en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王果(1987—),硕士,助理研究员,主要从事荔枝生物技术育种研究,(E-mail)wanglucai@sina.com。

通讯作者:

王家保,博士,研究员,主要从事荔枝育种研究,(E-mail)fdabo@163.com。

中图分类号:Q942.5

文献标识码:A

文章编号:1000-3142(2024)07-1307-12

DOI:10.11931/guihaia.gxzw202308066

参考文献
AGUDELO-ROMERO P, BORTOLLOTI C, PAIS MS, et al. , 2013. Study of polyamines during grape ripening indicate an important role of polyamine catabolism [J]. Plant Physiol Biochem, 67: 105-119.
参考文献
BARON K, STASOLLA C, 2008. The role of polyamines during in vivo and in vitro development [J]. In Vitro Cell Develop Biol, 44: 384-395.
参考文献
BERBERICH T, SAGOR GH, TOMONOBU K, 2015. Polyamines in plant stress response [M]// Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism. Tokyo: Springer: 155-168.
参考文献
CHEN HB, SU ZX, YANG SN, 2023. Investigation and analysis of the litchi production in China in 2023 [J]. China Trop Agric, 3: 13-22. [陈厚彬, 苏钻贤, 杨胜男, 2023. 2023年全国荔枝生产调查与形势分析 [J]. 中国热带农业, 3: 13-22. ]
参考文献
CHEN XF, 2005. Study on polyamines roles in somatic embryogenesis in Asparagus officinalis L. [D]. Changsha: Hunan Agricultural University. [陈小飞, 2005. 多胺在石刁柏体细胞胚胎发生中的作用研究 [D]. 长沙: 湖南农业大学. ]
参考文献
CHENG WH, 2016. Research on physiological and molecular mechanisms of somatic embryogenesis in cotton (Gossypium hirsutum L. ) [D]. Shihezi: Shihezi University. [程文翰, 2016. 棉花体细胞胚胎发生的生理及分子机制研究 [D]. 石河子: 石河子大学. ]
参考文献
DAI YN, CHEN XY, YANG M, et al. , 2015. A preliminary study on promoting cotton embryogenic callus differentiation using putrescine [J]. J Shihezi Univ(Nat Sci), 33(6): 667-671. [戴亚楠, 陈晓宇, 杨梅, 等, 2015. 腐胺促进棉花胚性愈伤组织分化的初步研究 [J]. 石河子大学学报(自然科学版), 33(6): 667-671. ]
参考文献
DAS DK, RAHMAN A, 2010. Expression of a bacterial chitinase (ChinB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana) [J]. Curr Trends Biotechnol Pharm, 4(3): 820-833.
参考文献
DAS DK, RAHMAN A, KUMARI D, et al. , 2016. Synthetic seed preparation, germination and plantlet regeneration of litchi (Litchi chinensis Sonn. ) [J]. Am J Plant Sci, 7: 1395-1406.
参考文献
ELDAWAYATI MM, GHAZZAWY HS, MUNIR M, 2018. Somatic embryogenesis enhancement of date palm cultivar Sewi using different types of polyamines and glutamine amino acid concentration under in-vitro solid and liquid medium conditions [J]. Int J Biosci, 12: 149-159.
参考文献
FU YY, GU QQ, DONG Q, et al. , 2019. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism [J]. Molecules, 24: 1395.
参考文献
GAO W, 2008. Study on polyamines roles in somatic embryogenesis in Picea mongolica (W. D. Xu) [D]. Hohhot: Inner Mongolia Agricultural University. [高娃, 2008. 沙地云杉体细胞胚胎发生过程中多胺作用机理的研究 [D]. 呼和浩特: 内蒙古农业大学. ]
参考文献
GUO JE, 2014. Studies on the mechanism of metabolism of PAs in Chrysanthemum during flower bud differentiation [D]. Tai’an: Shandong Agricultural University. [郭俊娥, 2014. 菊花花芽分化过程中多胺的代谢机制研究 [D]. 泰安: 山东农业大学. ]
参考文献
HU W, WANG WX, ZHOU J, et al. , 2010. Determination of endogenous polyamines contents in callus from matured embryo of indica rice during subculturing [J]. Hubei Agric Sci, 49(7): 1697-1700. [胡文, 王维旭, 周杰, 等, 2010. 籼稻成熟胚愈伤组织继代培养过程中内源多胺含量的测定 [J]. 湖北农业科学, 49(7): 1697-1700. ]
参考文献
JI XZ, 2019. A preliminary study on the differential mechanism of somatic embryogenesis efficiency of two litchi varieties [D]. Haikou: Hainan University. [吉训志, 2019. 2个荔枝品种体胚发生差异机制的初步研究 [D]. 海口: 海南大学. ]
参考文献
KIEłKOWSKA A, ADAMUS A, 2021. Exogenously applied polyamines reduce reactive oxygen species, enhancing cell division and the shoot regeneration from Brassica oleracea L. var. capitata protoplasts [J]. Agron, 11: 735-754.
参考文献
LI HL, 2009. RAPD analysis of genetic diversity and in-vitro conservation of ancient litchi trees in Fuzhou City [D]. Fuzhou: Fujian Agriculture and Forestry University. [李焕苓, 2009. 福州市荔枝古树遗传多样性的RAPD分析及离体保存研究 [D]. 福州: 福建农林大学. ]
参考文献
MA XY, YI GJ, HUANG XL, et al. , 2008. Leaf callus induction and suspension culture establishment in lychee (Litchi chinensis Sonn. ) cv. Huaizhi [J]. Acta Physiol Plant, 31(2): 401-405.
参考文献
MENGOLI M, BAGNI N, LUCCARINI G, et al. , 1989. Daucus carota cell cultures: polyamines and effect of polyamine biosynthesis inhibitors in the preembryogenic phase and different embryo stages [J]. J Plant Physiol, 134: 389-394.
参考文献
PAUL A, MITTER K, RAYCHAUDHURI SS, 2009. Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. [J]. Plant Cell Tissue Organ Cult, 97(3): 303-311.
参考文献
PUCHOOA D, 2004. In vitro regeneration of lychee (Litchi chinensis Sonn. ) [J]. Afr J Biotechnol, 3(11): 576-584.
参考文献
QIN YQ, 2019. Establishment of somatic embryogenesis regeneration system and preliminary study on genetic transformation in Litchi chinesis ‘Heiye’ [D]. Guangzhou: South China Agricultural University. [秦雅琪, 2019. ‘黑叶’荔枝体细胞胚胎再生体系的建立及转基因初步研究 [D]. 广州: 华南农业大学. ]
参考文献
RAHARJO SHT, LITZ RE, 2007. Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn. ) from leaves of mature phase trees [J]. Plant Cell Tissue Organ Cult, 89: 113-119.
参考文献
RAKESH B, SUDHEER WN, NAGELLA P, 2021. Role of polyamines in plant tissue culture: an overview [J]. Plant Cell Tissue Organ Cult, 145(3): 487-506.
参考文献
SAOS FL, HOURMANT A, 2001. Stimulation of putrescine biosynthesis via the ornithine decarboxylase pathway by gibberellic acid in the in vitro rooting of globe artichoke (Cynara scolymus) [J]. Plant Growth Regul, 35: 277-284.
参考文献
SATHISH D, THEBORAL J, VASUDEVAN V, et al. , 2019. Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediumted transformation efficiency in sugarcane (Saccharum spp. Hybrid) [J]. In Vitro Cell Develop Biol, 56(1): 29-40.
参考文献
SATISH L, RENCY AS, RATHINAPRIYA P, et al. , 2015. Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L. ) Gaertn) [J]. Plant Cell Tissue Organ Cult, 124(1): 15-31.
参考文献
SUN XL, YUAN ZB, WANG B, et al. , 2021. Exogenous putrescine activates the arginine-polyamine pathway and inhibits the decomposition of endogenous polyamine in Anthurium andraeanum under chilling stress [J]. Sci Hort, 282: 110047.
参考文献
TANG QY, 2010. Data processing system-experimental design, statistical analysis and data mining [M]. 2nd ed. Beijing: Science Press. [唐启义, 2010. DPS数据处理系统, 实验设计、统计分析及数据挖掘 [M]. 2版. 北京: 科学出版社. ]
参考文献
TIBURCIO AF, ALCÁZAR R, 2017. Potential applications of polyamines in agriculture and plant biotechnology [J]. Methods Mol Biol, 40: 489-508.
参考文献
WANG G, LI HL, WANG SJ, et al. , 2016. In vitro regeneration of litchi (Litchi chinensis Sonn. ) [J]. Afr J Biotechnol, 15: 1026-1034.
参考文献
WANG G, LIU Y, GAO ZY, et al. , 2023. Effects of amino acids on callus proliferation and somatic embryogenesis in Litchi chinensis cv. ‘Feizixiao’ [J]. Horticulturae, 9: 1311.
参考文献
WANG G, LIU YT, GAO ZY, et al. , 2021a. Changes in structure and polyamine metabolism of litchi callus during subculture and somatic embryo development [J]. J Fruit Sci, 38(11): 1911-1920. [王果, 刘耀婷, 高兆银, 等, 2021a. 荔枝愈伤组织继代及体胚发生过程中结构与多胺含量的变化 [J]. 果树学报, 38(11): 1911-1920. ]
参考文献
WANG G, LIU YT, LI HL, et al. , 2021b. Effects of exogenous polyamine application on proliferation of calluses and somatic embryogenesis in Litchi chinensis Sonn. cv. Feizixiao [J]. J Fruit Sci, 38(12): 2135-2147. [王果, 刘耀婷, 李焕苓, 等, 2021b. 外源多胺对荔枝愈伤组织增殖及体胚发生的作用 [J]. 果树学报, 38(12): 2135-2147. ]
参考文献
WANG G, LIU YT, WANG JB, et al. , 2023. Study on the optimization of amino acids on proliferation of callus and somatic embryogenesis in Litchi chinensis Sonn. cv. Feizixiao [J]. J Fruit Sci, 40(11): 2466-2476. [王果, 刘耀婷, 王家保, 等, 2023. 氨基酸对荔枝愈伤组织增殖及体胚发生体系优化的研究 [J]. 果树学报, 40 (11): 2466-2476. ]
参考文献
XUE SY, 2015. Effects of exogenous PAs on photosynthetic physiology and ultra structure of muskmelon seedlings under salt stress [D]. Anhui: Anhui Agricultural University. [薛淑媛, 2013. 外源多胺对盐胁迫下甜瓜幼苗光合生理和超微结构的影响 [D]. 安徽: 安徽农业大学. ]
参考文献
YU CH, CHEN ZG, LU LX, et al. , 2000. Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspension [J]. Plant Cell Tissue Organ Cult, 61: 51-58.
参考文献
ZHANG JQ, WANG HN, CHEN W, et al. , 2022. Effect of polyamines on high frequency induction and synchronization of somatic embryo of Lycium elanocarpus [J]. J Chin Med Mat, 45(1): 27-31. [张佳琪, 王浩宁, 陈薇, 等, 2022. 多胺对黑果枸杞体细胞胚高频诱导及同步化发生的影响 [J]. 中药材, 45(1): 27-31. ]
参考文献
ZHAO FG, LIU YL, 2000. Study on determination of ADC and TGase activities [J]. Technol Meth, 36(5): 442-445. [赵福庚, 刘友良, 2000. 精氨酸脱羧酶和谷酰胺转移酶活性的测定方法 [J]. 技术与方法, 36(5): 442-445. ]
目录contents

    摘要

    为探讨外源多胺(PAs)对荔枝胚性愈伤组织(EC)增殖及体胚发生的影响机制,该研究以“妃子笑”荔枝EC为材料,采用单因素法在增殖培养基中添加腐胺(Put)、亚精胺(Spd)及精胺(Spm),分析了不同PAs处理后EC的形态、结构、内源PAs含量及相关酶指标的变化。结果表明:(1)外源Put、Spd和Spm处理均显著提高了EC增殖率,减少了体胚诱导及萌发数量。经外源PAs处理增殖的EC胚性细胞大小较一致,染色深且均匀,多细胞原胚减少,可见已经分化完全的早期子叶胚。(2)外源PAs处理均显著提高了EC中内源PAs含量,其中Put处理的EC中各类内源PAs及总PAs含量最高;当在含外源PAs培养基上增殖的EC转入不含外源PAs的培养基上增殖时(恢复培养),EC中的Put含量仍然显著高于对照,内源Spd和Spm则显著降低。(3)外源Put处理显著提高了EC中的鸟氨酸脱羧酶(ODC)、精氨酸脱羧酶(ADC)和二胺氧化酶(DAO)活性,而外源Spd、Spm处理显著降低了EC中的ODC及ADC活性,外源Spd显著提高了多胺氧化酶(PAO)活性;恢复培养后,EC中ADC和DAO活性比恢复培养前显著降低,ODC和PAO无显著性差异。综上认为,外源PAs可以通过调节PAs代谢相关酶活性影响内源PAs含量,进而影响荔枝EC增殖和体胚诱导。该研究结果为进一步研究PAs调节荔枝体胚发生机制及提高荔枝离体再生效率提供了基础。

    Abstract

    To explore the effect of exogenous polyamines (PAs) on embryogenic callus (EC) proliferation and somatic embryogenesis of litchi, the morphology, structure, endogenous PA content and related enzyme activities of EC were systematically investigated using the ‘Feizixiao’ ECs as materials subcultured on the medium supplemented with exogenous putrescine (Put), spermidine (Spd), and spermine (Spm). The results were as follows: (1) Exogenous Put, Spd and Spm treatments significantly increased the EC proliferation rate and reduced the amount of induced somatic embryos and number of germinations. The proliferated EC cells after exogenous PA treatments were more consistent in size and stained deeply and evenly. Furthermore, multicellular proembryos in EC were reduced, and fully differentiated early cotyledon embryos could be seen. (2) All the exogenous PA treatments significantly increased the endogenous PA content in EC. Among them, Put treatment had the highest content of each endogenous PA component and total PA. When the EC proliferated on the medium containing exogenous PAs was transferred to the medium without exogenous PAs (recovery culture) for proliferating, the Put content in the EC was still significantly higher than the control, however, the endogenous Spd and Spm were significantly decreased. (3) Exogenous Put treatment significantly increased the activities of ornithine decarboxylase (ODC), arginine decarboxylase (ADC), and diamine oxidase (DAO) in EC, while exogenous Spd and Spm treatments significantly reduced the activities of ODC and ADC in EC, and exogenous Spd significantly increased the polyamine oxidase (PAO) activity. When transferred to the recovery culture medium, the ADC and DAO activities of newly proliferated EC were significantly lower than those of EC cultured with exogenous PAs, but there was no significant difference in ODC and PAO activities. In summary, the exogenous PAs can affect endogenous PAs content by regulating the activities of enzymes related to PAs metabolism, thereby affecting EC proliferation and somatic embryo induction in litchi. These results provide a basis for further study on the mechanism of PAs regulating embryogenesis, and improve litchi regeneration efficiency in vitro.

    关键词

    荔枝离体再生组织切片多胺酶活性

  • 荔枝(Litchi chinensis)是我国华南重要的南亚热带果树,是助推乡村振兴重要产业之一(陈厚彬等,2023)。荔枝产期集中,病虫危害严重等限制着产业的高质量发展,选育不同熟期、优质、多抗等优良品种是解决这些问题的根本途径。传统育种方式如杂交育种、实生选种等,具有耗费大、周期长、效率低等不足,基因编辑等生物技术可克服这些不足,是荔枝育种的重要发展方向(Das &Rahman,2010)。高效的离体再生技术体系是生物育种的前提,但在荔枝上,经体胚发生途径获得再生植株的报道鲜少,主要是体胚诱导率低、畸形胚多导致萌发率低(Das et al.,2016; Wang et al.,2016; 秦雅琪,2019),阻碍了生物育种的应用。因此,研究提高荔枝离体再生效率的技术并探索其作用机制,对促进荔枝生物育种发展具有重要的现实意义。

  • 已有较多关于影响荔枝胚性愈伤组织(embryogenic callus,EC)增殖和体胚发生的因素的研究,如基本培养基和碳源(Raharjo &Litz,2007;Das et al.,2016),2,4-D、玉米素及激动素等生长调节因子(Puchooa,2004;Ma et al.,2008;秦雅琪,2019),有机附加物(Yu et al.,2000;Wang et al.,2023;王果等,2023)等,但鲜见多胺(polyamine,PA)调控荔枝离体再生的报道。PA是一类广泛存在于原核生物及真核生物中,具有强烈生物活性的低分子量脂肪族含氮碱,在植物生长发育及离体再生中起着重要作用(Rakesh et al.,2021)。Sathish等(2019)研究发现外源PAs促进了甘蔗(Saccharum spp. Hybrid)的体胚发生及再生效率的提高,分别提高了2倍和3倍以上。Eldawayati等(2018)发现枣椰(date palm)EC在含亚精胺(spermidine, Spd)固体培养基上发育最好,体胚发生数量在含腐胺(putrescine,Put)的液体培养最多。本课题前期研究发现,“妃子笑”荔枝(Litchi chinensis cv. Feizixiao)愈伤组织多胺氧化酶(polyamine oxidase, PAO)活性与体胚发生呈正相关(吉训志,2019)。进一步研究表明,PAs和相关代谢酶的内源性变化与荔枝EC增殖及体胚诱导的不同发育阶段(从愈伤组织到EC、早期体胚诱导)的结构相一致;Put及精胺(spermine,Spm)是荔枝EC中的主要PAs,体胚诱导过程中的Put及Spd含量整体上高于EC增殖阶段;Spm含量相反,EC增殖过程中的Spm平均含量高于体胚诱导阶段。PAO及二胺氧化酶(diamine oxidase,DAO)活性与Put含量呈正相关(王果等,2021a)。更进一步研究发现,在EC增殖阶段添加3类PAs会抑制荔枝体胚发生,而多胺抑制剂(D-精氨酸或环己胺)则显著促进EC增殖及体胚发生;在体胚发生阶段中添加Put、Spm或环己胺抑制荔枝体胚发生及萌发,而D-精氨酸或Spd则促进体胚发生及萌发(王果等,2021b)。这些结果表明PAs在荔枝EC增殖及体胚发生中发挥着重要作用,但其机制尚不清晰。本研究以“妃子笑”荔枝EC为材料,采用单因素法,通过在增殖培养基中添加不同PAs,拟探讨以下问题:(1)进一步证实不同PAs是否会影响荔枝EC的增殖及体胚发生能力;(2)外源PAs影响EC增殖及体胚发生的作用机制。

  • 1 材料与方法

  • 1.1 材料

  • “妃子笑”荔枝EC于2015年3月采用花药诱导获得,在M3(MS为基本培养基,附加2,4-D 1 mg·L-1)和M4培养基上(MS为基本培养基,附加2,4-D 1 mg·L-1、KT 0.5 mg·L-1和AgNO3 5 mg·L-1)以30 d为1个周期交替继代保存(李焕苓,2009)。

  • 1.2 方法

  • 1.2.1 含PAs的培养基对EC增殖、体胚发生及萌发的影响

  • 将在M4培养基上继代30 d的EC,分别转接于M3(CK)、P3(M3培养基附加Put 15 mg·L-1)、S2(M3培养基附加Spd 10 mg·L-1)和S7(M3培养基附加Spm 15 mg·L-1)培养基(王果等,2021b),称重初始接种量(G0)。培养3周后称重EC重量(G1),EC增殖率=(G1-G0)/(G0)。

  • 将在上述4种培养基上增殖的EC,分别接种于体胚诱导培养基T3(MS为基本培养基,附加NAA 0.1 mg·L–1及KT5 mg·L–1)上,培养7周后记录体胚发生情况,计算每克EC诱导获得的体胚总量和双子叶体胚数量。

  • 上述获得的所有乳白色体胚接种在C19培养基(MS为基础培养基,附加ABA 1 mg·L–1和IAA 0.5 mg·L–1)上进行成熟,8周后转接于R7萌发培养基(1/2 MS为基础培养基,附加 GA3 1 mg·L–1),12 h/12 h光暗交替培养,8周后统计每克EC体胚的萌发数量及形态等。

  • 1.2.2 恢复培养对EC增殖、体胚发生及萌发的影响

  • 将在M3、P3、S2和S7上培养3周的EC,分别转接到不含PAs的M3培养基上 [处理编号分别为M3M3(CK)、P3M3、S2M3和S7M3]。培养3周后,这些处理的EC再分别转接于T3培养基上诱导体胚。各项指标统计同1.2.1。

  • 以上各处理培养基pH值均调至5.8。EC增殖及萌发培养基均添加蔗糖30 g·L–1和琼脂7 g·L–1,体胚诱导和成熟培养基均添加蔗糖60 g·L–1和琼脂10 g·L–1。如无特殊说明,均为(25±2)℃下黑暗培养。

  • 1.2.3 EC形态与结构观察

  • 取少量上述各处理培养3周后的EC轻放在载玻片上,滴清水,采用牙签轻搅混匀,盖上盖玻片后,在超景深显微镜(KEYENG VHX-5000,大阪,日本)下观察EC细胞形态。

  • 石蜡切片的制作主要参照吉训志(2019)的方法,EC采用Ehrlich苏木素染色,制片后在超景深三维显微系统下观察记录。

  • 1.2.4 EC中PAs含量及PAs代谢酶活性测定

  • 取在M3、P3、S2、S7及M3M3、P3M3、S2M3和S7M3共8种培养基上培养3周的EC,液氮速冻后置于-80℃保存。

  • 称取0.1 g上述各处理EC,参考吉训志(2019)的方法,提取PAs并采用液相串联质谱仪(Thermo scientific,Exactive plus,马萨诸塞州,美国)测定PAs含量。

  • 称取2 g上述各处理EC,参照吉训志(2019)、赵福庚和刘友良(2000)的方法,提取粗蛋白,测定PAO、DAO、精氨酸脱羧酶(arginine decarboxylase,ADC)和鸟氨酸脱羧酶(ornithine decarboxylase,ODC)的活性。

  • 1.2.5 数据统计分析

  • 1.2.1 和1.2.2均重复2批次。每批次每处理各15皿,以每5皿为1个重复,重复3次。结果用2批次6次重复的平均值表示。1.2.4用第二批次EC进行测定,重复3次。采用DPS软件对数据进行单因素方差分析(one-way ANOVA)和Duncan’s多重比较(唐启义,2010)。

  • 2 结果与分析

  • 2.1 不同PAs对EC增殖率及细胞形态与结构的影响

  • 2.1.1 培养基添加PAs对EC增殖的影响

  • 含PAs培养基EC增殖率都显著高于对照(M3)(表1)。其中,S2处理上的EC增殖率最高,是初始接种量的14.14倍;其次分别为S7及P3,EC增殖率分别是初始接种量的12.47和10.79倍;M3处理上的EC增殖率最低,是初始接种量的9.71倍。

  • 表1 含不同PAs培养基对EC增殖、体胚发生及萌发的影响

  • Table1 Effects of different PAs on EC proliferation, somatic embryogenesis and germination

  • 注:同一列数据后的不同字母表示Duncan’s新复极差法测验差异显著(P<0.05)。下同。

  • Note: Different letters in the same column indicate significant differences in Duncan’s new complex range test (P<0.05) . The same below.

  • 含PAs培养基的EC颗粒较细小,仅在EC顶部或者边缘部位分化个别原胚及非胚性愈伤组织(non-embryonic callus,NEC);而M3处理上的EC颗粒稍粗且混杂较多原胚及NEC,较难挑出EC(图1:A,M3)。

  • M3处理的EC细胞多为椭圆或圆形,处于同时分裂分化状态;S2及S7处理的EC细胞多为长圆形,分裂旺盛;P3处理的EC细胞几乎都为圆形且细胞外缘较厚(图1:B,红色箭头)。

  • 切片观察发现含PAs培养基的EC细胞大多数分裂旺盛,含有早期子叶胚等。M3处理的EC细胞分裂分化同时进行,分化较多多细胞原胚或者早期球形胚(图1:C,红框);P3处理的EC染色较浓且均匀,NEC染色较浅,极易区分;S2处理的EC有早期子叶胚等分化(图1:C,黄框);S7处理的内部EC胚性细胞染色较深(图1:C,黄箭头),分裂旺盛,外缘非胚性细胞染色较浅(图1:C,绿箭头)。

  • 2.1.2 恢复培养对EC增殖的影响

  • 将上述4种培养基上培养3周获得的EC分别重新转接到不含PAs的M3培养基,培养3周后发现,S2M3处理的EC增殖率最高,是初始接种量的10.75倍;S7M3和P3M3处理的EC增殖率分别为初始接种量的9.70、9.67倍;M3M3的EC增殖率仍最低,为初始接种量的8.72倍。增殖率由高到低为S2M3、S7M3、P3M3,增殖趋势与S2、S7、P3的相同且恢复培养(P3M3、S2M3及S7M3)的EC增殖率仍显著高于对照M3M3(表2),低于含PAs的培养基(P3、S2及S7),说明添加的外源PAs对EC增殖的促进作用,在培养基中去掉PAs后被部分削弱。

  • 与含PAs培养基相比较,恢复培养的EC分化乳白(图2:A,黄箭头)或者透明的原胚(图2:B,红箭头)数量增多,P3M3及S2M3处理的EC分化的原胚较多(图2:A,红箭头)。M3M3、P3M3及S7M3处理的EC细胞多为圆形或椭圆形,分裂分化交织成团,细胞聚集,夹杂多细胞原胚(图2:B,黄框);S2M3处理的EC细胞呈椭圆形,细胞质体较多(图2:B,S2M3)。切片观察发现,PAs来源的EC恢复培养后,原胚形成层细胞裂解凋亡,无体胚发生,胚性细胞染色均匀,大小一致,与含PAs培养基上的EC以细胞分裂为主的现象一致。而M3M3处理的EC分化较多早期体胚(图2:C,黄框)。

  • 2.2 不同PAs培养基对体胚发生及萌发的影响

  • 2.2.1 培养基添加不同PAs对体胚发生及萌发的影响

  • 含PAs培养基上增殖的EC体胚诱导效率显著降低(表1),尤其是S2处理的体胚诱导效率最低,每克EC仅诱导出约32个体胚,远远低于对照(226个体胚)。其次为S7及P3处理,每克EC仅分别获得56个、78个体胚。

  • PAs均显著降低了体胚诱导效率,但对双子叶胚诱导效应不同(表1)。Put显著提高了双子叶胚的诱导效率,P3处理的每克EC可诱导40个双子叶胚;S2和S7处理的双子叶胚诱导效率显著低于对照,每克EC仅分别产生7个、8个双子叶胚。

  • M3处理的EC诱导获得的多数为球形胚(图3:M3,蓝框)、子叶形胚(图3:M3,绿框)等较多不同步体胚,P3处理的EC仅分化少量簇生球形胚(图3:P3,蓝框)及子叶胚(图3:P3,绿框),而S2及S7处理的EC分化的几乎都为簇生的鲜亮乳白球形胚(图3:S2及S7,蓝框)。含PAs培养基上的EC诱导的体胚饱满,胚体呈现部分红色(图4:蓝框)。

  • 图1 含不同PAs培养基上的EC形态

  • Fig.1 Morphology of EC on media supplemented with different PAs

  • 表2 恢复培养对EC增殖、体胚发生及萌发的影响

  • Table2 Effects of recovery culture on EC proliferation, somatic embryogenesis and germination

  • 含PAs培养基上的EC诱导的体胚萌发数量显著少于M3(表1),尤其是S2和S7处理的体胚萌发数量最少,每克EC仅有1个体胚萌发,P3处理下每克EC诱导获得的体胚仅萌发3个,这些植株茎节间短小、粗壮、叶片深绿、较易移栽成活(图4:B)。

  • 2.2.2 恢复培养对体胚发生及萌发的影响

  • 经恢复培养的EC体胚和双子叶胚的发生数量、体胚萌发数量均显著低于对照(M3M3)(表2),P3M3处理的EC体胚和双子叶胚的发生数量、体胚萌发数量仍高于S2M3和S7M3。恢复培养获得的体胚鲜乳白色,状态饱满,然而在光下转绿时间较长,萌发相对较缓慢。

  • 图2 恢复培养后的EC形态

  • Fig.2 Morphology of EC after recovery culture

  • 图3 含不同PAs培养基的体胚发生

  • Fig.3 Somatic embryogenesis on media supplemented with different PAs

  • 图4 体胚成熟及萌发

  • Fig.4 Maturation and germination of somatic embryos

  • 如表2所示,恢复培养后的EC体胚诱导效率比P3、S2、S7培养基处理大幅提升,S2M3、S7M3处理的双子胚发生效率大幅高于S2及S7处理,但P3M3处理的双子叶胚发生效率反而低于P3处理。S2M3处理的体胚及双子叶胚发生数量恢复最高,分别是S2处理的3.88和2.14倍;S7M3处理的体胚及双子叶胚发生数量分别是S7处理的1.93和1.25倍;P3M3处理的体胚发生数量是P3处理的2.18倍,但P3M3处理的双子叶胚数量(28个双子叶胚/EC)低于P3处理(40个双子叶胚/EC)。

  • P3M3、S2M3、S7M3处理的EC诱导的体胚萌发数量分别高于P3、S2及S7处理(表2)。P3M3处理获得的体胚萌发数量最高,每克EC可获得16株组培苗,显著高于S2M3和S7M3处理。

  • 2.3 不同PAs培养基上EC内源PAs含量及其相关酶活性差异

  • 2.3.1 不同PAs培养基上EC内源PAs含量

  • 含PAs及恢复培养基上EC的Put含量都显著高于对照,P3处理的Put含量最高,其次为S7处理,S2处理最低。恢复培养后,含PAs来源的EC的Put含量仍显著高于M3M3处理,S2M3处理的Put含量显著高于S2处理,而P3M3、S7M3处理的Put含量分别显著低于P3、S7处理(图5:A)。

  • 含PAs培养基的Spd含量显著高于M3及恢复培养处理,S2处理的Spd含量最高,其次为P3和S7处理。恢复培养后,PAs来源的EC的Spd含量都相应降低,与M3M3差异显著;P3M3处理的Spd含量最低,与S2M3和S3M3处理的Spd含量差异显著,而S2M3处理的Spd含量和S3M3的无显著性差异(图5:B)。

  • 与Spd含量变化一致,含PAs培养基的EC中Spm含量显著高于M3处理,3种PAs处理的Spm含量差异显著,其中S7处理的Spm含量最高,其次为P3和S2。恢复培养后,PAs来源的EC的Spm含量都相应降低,显著低于M3M3;S7M3处理的Spm含量最高,其次分别为S2M3和P3M3,3种处理的Spm含量差异显著(图5:C)。

  • 含PAs培养基的PAs总量变化与Put一致且显著高于M3处理;P3处理的PAs总量最高,其次为S7和S2处理。恢复培养后,P3M3、S2M3处理的总胺含量与对照无差异,仅S7M3处理的PAs总量显著高于M3M3、P3M3和S2M3处理(图5:D)。

  • 图5 不同处理下EC的PAs含量

  • Fig.5 Contents of PAs in EC from different treatments

  • 2.3.2 不同PAs培养基上EC PAs代谢相关酶活性

  • P3、S7处理的ODC活性与对照(M3)无显著性差异,但P3、S7、M3处理的ODC活性与S2处理的差异显著(图6:A)。恢复培养后,P3M3处理的ODC活性显著低于M3M3处理,S2M3和S7M3处理的ODC活性仅略低于M3M3处理;P3M3和S7M3处理的ODC活性分别较P3和S7处理降低,S2M3处理的ODC活性反而高于S2处理。

  • P3处理的ADC和DAO活性显著高于M3处理,S7处理的ADC活性显著低于M3处理,S2处理的ADC活性、S2和S7处理的DAO活性仅略低于M3处理。恢复培养后,含PAs培养基的ADC和DAO活性都降低且显著低于M3M3处理;P3M3和S2M3处理的ADC活性显著高于S7M3,而P3M3和S7M3处理的DAO活性显著高于S2M3(图6:B,C)。

  • S2处理的PAO活性显著高于M3、P3和S7处理,M3处理的PAO活性仅略高于P3和S7处理。恢复培养后,S2M3、S7M3处理的PAO活性变化相反,S2M3处理的PAO活性显著降低,S7M3处理的PAO活性显著升高,P3M3处理的PAO活性仅略降低;P3M3处理的PAO活性与M3M3、S2M3及S7M3处理的PAO活性差异显著,但S2M3和S7M3处理的PAO活性仅略高于M3M3处理(图6:D)。

  • 3 讨论

  • 大量研究证实,PAs在EC的增殖、诱导体胚发生和萌发等离体再生过程中起着重要作用(Rakesh et al.,2021)。本研究发现外源PAs均明显促进荔枝EC增殖,这一结果与Paul等(2009)和Satish等(2015)分别在苦瓜(Momordica charantia)、小米(Eleusine coracana)上的研究一致。Paul等(2009)研究表明外源Put将苦瓜EC的鲜重及体胚发生数量分别提高了5倍和2.5倍,Satish等(2015)研究指出外源Spd明显促进小米的EC增殖及体胚发生,提高了再生频率,说明不同PAs在EC增殖及体胚发生中起积极作用。但在本研究中,外源PAs反而抑制荔枝体胚发生,EC增殖率越高时其体胚发生数量就越低,可能是由于EC增殖较快,消耗大量营养,造成营养竞争,导致EC不能分化原胚或者原胚分化能力减弱。这与甜瓜(muskmelon)(薛淑媛,2013)、菊花(Chrysanthemum)(郭俊娥,2014)等报道相似。本研究还发现Put促进荔枝体胚同步发生,这一现象与张佳琪等(2022)的研究结果一致,张佳琪等指出适宜浓度PAs均能显著提高黑果枸杞(Lycium ruthenicum)体胚诱导率及同步化发生指数,而较高浓度PAs则会抑制黑果枸杞的体胚诱导率,可能与PAs在一定程度上促进EC增殖,消耗营养引起饥饿效应,导致EC都保持在一个相对一致的胚性状态有关。同时,本研究还发现PAs可改善EC状态,这与戴亚楠等(2015)在棉花(cotton)上的研究现象相似,戴亚楠等发现PAs处理后的棉花EC表现出利于分化体胚的棕色稀泥状态,而多胺抑制剂处理下的EC严重褐变;胡文等(2010)研究也指出PAs降低了籼稻EC的褐化率,说明PAs在维持EC细胞形态结构上起重要作用。

  • 图6 PAs代谢相关酶活性

  • Fig.6 Enzyme activities related to polyamines metabolism

  • Berberich等(2015)研究指出PAs的含量与外界环境关系密切,当植物受到非生物逆境胁迫时,内源PAs浓度迅速发生变化,刺激相关代谢酶活性,提高植物体内PAs的含量,增强胁迫条件下膜的稳定性。在本研究中,外源PAs增加了3种内源PAs的含量,提高了EC的增殖率,与高娃(2008)和Fu等(2019)的研究结果一致,高娃(2008)报道了外源Put提高沙地云杉(Picea mongolica)EC中各类PAs含量,Fu等(2019)也指出Spd能提高水稻(rice)内源Spd和Spm的含量。这可能是由于内源性PAs对非生物应激的保护反应,或者内源性PAs参与其他代谢途径,如氮代谢,以及与激素或信号分子的相互作用(Baron &Stasolla,2008),为EC的生长发育提供营养。本研究还发现经PAs处理过的EC恢复培养后,Put含量仍显著高于对照,而Spd和Spm含量均显著低于对照,这可能与植物生长需要大量Put,因此急需合成Put有关(Kiekowska &Adamus,2021);或者由于PAs刺激后,EC受残存外源PAs影响,内源Put含量短暂居高,但由于解除PAs作用后,内源Put分解途径减弱,因此下游Spd和Spm含量降低。

  • Rakesh等(2021)研究表明底物的增加加快了内源PAs的转化率,在ADC或ODC的催化下,精氨酸和鸟氨酸分别通过ADC和ODC途径合成Put,然后通过亚精胺合酶和精胺合酶合成Spd和Spm。本研究发现外源Put刺激荔枝EC中的ADC和ODC活性总体上呈上升趋势,ADC反应迅速,并保持较高的增长速率,而Put对ODC活性增加的影响要小得多,说明ADC途径是荔枝EC中合成Put的主要路径,这与Mengoli等(1989)和Sun等(2021)在胡萝卜(Daucus carota)、红掌(Anthurium andraeanum cv. Alabamb)中的研究结果一致,他们都指出ADC活性的增强是内源PAs合成的主要原因。然而,也有报道称内源PAs的积累主要是通过增加ODC活性来实现(Saos &Hourmant,2001)。这些结果表明,Put的合成途径与不同的外源物质或胁迫有不同的反应,也可能具有物种特异性。另外,在本研究中,Spd和Spm处理降低了ADC和ODC活性,推测是由于EC利用外源Spd和Spm引起内源Spd和Spm含量过高,反馈抑制了Put分解,导致ADC和ODC活性降低;恢复培养解除PAs效应后,ADC和ODC活性随着Put含量下降而减弱,这可能与PAs或作物的种类有关,这些结果可以帮助我们更好地了解不同种类PAs在荔枝EC增殖及体胚发生中的特异性作用。

  • 较多研究表明,外源PAs含量的增加加速了内源PAs的代谢,DAO或PAO活性升高,促使Spd或Spm降解活动活跃,为作物生长发育提供营养物质,更好地平衡了转化和代谢(Agudelo-Romero et al.,2013;程文翰,2016)。本研究发现P3处理的DAO及S2处理的PAO活性显著高于对照,而其他处理的DAO和PAO活性与对照无显著差异,陈小飞(2005)的研究则指出Put提高了石刁柏(Asparagus officinalis cv. UC800)EC中的PAO活性,这可能与不同作物EC生长时所需的PAs种类及含量不同有关,导致PAs分解酶活性存在差异。另外,本研究中Spm处理的分解酶DAO和PAO活性变化不大,而恢复培养后S7M3处理的PAO活性反而升高,推测与Spm是Put及Spd的下游产物,其积累及分解代谢相对滞后相关,或者与EC生长所需含量相对较低有关(Tiburcio &Alcázar,2017),其作用机理有待进一步验证。

  • 4 结论

  • 外源PAs可通过影响PAs代谢相关酶活性来改变内源PAs含量,进而提高荔枝EC增殖效率,促进体胚同步发生,但降低了体胚诱导效率。这些结果为进一步研究PAs调节荔枝EC的增殖和体胚发生机制提供了基础。

  • 参考文献

    • AGUDELO-ROMERO P, BORTOLLOTI C, PAIS MS, et al. , 2013. Study of polyamines during grape ripening indicate an important role of polyamine catabolism [J]. Plant Physiol Biochem, 67: 105-119.

    • BARON K, STASOLLA C, 2008. The role of polyamines during in vivo and in vitro development [J]. In Vitro Cell Develop Biol, 44: 384-395.

    • BERBERICH T, SAGOR GH, TOMONOBU K, 2015. Polyamines in plant stress response [M]// Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism. Tokyo: Springer: 155-168.

    • CHEN HB, SU ZX, YANG SN, 2023. Investigation and analysis of the litchi production in China in 2023 [J]. China Trop Agric, 3: 13-22. [陈厚彬, 苏钻贤, 杨胜男, 2023. 2023年全国荔枝生产调查与形势分析 [J]. 中国热带农业, 3: 13-22. ]

    • CHEN XF, 2005. Study on polyamines roles in somatic embryogenesis in Asparagus officinalis L. [D]. Changsha: Hunan Agricultural University. [陈小飞, 2005. 多胺在石刁柏体细胞胚胎发生中的作用研究 [D]. 长沙: 湖南农业大学. ]

    • CHENG WH, 2016. Research on physiological and molecular mechanisms of somatic embryogenesis in cotton (Gossypium hirsutum L. ) [D]. Shihezi: Shihezi University. [程文翰, 2016. 棉花体细胞胚胎发生的生理及分子机制研究 [D]. 石河子: 石河子大学. ]

    • DAI YN, CHEN XY, YANG M, et al. , 2015. A preliminary study on promoting cotton embryogenic callus differentiation using putrescine [J]. J Shihezi Univ(Nat Sci), 33(6): 667-671. [戴亚楠, 陈晓宇, 杨梅, 等, 2015. 腐胺促进棉花胚性愈伤组织分化的初步研究 [J]. 石河子大学学报(自然科学版), 33(6): 667-671. ]

    • DAS DK, RAHMAN A, 2010. Expression of a bacterial chitinase (ChinB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana) [J]. Curr Trends Biotechnol Pharm, 4(3): 820-833.

    • DAS DK, RAHMAN A, KUMARI D, et al. , 2016. Synthetic seed preparation, germination and plantlet regeneration of litchi (Litchi chinensis Sonn. ) [J]. Am J Plant Sci, 7: 1395-1406.

    • ELDAWAYATI MM, GHAZZAWY HS, MUNIR M, 2018. Somatic embryogenesis enhancement of date palm cultivar Sewi using different types of polyamines and glutamine amino acid concentration under in-vitro solid and liquid medium conditions [J]. Int J Biosci, 12: 149-159.

    • FU YY, GU QQ, DONG Q, et al. , 2019. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism [J]. Molecules, 24: 1395.

    • GAO W, 2008. Study on polyamines roles in somatic embryogenesis in Picea mongolica (W. D. Xu) [D]. Hohhot: Inner Mongolia Agricultural University. [高娃, 2008. 沙地云杉体细胞胚胎发生过程中多胺作用机理的研究 [D]. 呼和浩特: 内蒙古农业大学. ]

    • GUO JE, 2014. Studies on the mechanism of metabolism of PAs in Chrysanthemum during flower bud differentiation [D]. Tai’an: Shandong Agricultural University. [郭俊娥, 2014. 菊花花芽分化过程中多胺的代谢机制研究 [D]. 泰安: 山东农业大学. ]

    • HU W, WANG WX, ZHOU J, et al. , 2010. Determination of endogenous polyamines contents in callus from matured embryo of indica rice during subculturing [J]. Hubei Agric Sci, 49(7): 1697-1700. [胡文, 王维旭, 周杰, 等, 2010. 籼稻成熟胚愈伤组织继代培养过程中内源多胺含量的测定 [J]. 湖北农业科学, 49(7): 1697-1700. ]

    • JI XZ, 2019. A preliminary study on the differential mechanism of somatic embryogenesis efficiency of two litchi varieties [D]. Haikou: Hainan University. [吉训志, 2019. 2个荔枝品种体胚发生差异机制的初步研究 [D]. 海口: 海南大学. ]

    • KIEłKOWSKA A, ADAMUS A, 2021. Exogenously applied polyamines reduce reactive oxygen species, enhancing cell division and the shoot regeneration from Brassica oleracea L. var. capitata protoplasts [J]. Agron, 11: 735-754.

    • LI HL, 2009. RAPD analysis of genetic diversity and in-vitro conservation of ancient litchi trees in Fuzhou City [D]. Fuzhou: Fujian Agriculture and Forestry University. [李焕苓, 2009. 福州市荔枝古树遗传多样性的RAPD分析及离体保存研究 [D]. 福州: 福建农林大学. ]

    • MA XY, YI GJ, HUANG XL, et al. , 2008. Leaf callus induction and suspension culture establishment in lychee (Litchi chinensis Sonn. ) cv. Huaizhi [J]. Acta Physiol Plant, 31(2): 401-405.

    • MENGOLI M, BAGNI N, LUCCARINI G, et al. , 1989. Daucus carota cell cultures: polyamines and effect of polyamine biosynthesis inhibitors in the preembryogenic phase and different embryo stages [J]. J Plant Physiol, 134: 389-394.

    • PAUL A, MITTER K, RAYCHAUDHURI SS, 2009. Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. [J]. Plant Cell Tissue Organ Cult, 97(3): 303-311.

    • PUCHOOA D, 2004. In vitro regeneration of lychee (Litchi chinensis Sonn. ) [J]. Afr J Biotechnol, 3(11): 576-584.

    • QIN YQ, 2019. Establishment of somatic embryogenesis regeneration system and preliminary study on genetic transformation in Litchi chinesis ‘Heiye’ [D]. Guangzhou: South China Agricultural University. [秦雅琪, 2019. ‘黑叶’荔枝体细胞胚胎再生体系的建立及转基因初步研究 [D]. 广州: 华南农业大学. ]

    • RAHARJO SHT, LITZ RE, 2007. Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn. ) from leaves of mature phase trees [J]. Plant Cell Tissue Organ Cult, 89: 113-119.

    • RAKESH B, SUDHEER WN, NAGELLA P, 2021. Role of polyamines in plant tissue culture: an overview [J]. Plant Cell Tissue Organ Cult, 145(3): 487-506.

    • SAOS FL, HOURMANT A, 2001. Stimulation of putrescine biosynthesis via the ornithine decarboxylase pathway by gibberellic acid in the in vitro rooting of globe artichoke (Cynara scolymus) [J]. Plant Growth Regul, 35: 277-284.

    • SATHISH D, THEBORAL J, VASUDEVAN V, et al. , 2019. Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediumted transformation efficiency in sugarcane (Saccharum spp. Hybrid) [J]. In Vitro Cell Develop Biol, 56(1): 29-40.

    • SATISH L, RENCY AS, RATHINAPRIYA P, et al. , 2015. Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L. ) Gaertn) [J]. Plant Cell Tissue Organ Cult, 124(1): 15-31.

    • SUN XL, YUAN ZB, WANG B, et al. , 2021. Exogenous putrescine activates the arginine-polyamine pathway and inhibits the decomposition of endogenous polyamine in Anthurium andraeanum under chilling stress [J]. Sci Hort, 282: 110047.

    • TANG QY, 2010. Data processing system-experimental design, statistical analysis and data mining [M]. 2nd ed. Beijing: Science Press. [唐启义, 2010. DPS数据处理系统, 实验设计、统计分析及数据挖掘 [M]. 2版. 北京: 科学出版社. ]

    • TIBURCIO AF, ALCÁZAR R, 2017. Potential applications of polyamines in agriculture and plant biotechnology [J]. Methods Mol Biol, 40: 489-508.

    • WANG G, LI HL, WANG SJ, et al. , 2016. In vitro regeneration of litchi (Litchi chinensis Sonn. ) [J]. Afr J Biotechnol, 15: 1026-1034.

    • WANG G, LIU Y, GAO ZY, et al. , 2023. Effects of amino acids on callus proliferation and somatic embryogenesis in Litchi chinensis cv. ‘Feizixiao’ [J]. Horticulturae, 9: 1311.

    • WANG G, LIU YT, GAO ZY, et al. , 2021a. Changes in structure and polyamine metabolism of litchi callus during subculture and somatic embryo development [J]. J Fruit Sci, 38(11): 1911-1920. [王果, 刘耀婷, 高兆银, 等, 2021a. 荔枝愈伤组织继代及体胚发生过程中结构与多胺含量的变化 [J]. 果树学报, 38(11): 1911-1920. ]

    • WANG G, LIU YT, LI HL, et al. , 2021b. Effects of exogenous polyamine application on proliferation of calluses and somatic embryogenesis in Litchi chinensis Sonn. cv. Feizixiao [J]. J Fruit Sci, 38(12): 2135-2147. [王果, 刘耀婷, 李焕苓, 等, 2021b. 外源多胺对荔枝愈伤组织增殖及体胚发生的作用 [J]. 果树学报, 38(12): 2135-2147. ]

    • WANG G, LIU YT, WANG JB, et al. , 2023. Study on the optimization of amino acids on proliferation of callus and somatic embryogenesis in Litchi chinensis Sonn. cv. Feizixiao [J]. J Fruit Sci, 40(11): 2466-2476. [王果, 刘耀婷, 王家保, 等, 2023. 氨基酸对荔枝愈伤组织增殖及体胚发生体系优化的研究 [J]. 果树学报, 40 (11): 2466-2476. ]

    • XUE SY, 2015. Effects of exogenous PAs on photosynthetic physiology and ultra structure of muskmelon seedlings under salt stress [D]. Anhui: Anhui Agricultural University. [薛淑媛, 2013. 外源多胺对盐胁迫下甜瓜幼苗光合生理和超微结构的影响 [D]. 安徽: 安徽农业大学. ]

    • YU CH, CHEN ZG, LU LX, et al. , 2000. Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspension [J]. Plant Cell Tissue Organ Cult, 61: 51-58.

    • ZHANG JQ, WANG HN, CHEN W, et al. , 2022. Effect of polyamines on high frequency induction and synchronization of somatic embryo of Lycium elanocarpus [J]. J Chin Med Mat, 45(1): 27-31. [张佳琪, 王浩宁, 陈薇, 等, 2022. 多胺对黑果枸杞体细胞胚高频诱导及同步化发生的影响 [J]. 中药材, 45(1): 27-31. ]

    • ZHAO FG, LIU YL, 2000. Study on determination of ADC and TGase activities [J]. Technol Meth, 36(5): 442-445. [赵福庚, 刘友良, 2000. 精氨酸脱羧酶和谷酰胺转移酶活性的测定方法 [J]. 技术与方法, 36(5): 442-445. ]

  • 参考文献

    • AGUDELO-ROMERO P, BORTOLLOTI C, PAIS MS, et al. , 2013. Study of polyamines during grape ripening indicate an important role of polyamine catabolism [J]. Plant Physiol Biochem, 67: 105-119.

    • BARON K, STASOLLA C, 2008. The role of polyamines during in vivo and in vitro development [J]. In Vitro Cell Develop Biol, 44: 384-395.

    • BERBERICH T, SAGOR GH, TOMONOBU K, 2015. Polyamines in plant stress response [M]// Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism. Tokyo: Springer: 155-168.

    • CHEN HB, SU ZX, YANG SN, 2023. Investigation and analysis of the litchi production in China in 2023 [J]. China Trop Agric, 3: 13-22. [陈厚彬, 苏钻贤, 杨胜男, 2023. 2023年全国荔枝生产调查与形势分析 [J]. 中国热带农业, 3: 13-22. ]

    • CHEN XF, 2005. Study on polyamines roles in somatic embryogenesis in Asparagus officinalis L. [D]. Changsha: Hunan Agricultural University. [陈小飞, 2005. 多胺在石刁柏体细胞胚胎发生中的作用研究 [D]. 长沙: 湖南农业大学. ]

    • CHENG WH, 2016. Research on physiological and molecular mechanisms of somatic embryogenesis in cotton (Gossypium hirsutum L. ) [D]. Shihezi: Shihezi University. [程文翰, 2016. 棉花体细胞胚胎发生的生理及分子机制研究 [D]. 石河子: 石河子大学. ]

    • DAI YN, CHEN XY, YANG M, et al. , 2015. A preliminary study on promoting cotton embryogenic callus differentiation using putrescine [J]. J Shihezi Univ(Nat Sci), 33(6): 667-671. [戴亚楠, 陈晓宇, 杨梅, 等, 2015. 腐胺促进棉花胚性愈伤组织分化的初步研究 [J]. 石河子大学学报(自然科学版), 33(6): 667-671. ]

    • DAS DK, RAHMAN A, 2010. Expression of a bacterial chitinase (ChinB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana) [J]. Curr Trends Biotechnol Pharm, 4(3): 820-833.

    • DAS DK, RAHMAN A, KUMARI D, et al. , 2016. Synthetic seed preparation, germination and plantlet regeneration of litchi (Litchi chinensis Sonn. ) [J]. Am J Plant Sci, 7: 1395-1406.

    • ELDAWAYATI MM, GHAZZAWY HS, MUNIR M, 2018. Somatic embryogenesis enhancement of date palm cultivar Sewi using different types of polyamines and glutamine amino acid concentration under in-vitro solid and liquid medium conditions [J]. Int J Biosci, 12: 149-159.

    • FU YY, GU QQ, DONG Q, et al. , 2019. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism [J]. Molecules, 24: 1395.

    • GAO W, 2008. Study on polyamines roles in somatic embryogenesis in Picea mongolica (W. D. Xu) [D]. Hohhot: Inner Mongolia Agricultural University. [高娃, 2008. 沙地云杉体细胞胚胎发生过程中多胺作用机理的研究 [D]. 呼和浩特: 内蒙古农业大学. ]

    • GUO JE, 2014. Studies on the mechanism of metabolism of PAs in Chrysanthemum during flower bud differentiation [D]. Tai’an: Shandong Agricultural University. [郭俊娥, 2014. 菊花花芽分化过程中多胺的代谢机制研究 [D]. 泰安: 山东农业大学. ]

    • HU W, WANG WX, ZHOU J, et al. , 2010. Determination of endogenous polyamines contents in callus from matured embryo of indica rice during subculturing [J]. Hubei Agric Sci, 49(7): 1697-1700. [胡文, 王维旭, 周杰, 等, 2010. 籼稻成熟胚愈伤组织继代培养过程中内源多胺含量的测定 [J]. 湖北农业科学, 49(7): 1697-1700. ]

    • JI XZ, 2019. A preliminary study on the differential mechanism of somatic embryogenesis efficiency of two litchi varieties [D]. Haikou: Hainan University. [吉训志, 2019. 2个荔枝品种体胚发生差异机制的初步研究 [D]. 海口: 海南大学. ]

    • KIEłKOWSKA A, ADAMUS A, 2021. Exogenously applied polyamines reduce reactive oxygen species, enhancing cell division and the shoot regeneration from Brassica oleracea L. var. capitata protoplasts [J]. Agron, 11: 735-754.

    • LI HL, 2009. RAPD analysis of genetic diversity and in-vitro conservation of ancient litchi trees in Fuzhou City [D]. Fuzhou: Fujian Agriculture and Forestry University. [李焕苓, 2009. 福州市荔枝古树遗传多样性的RAPD分析及离体保存研究 [D]. 福州: 福建农林大学. ]

    • MA XY, YI GJ, HUANG XL, et al. , 2008. Leaf callus induction and suspension culture establishment in lychee (Litchi chinensis Sonn. ) cv. Huaizhi [J]. Acta Physiol Plant, 31(2): 401-405.

    • MENGOLI M, BAGNI N, LUCCARINI G, et al. , 1989. Daucus carota cell cultures: polyamines and effect of polyamine biosynthesis inhibitors in the preembryogenic phase and different embryo stages [J]. J Plant Physiol, 134: 389-394.

    • PAUL A, MITTER K, RAYCHAUDHURI SS, 2009. Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. [J]. Plant Cell Tissue Organ Cult, 97(3): 303-311.

    • PUCHOOA D, 2004. In vitro regeneration of lychee (Litchi chinensis Sonn. ) [J]. Afr J Biotechnol, 3(11): 576-584.

    • QIN YQ, 2019. Establishment of somatic embryogenesis regeneration system and preliminary study on genetic transformation in Litchi chinesis ‘Heiye’ [D]. Guangzhou: South China Agricultural University. [秦雅琪, 2019. ‘黑叶’荔枝体细胞胚胎再生体系的建立及转基因初步研究 [D]. 广州: 华南农业大学. ]

    • RAHARJO SHT, LITZ RE, 2007. Somatic embryogenesis and plant regeneration of litchi (Litchi chinensis Sonn. ) from leaves of mature phase trees [J]. Plant Cell Tissue Organ Cult, 89: 113-119.

    • RAKESH B, SUDHEER WN, NAGELLA P, 2021. Role of polyamines in plant tissue culture: an overview [J]. Plant Cell Tissue Organ Cult, 145(3): 487-506.

    • SAOS FL, HOURMANT A, 2001. Stimulation of putrescine biosynthesis via the ornithine decarboxylase pathway by gibberellic acid in the in vitro rooting of globe artichoke (Cynara scolymus) [J]. Plant Growth Regul, 35: 277-284.

    • SATHISH D, THEBORAL J, VASUDEVAN V, et al. , 2019. Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediumted transformation efficiency in sugarcane (Saccharum spp. Hybrid) [J]. In Vitro Cell Develop Biol, 56(1): 29-40.

    • SATISH L, RENCY AS, RATHINAPRIYA P, et al. , 2015. Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L. ) Gaertn) [J]. Plant Cell Tissue Organ Cult, 124(1): 15-31.

    • SUN XL, YUAN ZB, WANG B, et al. , 2021. Exogenous putrescine activates the arginine-polyamine pathway and inhibits the decomposition of endogenous polyamine in Anthurium andraeanum under chilling stress [J]. Sci Hort, 282: 110047.

    • TANG QY, 2010. Data processing system-experimental design, statistical analysis and data mining [M]. 2nd ed. Beijing: Science Press. [唐启义, 2010. DPS数据处理系统, 实验设计、统计分析及数据挖掘 [M]. 2版. 北京: 科学出版社. ]

    • TIBURCIO AF, ALCÁZAR R, 2017. Potential applications of polyamines in agriculture and plant biotechnology [J]. Methods Mol Biol, 40: 489-508.

    • WANG G, LI HL, WANG SJ, et al. , 2016. In vitro regeneration of litchi (Litchi chinensis Sonn. ) [J]. Afr J Biotechnol, 15: 1026-1034.

    • WANG G, LIU Y, GAO ZY, et al. , 2023. Effects of amino acids on callus proliferation and somatic embryogenesis in Litchi chinensis cv. ‘Feizixiao’ [J]. Horticulturae, 9: 1311.

    • WANG G, LIU YT, GAO ZY, et al. , 2021a. Changes in structure and polyamine metabolism of litchi callus during subculture and somatic embryo development [J]. J Fruit Sci, 38(11): 1911-1920. [王果, 刘耀婷, 高兆银, 等, 2021a. 荔枝愈伤组织继代及体胚发生过程中结构与多胺含量的变化 [J]. 果树学报, 38(11): 1911-1920. ]

    • WANG G, LIU YT, LI HL, et al. , 2021b. Effects of exogenous polyamine application on proliferation of calluses and somatic embryogenesis in Litchi chinensis Sonn. cv. Feizixiao [J]. J Fruit Sci, 38(12): 2135-2147. [王果, 刘耀婷, 李焕苓, 等, 2021b. 外源多胺对荔枝愈伤组织增殖及体胚发生的作用 [J]. 果树学报, 38(12): 2135-2147. ]

    • WANG G, LIU YT, WANG JB, et al. , 2023. Study on the optimization of amino acids on proliferation of callus and somatic embryogenesis in Litchi chinensis Sonn. cv. Feizixiao [J]. J Fruit Sci, 40(11): 2466-2476. [王果, 刘耀婷, 王家保, 等, 2023. 氨基酸对荔枝愈伤组织增殖及体胚发生体系优化的研究 [J]. 果树学报, 40 (11): 2466-2476. ]

    • XUE SY, 2015. Effects of exogenous PAs on photosynthetic physiology and ultra structure of muskmelon seedlings under salt stress [D]. Anhui: Anhui Agricultural University. [薛淑媛, 2013. 外源多胺对盐胁迫下甜瓜幼苗光合生理和超微结构的影响 [D]. 安徽: 安徽农业大学. ]

    • YU CH, CHEN ZG, LU LX, et al. , 2000. Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspension [J]. Plant Cell Tissue Organ Cult, 61: 51-58.

    • ZHANG JQ, WANG HN, CHEN W, et al. , 2022. Effect of polyamines on high frequency induction and synchronization of somatic embryo of Lycium elanocarpus [J]. J Chin Med Mat, 45(1): 27-31. [张佳琪, 王浩宁, 陈薇, 等, 2022. 多胺对黑果枸杞体细胞胚高频诱导及同步化发生的影响 [J]. 中药材, 45(1): 27-31. ]

    • ZHAO FG, LIU YL, 2000. Study on determination of ADC and TGase activities [J]. Technol Meth, 36(5): 442-445. [赵福庚, 刘友良, 2000. 精氨酸脱羧酶和谷酰胺转移酶活性的测定方法 [J]. 技术与方法, 36(5): 442-445. ]