, 64(1): 129-142.
-
QIU S, ZHANG J, HE JQ, et al. , 2020. Overexpression of GmGolS2-1, a soybean galactinol synthase gene, enhances transgenic tobacco drought tolerance [J]. Plant Cell Tiss Org, 143(3): 507-516.
-
SAMPEDRO J, COSGROVE DJ, 2005. The expansin superfamily [J]. Genome Biol, 6(12): 242.
-
WANG WX, VINOCUR B, ALTMAN A, 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta, 218(1): 1-14.
-
WANG JR, 2020. Identification, expression and functional analysis of the expansin gene family in foxtail millet during germination [D]. Jinzhong: Shanxi Agricultural University. [王金荣, 2020. 谷子萌发期扩展蛋白基因家族的鉴定、表达和功能分析 [D]. 晋中: 山西农业大学. ]
-
WEI PC, ZHANG XQ, ZHAO P, et al. , 2011. Regulation of stomatal opening by the guard cell expansin AtEXPA1 [J]. Plant Signal Behav, 6(5): 740-742.
-
WEN WYH, 2013. Functional analysis of OsEXPB2 in rice (Oryza sativa) [D]. Chongqing: Chongqing University. [文文乙豪, 2013. 水稻OsEXPB2基因的功能研究 [D]. 重庆: 重庆大学. ]
-
WON SK, CHOI SB, KUMARI S, et al. , 2010. Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs [J]. Mol Cells, 30(4): 369-376.
-
XU X, XU Q, ZHANG L, et al. , 2010. Advancements in expansin genes of plants [J]. J Beijing For Univ, 32(5): 154-162. [徐筱, 徐倩, 张磖, 等, 2010. 植物扩展蛋白基因的研究进展 [J]. 北京林业大学学报, 32(5): 154-162. ]
-
YAN A, WU MJ, YAN LM, et al. , 2014. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis [J]. PLoS ONE, 9(1): e85208.
-
YANG RR, LI XS, LIANG YQ, et al. , 2022. Research progress on the role and mechanism of phytohormones in bryophyte growth, development and stress response [J]. Acta Bot Boreal-Occident Sin, 42(3): 527-540. [杨瑞瑞, 李小双, 梁玉青, 等, 2022. 植物激素在苔藓生长发育与逆境响应过程中的作用机制研究进展 [J]. 西北植物学报, 42(3): 527-540. ]
-
YIN Z, ZHOU F, CHEN Y, et al. , 2023. Genome-wide analysis of the expansin gene family in Populus and characterization of expression changes in response to phytohormone (abscisic acid) and abiotic (low-temperature) stresses [J]. Int J Mol Sci, 24(9): 7759.
-
ZHANG A, CAO QH, ZHOU ZL, et al. , 2013. Research progress of plant cell wall relaxation factor — Expansin [J]. Jiangsu Agric Sci, 41(6): 11-13. [张安, 曹清河, 周志林, 等, 2013. 植物细胞壁松弛因子 —— Expansin研究进展 [J]. 江苏农业科学, 41(6): 11-13. ]
-
ZHOU J, XIE JN, LIAO H, et al. , 2014. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean [J]. Physiol Plant, 150(2): 194-204.
-
ZHOU S, HAN YY, CHEN YH, et al. , 2015. The involvement of expansins in response to water stress during leaf development in wheat [J]. J Plant Physiol, 183: 64-74.
-
ZHU Y, WU NG, SONG WL, et al. , 2014. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies [J]. BMC Plant Biol, 14: 93.
-
摘要
膨胀素(expansin,EXP)通过调控细胞壁的松弛在植物应对环境胁迫过程中起着重要作用。为研究EXP基因在大豆应对非生物胁迫过程中的作用,该文对大豆中的两个EXP基因(GmEXPB5和GmEXPB7)及其蛋白序列进行生物信息学分析,通过实时荧光定量PCR(qRT-PCR)检测基因表达量。结果表明:(1) GmEXPB5和GmEXPB7分别位于大豆第10号和第12号染色体上,编码的蛋白序列长度分别为272和267个氨基酸。GmEXPB5蛋白分子量为29.07 kD,理论等电点为7.51;GmEXPB7蛋白分子量为29.09 kD,理论等电点为8.66。GmEXPB5和GmEXPB7均为稳定的亲水蛋白且定位于细胞壁中。GmEXPB5和GmEXPB7蛋白均含有一段信号肽序列和一个保守的DPBB_1结构域。(2) GmEXPB5蛋白与鹰嘴豆CaEXPB15蛋白亲缘关系最近,GmEXPB7蛋白与密花豆、赤豆和豇豆的EXPB3蛋白有着较近的亲缘关系。(3) GmEXPB5和GmEXPB7在大豆根、茎和叶中均有表达且它们在根和叶中的表达量均显著高于茎中的表达量。(4) GmEXPB5和GmEXPB7在大豆幼苗中可以响应盐、干旱和低温胁迫。(5) GmEXPB5启动子区域含有2种与逆境相关的顺式作用元件(ABRE和ARE);GmEXPB7启动子区域含有5种与逆境相关的顺式作用元件(ABRE、ARE、CGTCA-motif、TC-rich repeats和MBS)。综上所述,GmEXPB5和GmEXPB7能够参与大豆对非生物胁迫的应答。
Abstract
Expansin (EXP) plays an important role in plant response to environmental stress by regulating cell wall relaxation. To explore the role of EXP genes in soybean response to abiotic stress, two soybean EXP genes (GmEXPB5 and GmEXPB7) and their protein sequences were analyzed by bioinformatics, and their expression levels were detected by real-time fluorescent quantitative PCR (qRT-PCR). The results were as follows: (1) The GmEXPB5 and GmEXPB7 were located on chromosomes 10 and 12 of soybean, and encoded proteins containing 272 and 267 amino acids, respectively. The molecular weight of GmEXPB5 protein was 29.07 kD and the theoretical isoelectric point was 7.51. The molecular weight of GmEXPB7 protein was 29.09 kD and the theoretical isoelectric point was 8.66. Both GmEXPB5 and GmEXPB7 were stable hydrophilic proteins, and localized in the cell wall. Both GmEXPB5 and GmEXPB7 proteins contained a signal peptide sequence and a conserved DPBB_1 structural domain. (2) GmEXPB5 protein had the closest affinity with CaEXPB15 protein of Cicer arietinum, and GmEXPB7 protein was closely related to EXPB3 proteins of Spatholobus suberectus, Vigna angularis and V. unguiculata. (3) GmEXPB5 and GmEXPB7 were expressed in root, stem and leaf of soybean, and their expression levels in root and leaf were significantly higher than those in stem. (4) GmEXPB5 and GmEXPB7 could respond to salt, drought and cold stresses in soybean seedlings. (5) The promoter region of GmEXPB5 contained two types of stress-related cis-elements (ABRE and ARE). The promoter region of GmEXPB7 contained five types of stress-related cis-elements (ABRE, ARE, CGTCA-motif, TC-rich repeats and MBS). In conclusion, these results indicate that GmEXPB5 and GmEXPB7 can participate in the response of soybean to abiotic stress.