-
罗汉果(Siraitia grosvenorii)是葫芦科(Cucurbitaceae)罗汉果属(Siraitia)药用、甜料植物,其干燥果实为知名传统中药材,具有清热止咳、抗炎平喘、祛痰润肺、润肠通便、降糖降脂、抗氧化、抗癌、抗纤维化等功效(唐昀彤等,2021;戴胜和汪惠丽,2023),富含三萜皂苷活性成分罗汉果苷Ⅴ等多种高强度甜味物质,其中罗汉果苷Ⅲ、罗汉果苷Ⅵ、罗汉果赛门苷Ⅰ、罗汉果苷Ⅴ、11-O-罗汉果苷Ⅴ和异罗汉果苷Ⅴ的甜度分别为蔗糖的195、300、465、378、68和500倍(Murata et al.,2006; Jia &Yang,2009)。罗汉果甜苷因其热量低、安全无毒等特点,糖尿病、高血压、肥胖人群均可食用,已被大规模提取用作甜味剂。近年来,罗汉果需求越来越大,效益也逐渐增加,该产业已成为乡村振兴的支柱产业,种植区域也由道地产区向周边地区快速蔓延。但是,果实甜苷含量较低导致甜味剂提取原料成本高,成为罗汉果产业的发展限制瓶颈。这不仅与当前罗汉果栽培品种有关,还与果实成熟批次有一定的相关性。罗汉果种植需人工授粉才能结果,授粉期集中在7月初到8月底,7月夏季和8月秋季授粉果实通常分两批成熟。不同产区和生长季气候因子变化会直接影响果实成熟和内外品质。咖啡高温时果实成熟早而品质差(Aparecido et al.,2018)。葡萄高温时成熟度和酸度高,低温时主要活性成分维生素C、多酚和花青素含量高(Rafique et al.,2023),平均温度和湿度高有利于糖分积累(乔振羽等,2023)。黑加仑高温时果实萜类挥发物质积累增加,低温时果实的有机酸积累增加(Pott et al.,2023)。黄瓜香气物质C6醛类含量与平均光照强度呈正相关,C9醛类含量与平均相对湿度呈负相关(Li et al.,2019)。黑莓前期成熟果实比后期的单果重和有机酸含量高,但是花青素和可溶性固形物含量低(Mikulic-Petkovsek et al.,2023)。加工企业认为罗汉果前期成熟果实因生境温度高而品质差会增加原料成本,后期成熟果实因生境温度低、昼夜温差大而品质高可降低原料成本,因而偏好采购后期成熟果实。由于高甜苷新品种选育周期长,因此目前通过研究不同季节授粉果实品质具体差异及其受生境气候因子影响情况指导罗汉果适宜种植区域选择以及高产优质种植技术优化,减少成熟果实品质的差异,从而降低甜味剂提取原料成本,有利于缓解罗汉果产业的瓶颈问题。
-
市售罗汉果为圆形或长圆形,按果实横径划分不同等级定价销售,并以罗汉果苷Ⅴ含量作为主要内在品质指标。罗汉果外在品质研究发现,果实横径、纵径和单果重在授粉后25 d内快速增加,30 d后基本不变(闫海锋,2011)。罗汉果内在品质研究发现,高甜度罗汉果苷由无味或苦味的低糖苷逐步转化而来,通常果实30 d以前主要含罗汉果苷Ⅰ和罗汉果苷ⅡE,30~50 d罗汉果苷ⅡE逐渐减少相继转化为罗汉果苷Ⅲ、罗汉果苷Ⅳ和罗汉果苷Ⅴ,50~70 d罗汉果苷Ⅴ快速积累接近最高含量、罗汉果苷ⅡE与罗汉果苷Ⅲ则减少消失,70~85 d成熟时主要含具甜味的罗汉果苷V(李典鹏等,2004;卢凤来等,2010;莫长明等,2014)。低糖苷合成积累由SgSQE、SgCDS、SgEPH1-3、SgCYP102801和SgUGT85-269-1、4基因在幼果表达控制,其转化为罗汉果苷V则由SgUGT94-289-1、2、3基因在果实发育中后期表达控制(Itkin et al.,2016),然而这些基因调控罗汉果苷V合成的昼夜表达规律仍不清楚。白先达等(2009a、b)利用历史气象数据和生长调查资料分析不同产区气候因子对罗汉果生长影响显示,山区大中果率(78%)高于温度偏高、光照偏强、湿度偏低的水田(73%),年均气温17~18℃、7月和8月平均温度26.8~27.1℃、日照时数1 400 h、空气湿度80%的主产区果实总糖含量高于平均温度和日照时数偏高、空气湿度偏低的推广区,并以气候因子对开花坐果和果实大小的影响为标准划分罗汉果最适宜、适宜和不适宜种植区。罗汉果引种到产区外的印度,其罗汉果苷V含量低并且其快速积累期推迟到70~80 d(Shivani et al.,2021)。但是,这些调查分析结果仍需实验印证,温度、光照和湿度各自对罗汉果形态大小、总糖含量和罗汉果苷V含量的影响效应仍不清楚,并且未采用罗汉果苷V含量作为评判标准划分的罗汉果适宜种植区(白先达等,2009b;谢晓燕等,2020)也有待完善。此外,不同生长季节气候因子对罗汉果内外品质的影响尚未见报道,亟须探明不同生长季节气候因子如何通过诱导基因表达而影响罗汉果的内外品质。
-
鉴于此,本文开展不同季节授粉罗汉果内外品质受温度、光照、湿度影响及其分子调控机制研究,依托夏季和秋季授粉果实,采用生境气候因子、果实形态大小、罗汉果苷V合成积累、基因表达变化动态监测方法,通过统计分析二者不同发育时间平均温度、昼夜温差、有效积温、光照强度、空气湿度、果实横径、果实纵径、单果重、罗汉果苷含量、品质性状基因表达水平差异,拟探讨以下问题:(1)夏季和秋季授粉果实品质存在什么差异;(2)二者品质差异受何气候因子影响;(3)气候影响因子如何调控基因表达引发二者品质差异。以指导选择罗汉果适宜种植区,制定高产优质种植技术,提高罗汉果品质,解决罗汉果甜味剂提取原料成本高的问题,也为今后高甜苷品种选育提供理论依据。
-
1 材料与方法
-
1.1 材料
-
以主栽“青皮果”品种为试验材料,2022年3月20日移栽,按常规方法种植于广西壮族自治区桂林市龙胜县龙胜镇双洞村(110°02′57″ E、25°46′06″ N)。试验基地处于海拔251 m的亚热带季风气候区,年平均温度18.1℃,极端最高温39.5℃,极端最低温-4.8℃,年降雨量1 500~2 400 mm,无霜期314 d。
-
1.2 仪器与试剂
-
1.2.1 仪器
-
HPLC 1260(美国安捷伦科技有限公司)、4000 QTRAP® LC-MS/MS(加拿大 AB Sciex公司)、Poroshell120 SB-C18色谱柱(美国安捷伦科技有限公司)、99立式-86超低温冰箱(美国 Thermo公司)、Veriti96-Well Thermal Cycler PCR仪(美国 Thermo公司)、Light Cycler 480 Ⅱ荧光定量PCR仪(瑞士Roche公司)、220R高速冷冻离心机(德国mikro公司)、MX2301A温湿度计(美国ONSET公司)、MX2202温度光照计(美国ONSET公司)、四用数显电子游标卡尺(桂林量具刃具有限责任公司)、JJ500电子天平(常熟市双杰测试仪器厂)。
-
1.2.2 试剂
-
标准物质罗汉果苷IA(MIA)、罗汉果苷IE(MIE)、罗汉果苷ⅡE(MⅡE)、罗汉果苷ⅢE(MⅢE)、罗汉果苷Ⅲ(MⅢ)、罗汉果苷ⅣA(MⅣA)、罗汉果赛门苷I(MSI)、罗汉果苷V(MV)、11-O-罗汉果苷V(11-O-MV)购于成都曼思特生物科技有限公司。色谱级甲酸、甲醇、乙腈、己烷购于美国Emerson Fisher公司。CW0581M超纯RNA提取试剂盒购于北京康为世纪生物科技有限公司。DL2000 Marker、10×Glycerol DNA Loading Buffer、R232反转录试剂盒、Q711荧光定量试剂盒购于南京诺唯赞生物科技股份有限公司。引物由生工生物工程(上海)股份有限公司合成。分析纯三氯甲烷和无水乙醇、琼脂糖购于广西福兰德生物科技有限公司。
-
1.3 方法
-
1.3.1 试验设计
-
盛花期随机选取发育一致雌花300朵授粉并挂牌标记日期,2022年7月16日授粉并挂牌标记的为夏季授粉果实,8月19日授粉并挂牌标记的为秋季授粉果实。于授粉当天(0 d)及授粉后5、15、25、35、45、55、65、75、85、95 d随机采样测定果实的横径、纵径及单果重,每个时期重复测定10个果实。同时,于授粉后5、35、55、75、85、95 d,分别随机采集发育良好的夏季和秋季授粉果实3个剥取果肉,用标记好的锡箔纸收集后液氮中冷冻30 min,放入-80℃冰箱保存,用于罗汉果苷含量测定,每个样品3个生物学重复。此外,于授粉后55 d这一罗汉果苷V快速积累期,分别随机采集当天14:00、18:00、2:00、6:00和9:00发育良好的夏季和秋季授粉果实3个,同罗汉果苷含量测定采样方法采集保存果肉样品,用于罗汉果苷V合成酶基因表达水平qRT-PCR分析。
-
1.3.2 指标测定
-
1.3.2.1 环境因子监测
-
授粉挂牌前,于试验田中部,在罗汉果种植棚上方20 cm处放置温湿度计和温度光照计,设置每隔30 min记录1次温度、空气湿度和光照强度数据。
-
1.3.2.2 果实大小测量
-
横径用数显电子游标卡尺测量果实中部最大处,纵径用数显电子游标卡尺测量果柄到果脐间的距离,单果重采用精度为0.01 g的电子天平称量单个果实重量,并进行数据记录。
-
1.3.2.3 罗汉果苷含量测定
-
于-80℃超低温冰箱中取出果肉样品保存于液氮中后,放入到液氮预冷研钵,在液氮中迅速研磨成均匀粉末,按照Qiao等(2019)的HPLC MS/MS方法提取并测定罗汉果苷IA、罗汉果苷IE、罗汉果苷ⅡE、罗汉果苷Ⅲ、罗汉果苷ⅢE、罗汉果苷ⅣA、罗汉果赛门苷I、罗汉果苷Ⅴ、11-O-罗汉果苷V的含量。
-
1.3.2.4 罗汉果苷合成酶基因表达分析
-
首先,采用CW0581M超纯RNA提取试剂盒提取55 d夏季和秋季授粉果实总RNA;其次,利用R232试剂盒通过两步法将总RNA逆转录为cDNA,20 μL反应体系逆转录程序(于PE管中先加入4 × gDNA wiper Mix 4 μL,再加入1 μg模板RNA);然后,加RNase-free ddH2O至16 μL,用移液枪吹打混匀后置于PCR仪中42℃反应2 min;接着,向反应液中加入5 × Hi Script Ⅲ qRT Super Mix 4 μL使体积达到20 μL,用移液枪吹打混匀后继续于PCR仪中37℃反应15 min、85℃反应5 s;最后,以逆转录cDNA为模板,SgUBQ为内参基因,利用表1 所列各基因特异性引物,采用qRT-PCR法测定55 d夏季和秋季授粉果实罗汉果苷合成酶基因表达水平。反应体系:SYBR GreenⅠ 10 μL,正反向引物各1 μL,模板2 μL,加RNase-free ddH2O至10 μL。反应程序:95℃预变性30 s,95℃变性10 s、60℃退火及延伸30 s共40循环。熔解曲线程序:95℃ 15 s,60℃ 60 s,95℃ 15 s,37℃ 30 s。
-
1.4 数据统计
-
试验所得数据采用Excel2016进行整理和统计分析。按0~5 d、5~15 d、15~25 d、25~35 d、35~45 d、45~55 d、55~65 d、65~75 d、75~85 d时间段,平均温度、光照强度、空气湿度为所有记录温度的平均值,有效积温为15℃以上平均温度减去15℃差的总和,昼夜温差为白天平均温度与夜晚平均温度之差。各个时间点罗果苷V合成酶基因的相对表达量用2-ΔΔCt法计算。夏季和秋季授粉果实横径、纵径、单果重、罗汉果苷V及其前体与衍生物质含量差异,以及14:00与其余时间点间各罗汉果苷V合成酶基因表达量差异显著性分析采用t-检验。
-
2 结果与分析
-
2.1 果实生境气候因子比较
-
由图1和图2可知,夏季授粉果实平均温度基本稳定不变,为27.79℃左右,有效积温除0~5 d较低外也基本稳定不变,约为118.50℃,秋季授粉果实平均温度和有效积温则变化较大,分别在15~28℃之间和18~130℃之间,都基本低于夏季授粉果实。但是,两者果实生境平均温度和有效积温35 d以前相近,35 d以后秋季授粉果实明显低于夏季授粉果实,分别下降为20℃和60℃左右,76~85 d进一步下降至16.80℃和18.03℃。
-
由图1可知,夏季授粉果实0~5 d较低,为3.75℃;6~45 d较稳定,约为9.43℃;46~75 d则升高,保持在约13.01℃;76~85 d又明显地缩小至7.41℃。秋季授粉果实0~45 d较稳定,约为11.97℃,46~55 d则上升至16.97℃,65 d以后开始缩小为11.95℃,76~85 d明显缩小至2.13℃。秋季授粉果实生境昼夜温差65 d以前均在10℃以上,大于夏季授粉果实(基本在10℃以下),65 d以后才小于夏季授粉果实。综上结果表明,夏季与秋季授粉果实生境温度存在明显差异。
-
由图3可知,夏季授粉果实由0~5 d的13 480.40 lx上升至6~15 d的22 582.37 lx后呈下降趋势,76~85 d下降至最低的12 843.09 lx。秋季授粉果实0~85 d一直呈下降趋势,除0~5 d的20 162.95 lx明显高于夏季授粉果实49.57%外,其他均低于夏季授粉果实,其中66~75 d、76~85 d分别降低了28.71%、26.53%,其余时期相差不大,降幅在7.52%~19.88%之间。这表明夏季与秋季授粉果实生境平均光照强度总体相差不大。
-
由图4可知,夏季授粉果实0~5 d为88%,6~15 d下降为74.91%,16~85 d变化不明显。秋季授粉果实46~55 d和76~85 d明显下降和上升,分别比夏季授粉果实下降了24.32%和上升了21.11%,其余各时期两者间相差不大,降幅在3.88%~16.45%之间。这表明夏季与秋季授粉果实生境空气湿度也总体相差不大。
-
图1 夏季与秋季授粉果实发育过程中平均温度及昼夜温差
-
Fig.1 Average temperature and temperature difference between day and night during the development of pollinated fruits in summer and autumn
-
2.2 果实大小比较
-
由图5-图7可知,秋季授粉果实的横径、纵径和单果重均高于夏季授粉果实且两者果实均在0~35 d逐渐增加,其中0~25 d为快速生长期,35 d以后则基本保持不变。此外,仅15 d的纵径和单果重差异显著,其余各时期两者果实大小指标均无显著差异。这表明夏季与秋季授粉果实大小差异不显著。
-
图2 夏季与秋季授粉果实发育过程中有效积温
-
Fig.2 Effective accumulated temperature during the development of pollinated fruits in summer and autumn
-
图3 夏季与秋季授粉果实发育过程中平均光照强度
-
Fig.3 Average light intensity during the development of pollinated fruits in summer and autumn
-
图4 夏季与秋季授粉果实发育过程中平均空气湿度
-
Fig.4 Average air humidity during the development of pollinated fruits in summer and autumn
-
图5 夏季与秋季授粉果实平均横径比较
-
Fig.5 Comparison of average transverse diameter of pollinated fruits in summer and autumn
-
2.3 果实罗汉果苷含量比较
-
由图8和图9可知,两者果实35 d以前含罗汉果苷IA、罗汉果苷IE、罗汉果苷ⅡE、罗汉果苷Ⅲ且含量无显著差异,与生境温度无明显差异一致;55 d时也含罗汉果苷IA、罗汉果苷IE、罗汉果苷ⅡE,还与75 d以后一样含罗汉果苷ⅢE、罗汉果苷Ⅲ、罗汉果苷ⅣA、罗汉果赛门苷I、罗汉果苷V、11-O-罗汉果苷V;但55 d开始,除罗汉果苷ⅡE外,两者果实其余罗汉果苷含量均存在显著差异,与夏秋和秋季授粉果实生境平均温度和有效积温出现明显差异时间一致。其中,罗汉果苷ⅢE、罗汉果苷Ⅲ、罗汉果苷ⅣA和罗汉果赛门苷I含量55 d时夏季授粉果实均显著高于秋季授粉果实,此后则相反;罗汉果苷V、11-O-罗汉果苷V含量,从55 d开始夏季授粉果实均显著高于秋季授粉果实。
-
从5~85 d罗汉果苷积累规律上看,夏季授粉果实5~35 d时,罗汉果苷ⅡE、罗汉果苷ⅢE、罗汉果苷Ⅲ含量增加,罗汉果苷ⅣA、罗汉果赛门苷I、罗汉果苷V、11-O-罗汉果苷V检测不到;35~55 d时,罗汉果苷ⅡE含量降低,罗汉果苷ⅢE、罗汉果苷Ⅲ含量继续增加,罗汉果苷ⅣA、罗汉果赛门苷I、罗汉果苷V、11-O-罗汉果苷V开始出现;55~75 d时,罗汉果苷ⅡE、罗汉果苷ⅢE、罗汉果苷Ⅲ、罗汉果苷ⅣA含量快速降低,罗汉果赛门苷I、罗汉果苷V、罗汉果11-O-苷V含量快速增加;75~85 d时,罗汉果苷ⅡE、罗汉果苷ⅢE、罗汉果苷Ⅲ、罗汉果苷ⅣA基本消失,罗汉果赛门苷I、罗汉果苷V、11-O-罗汉果苷V含量无显著差异。与夏季授粉果实罗汉果苷积累规律不同的是:秋季授粉果实55~75 d时,罗汉果苷ⅣA含量仍继续增加;75~85 d时开始降低且降幅远远小于夏季授粉果实;85 d时仍含有一定量的罗汉果苷Ⅲ、罗汉果苷ⅣA;95 d时罗汉果苷Ⅲ、罗汉果苷ⅣA基本消失,罗汉果苷V含量不再显著增加,但罗汉果赛门苷I和11-O-罗汉果苷V含量仍显著增加。
-
图6 夏季与秋季授粉果实平均纵径比较
-
Fig.6 Comparison of average longitudinal diameter of pollinated fruits in summer and autumn
-
图7 夏季与秋季授粉果实单果重比较
-
Fig.7 Comparison of single fruit weight of pollinated fruits in summer and autumn
-
综上表明,夏季与秋季授粉果实55 d开始罗汉果苷V等皂苷含量存在显著差异,其中罗汉果苷V和11-O-罗汉果苷V积累速度秋季授粉果实比夏季授粉果实慢10 d左右,成熟时含量秋季授粉果实显著低于夏季授粉果实,分别降低了40.66%和46.07%。
-
2.4 果实罗汉果苷V合成酶基因表达比较
-
由图10可知,与一天中最高温度(48.15℃)的14:00相比,18:00至次日早上9:00温度为19.51~28.30℃时,SgSQS、SgEPH3、SgCYP102801、SgUGT85-269-1、SgUGT85-269-4、SgUGT94-289-1、SgUGT94-289-2、SgUGT94-289-3基因均上调表达,其中SgEPH3、SgCYP102801、SgUGT85-269-1、SgUGT85-269-4、SgUGT94-289-1、SgUGT94-289-2、SgUGT94-289-3基因从凌晨2:00开始均显著或极显著上调了1~463 倍;SgHMGR、SgSQE和SgEPH2基因除18:00下调表达外,从凌晨2:00开始也均上调表达;SgCAS和SgEPH1基因则在所有时间点均下调表达;仅SgCDS基因表达无明显规律。SgCAS为与罗汉果苷V合成途径竞争上游前体物质环氧鲨烯合成甾体皂苷的酶基因。SgCDS、SgEPH1则为在幼果中催化合成罗汉果苷V上游前体物质葫芦二烯醇的酶基因。这表明除SgCAS和SgCDS、SgEPH1外,从18:00至次日早上9:00,夏季授粉果实罗汉果苷V合成酶基因均出现大幅上调表达,并且具有很好的协同表达一致性,尤其是催化罗汉果苷ⅡE、罗汉果苷Ⅲ、罗汉果苷ⅣA转化合成罗汉果苷V等高糖苷的下游葡萄糖基转移酶基因SgUGT85-269-1、SgUGT85-269-4、SgUGT94-289-1、SgUGT94-289-2、SgUGT94-289-3,下午至次日早上凉爽温度环境比中午高温环境更利于合成酶基因表达积累罗汉果苷V,此时可能是夏季授粉果实罗汉果苷V一日当中最佳积累时期,与罗汉果喜凉爽习性一致。
-
由图11可知,与一天中最高温度(43.26℃)时的14:00相比,18:00至次日早上9:00温度为16.36~31.37℃,高低温间转换快,SgCAS、SgEPH2、SgEPH3、SgUGT85-269-1、SgUGT94-289-2基因均上调表达。其中,仅SgCAS、SgEPH3基因从2:00开始均显著或极显著上调;SgCDS基因18:00至6:00上调表达,9:00下调表达;SgHMGR、SgSQE、SgEPH1、SgCYP102801基因18:00至凌晨2:00上调表达,凌晨6:00至9:00下调表达;SgUGT94-289-1基因18:00下调表达,凌晨2:00至9:00上调表达;SgUGT94-289-3基因在所有时间点均下调表达且凌晨2:00开始下调均为100%以上;SgSQS与SgUGT85-269-4基因表达无明显规律。除SgCAS基因凌晨2:00上调4倍和SgUGT94-289-2基因9:00上调8倍外,上调表达基因均仅在少数时间点上调达到1~2 倍。综上表明,从18:00至次日早上9:00,秋季授粉果实罗汉果苷V合成酶基因上调表达数目少且幅度小,协同表达一致性不佳。其中,18:00至凌晨2:00温度19.32~26.47℃,与夏季授粉果实一样处于适宜温度时,上调表达基因相对较多,此时可能是秋季授粉果实罗汉果苷V主要积累期,凌晨2:00至次日早上8:00 17℃左右低温骤然升高到9:00 31.37℃高温时,不仅上调表达基因少且许多基因大幅下调表达,葡萄糖基转移酶基因SgUGT94-289-3出现大幅下调,低温和高温环境均不利于合成酶基因表达积累罗汉果苷V。
-
图8 夏季与秋季授粉后5、35、55、75、85 d果实罗汉果苷含量比较
-
Fig.8 Mogroside content comparison of fruits after pollination for 5, 35, 55, 75, 85 d in summer and autumn
-
图9 夏季授粉后75 d与85 d果实和秋季授粉后 85 d与95 d果实罗汉果苷含量比较
-
Fig.9 Mogroside content comparison for fruits after pollination for 75, 85 d in summer and 85, 95 d in autumn
-
3 讨论
-
葡萄、桃、枸杞、番茄果实横径、纵径、单果重和人参皂苷含量等内外品质性状受温度、光照和空气湿度气候因子影响较大(张宇等,2012;张涛,2019;孙蕾等,2022;乔振羽等,2023;吴杨焕等,2023)。由于罗汉果夏季与秋季授粉果实生境平均光照强度和空气湿度总体相差不大,因此可能对两者品质影响不大。55 d以前,秋季授粉果实生境昼夜温差高于夏季授粉果实,两者横径、纵径、单果重和罗汉果苷含量无显著差异;55 d以后,秋季授粉果实与夏季授粉果实相近,但两者罗汉果苷含量反而出现显著差异,因此,昼夜温差可能对两者品质影响也不大。夏季与秋季授粉果实生境平均温度和有效积温差异比其他气候因子更大,并且与两者罗汉果苷含量出现差异的时间变化规律一致,可见温度可能是影响两者内在品质的主要气候因子,其中平均温度和有效积温的相关性可能更大。夏季与秋季授粉果实生长曲线均与万凌云等(2011)研究结果一致,并且果实横径、纵径和单果重差异不显著,表明两者形态大小外在品质未受生境气候因子显著影响。这可能是由于35 d以前这一果实膨大关键期生境平均温度和有效积温也相近所致。
-
图10 夏季授粉后55 d果实罗汉果苷V合成酶基因与14:00相比的相对表达量
-
Fig.10 Relative expression levels of mogroside V synthetase genes of fruits after pollination for 55 d in summer compared to 14:00
-
图11 秋季授粉55 d后果实罗汉果苷V合成酶基因与14:00相比的相对表达量
-
Fig.11 Relative expression levels of mogroside V synthetase genes of fruits after pollination for 55 d in autumn compared to 14:00
-
授粉后30~70 d罗汉果生境温度由29.54℃降为25℃左右时罗汉果苷V合成积累增加(王海英等,2016);离体储藏温度由25℃下降时,罗汉果苷V合成积累则被抑制;降至15℃以下时,罗汉果苷V合成积累将几乎停滞(王磊等,2014;莫长明等,2014)。与夏季授粉果实相比,秋季授粉果实生境平均温度和有效积温35 d以后分别降低至20℃和60℃以下时,罗汉果苷Ⅲ、罗汉果苷Ⅳ、罗汉果赛门苷I糖基化为罗汉果苷V、罗汉果11-O-苷V的反应速度滞后10 d左右,其含量也出现显著差异。这说明秋季授粉果实生境温度降低影响了糖基化反应,从而抑制了罗汉果苷V合成积累,与王磊等(2014)和莫长明等(2014)离体果实研究影响效应一致。低温通常促进黄瓜葫芦素和人参皂苷(Liu et al.,2019)等三萜皂苷合成积累,但其却抑制罗汉果苷V合成积累,与人们认为低温利于罗汉果苷V合成积累观念相反,表明其合成积累的调控机制不同,有待进一步深入研究。MYB、bHLH、AP2/ERF转录因子互作参与植物温度胁迫响应(Ritonga et al.,2021)和次生代谢产物合成积累。例如,MYB、bHLH与WD40蛋白形成三元复合物激活花青素合成积累,但是高温诱导HY5蛋白降解使MYBL表达则抑制花青素合成积累(Kim et al.,2017)。bHLH转录因子CsBi和CsBt响应高温(> 30℃)或低温(<13℃)胁迫合成三萜葫芦素C使黄瓜变苦(Liu et al.,2019)。TcERF15和TcERF12分别正负调控二萜生物碱紫杉醇合成积累(Zhang et al.,2015)。这些转录因子通过调控合成酶基因表达促使植物次生代谢产物合成积累。苹果MdMYB88直接调控葡萄糖基转移酶MdUGT83L3合成积累花青素和黄酮适应低温胁迫(Li et al.,2022)。低温下调木瓜萜类香气物质芳樟醇合成酶基因LIS表达抑制其合成积累(Gomes et al.,2016)。植物次生代谢产物合成积累通常需要其合成酶基因协同表达。低温诱导人参皂苷合成酶基因协同表达促使其合成积累(张涛,2019)。罗汉果同科其他植物则因携带的罗汉果苷V合成酶同源基因不能协同表达而无法合成积累罗汉果苷V(Itkin et al.,2016)。MYB、bHLH92a和ERF转录因子可与罗汉果苷V合成酶基因启动子结合调控其表达(石宏武,2020)。与夏季授粉果实相比,秋季授粉果实55 d时罗汉果苷V合成酶基因上调数目少和水平低,协同表达一致性差,尤其是负责糖基化反应的葡萄糖基转移酶基因,其中SgUGT94-289-3还出现了大幅下调。这表明生境温度可能通过MYB、bHLH、AP2/ERF转录因子调控罗汉果苷V合成酶(尤其是葡萄糖基转移酶)基因协同表达一致性和水平致使夏季与秋季授粉果实罗汉果苷V品质出现差异。
-
虽然17~25℃被认为是维持植物细胞和生产效率的最佳温度,但是每个物种次生代谢产物合成积累的适宜温度不同。高温、低温均可促进或抑制植物次生代谢产物合成积累(Verma &Shukla,2015; Alhaithloul et al.,2019; Zhang et al.,2021)。夏季授粉果实生境温度为19.51~28.30℃时,罗汉果苷V合成酶基因协同表达一致性和水平较高,罗汉果苷V含量高;然而秋季授粉果实生境温度先维持17℃左右低温再骤然升至31.37℃高温时,罗汉果苷V合成酶基因协同表达一致性和水平较低,导致罗汉果苷V品质差。这说明罗汉果苷V合成积累有适宜温度范围(20~28℃),高温31℃以上或低温17℃以下可能均不利于罗汉果苷V合成积累。
-
因此,罗汉果对生境要求较高,不同季节授粉果实罗汉果苷V品质受生境温度的影响较严重,栽培集中分布于广西北部及邻近省份狭窄区域,湖南北部和广西南部均不宜种植,并且仅有广西北部为道地产区,生境温度可能是其道地性形成的重要影响因子。近年来,由于市场供不应求,罗汉果种植不断向日照少、温度低的湖南和四川等高纬度、高海拔区域扩张(Guo et al.,2013; Solanki et al.,2019)。为了获得优质果实及解决罗汉果苷V甜味剂提取原料成本高的问题,罗汉果种植区域和园地选址需要重视温度对果实品质的影响,可通过培育大苗和使用短生育期品种措施调节授粉坐果时间,保证罗汉果苷V合成积累处于适宜温度环境,以防止不同种植区域和授粉批次果实品质降低,从而最大限度提高罗汉果品质。
-
4 结论
-
罗汉果夏季与秋季授粉果实形态大小未受气候因子显著影响,但是罗汉果苷V品质受温度显著影响。主要气候影响因子温度通过调控罗汉果苷V合成酶基因协同表达的一致性和水平致使春季和秋季的罗汉果苷V品质具有差异性。
-
参考文献
-
ALHAITHLOUL H, SOLIMAN M, AMETA K, et al. , 2019. Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress [J]. Biomolecules, 10(1): 43.
-
APARECIDO LEDO, ROLIM GDS, MORAES JRDS, et al. , 2018. Maturation periods for Coffea arabica cultivars and their implications for yield and quality in Brazil [J]. J Sci Food Agric, 98(10): 3880-3891.
-
BAI XD, WU Z, TANG GT, et al. , 2009b. Agricultural climatic division of Siraitia grosvenorii in Guilin City [J]. J Guangxi Agric Sci, 40(11): 1466-1469. [白先达, 伍钊, 唐广田, 等, 2009b. 桂林市罗汉果种植农业气候区划 [J]. 广西农业科学, 40(11): 1466-1469. ]
-
BAI XD, ZHAO H, TANG GS, et al. , 2009a. Analysis of meteorological condition influence on growth of Siraitia grosvenori [J]. Acta Agric Jiangxi, 21(7): 113-116. [白先达, 赵洪, 唐更生, 等, 2009a. 气象条件对罗汉果生长影响的分析 [J]. 江西农业学报, 21(7): 113-116. ]
-
DAI S, WANG HL, 2023. Research progress of natural sweetener Siraitia grosvenorii glycoside [J]. Chin Trad Pat Med, 45(2): 503-509. [戴胜, 汪惠丽, 2023. 天然甜味剂罗汉果甜苷的研究进展 [J]. 中成药, 45(2): 503-509. ]
-
GOMES BL, FABI JP, PURGATTO E, 2016. Cold storage affects the volatile profile and expression of a putative linalool synthase of papaya fruit [J]. Food Res Int, 89: 654-660.
-
GUO L, WANG S, ZHANG J, et al. , 2013. Effects of ecological factors on secondary metabolites and inorganic elements of Scutellaria baicalensis and analysis of geo-herblism [J]. Sci Chin Life Sci, 56(11): 1047-1056.
-
ITKIN M, DAVIDOVICH-RIKANATI R, COHEN S, et al. , 2016. The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii [J]. Proc Natl Acad Sci USA, 113(47): 201604828.
-
JIA ZH, YANG XG, 2009. A minor, sweet cucurbitane glycoside from Siraitia grosvenorii [J]. Nat Prod Comm, 4(6): 769-772.
-
KIM S, HWANG G, LEE S, et al. , 2017. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5 [J]. Front Plant Sci, 8: 1787.
-
LI DP, CHEN YY, PAN ZH, et al. , 2004. Study on variation of mogrol glycosides from fruits of Siraitia grosvenorii in different growing ages [J]. Guihaia, 24(6): 546-549. [李典鹏, 陈月圆, 潘争红, 等, 2004. 不同生长日龄罗汉果甙类成分变化研究 [J]. 广西植物, 24(6): 546-549. ]
-
LI X, SUN Y, WANG X, et al. , 2019. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation [J]. Food Chem, 290: 308-315.
-
LI Y, LI P, ZHANG L, et al. , 2022. Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation [J]. Plant Sci, 321: 111314.
-
LIU Z, LI Y, CAO C, et al. , 2019. The role of H2S in low temperature-induced cucurbitacin C increases in cucumber [J]. Plant Mol Biol, 99(6): 535-544.
-
LU FL, LIU JL, HUANG YL, et al. , 2010. HPLC fingerprints of Siraitia grosvenorii at different growth stages [J]. Food Sci, 31(18): 283-287. [卢凤来, 刘金磊, 黄永林, 等, 2010. 不同生长时期罗汉果高效液相指纹图谱研究 [J]. 食品科学, 31(18): 283-287. ]
-
MIKULIC-PETKOVSEK M, DURÁN-SORIA S, ALLWOOD JW, et al. , 2023. Dissecting the impact of environment, season and genotype on blackcurrant fruit quality traits [J]. Food Chem, 402: 134360.
-
MO CM, WANG HY, MA XJ, et al. , 2014. Physiological regularities of Siraitia grosvenorii mogroside Ⅴ biosynthesis [J]. J S Chin Agric Univ, 35(1): 93-99. [莫长明, 王海英, 马小军, 等, 2014. 罗汉果甜苷Ⅴ合成生理规律的研究 [J]. 华南农业大学学报, 35(1): 93-99. ]
-
MURATA Y, YOSHIKAWA S, SUZUKI Y-A, et al. , 2006. Sweetness characteristics of the triterpene glycosides in Siraitia grosvenori [J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 53(10): 527-533.
-
POTT DM, DURÁN-SOKIA S, ALLWOOD J, et al. , 2023. Dissecting the Pimpact of environment, season and genotype on blackcurrant fruit quality traits [J]. Food Chem, 15(402): 134360.
-
QIAO J, LUO Z, GU Z, et al. , 2019. Identification of a novel specific cucurbitadienol synthase allele in Siraitia grosvenorii correlates with high catalytic efficiency [J]. Molecules, 24(3): 627.
-
QIAO ZY, ZHANG YH, ZHANG XY, et al. , 2023. Effect of microclimates in different slope aspects on quality of ‘Chardonnay’grape berries [J]. SW Chin J Agric Sci, 36(4): 805-815. [乔振羽, 张亚红, 张晓煜, 等, 2023. 不同坡向微气候对‘霞多丽’葡萄果实品质的影响 [J]. 西南农业学报, 36(4): 805-815. ]
-
RAFIQUE R, AHMAD T, KHAN MA, et al. , 2023. Temperature variability during the growing season affects the quality attributes of table grapes in Pothwar-insight from a new emerging viticulture region in South Asia [J]. Int J Biometeorol, 67(11): 1881-1896.
-
RITONGA FN, NGATIA JN, WANG Y, et al. , 2021. AP2/ERF, an important cold stress-related transcription factor family in plants: A review [J]. Physiol Mol Biol Plants, 27(9): 1953-1968.
-
SHI HW, 2020. Analysis of chloroplast genome assembly and study on the transcription factors regulating cucurbitadienol synthase gene in Siraitia grosvenorii [D]. Beijing: Peking Union Medical College. [石宏武, 2020. 罗汉果叶绿体基因组组装分析及葫芦二烯醇合酶基因转录因子研究 [D]. 北京: 北京协和医学院. ]
-
SHIVANI, THAKUR BK, MALLIKARJUN CP, et al. , 2021. Introduction, adaptation and characterization of monk fruit (Siraitia grosvenorii): a non-caloric new natural sweetener [J]. Sci Rep, 11(1): 6205.
-
SOLANKI T, APHALO P, NEIMANE S, et al. , 2019. UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack [J]. Plant Physiol Biochem, 134: 40-52.
-
SUN L, MOU H, ZHANG H, 2022. Study on the correlation between appearance quality of Ningqi No. 1 and meteorological factors in Jinghe County, Xinjiang [J]. Des Oasis Meteorol, 16(3): 139-143. [孙蕾, 牟欢, 张红云, 2022. 新疆精河宁杞1号的外观品质与气象条件关系研究 [J]. 沙漠与绿洲气象, 16(3): 139-143. ]
-
TANG YT, HOU XT, DU ZC, et al. , 2021. Research progress on chemical constituents and pharmacological effects of Siraitia grosvenorii and predictive analysis on quality markers [J]. Chin Trad Herb Drugs, 52(9): 2843-2850. [唐昀彤, 侯小涛, 杜正彩, 等, 2021. 罗汉果化学成分与药理作用的研究进展及其质量标志物(Q-Marker)预测分析 [J]. 中草药, 52(9): 2843-2850. ]
-
VERMA N, SHUKLA S, 2015. Impact of various factors responsible for fluctuation in plant secondary metabolites [J]. J Appl Res Med Aroma, 2(4): 105-113.
-
WAN LY, MA XJ, LAI JY, et al. , 2011. Growth curve of Siraitia grosvenorii and correlative analysis of seed and growth of fruit [J]. Chin J Chin Mat Med, 36(3): 272-275. [万凌云, 马小军, 赖家业, 等, 2011. 罗汉果生长曲线及种子与果实生长相关分析 [J]. 中国中药杂志, 36(3): 272-275. ]
-
WANG HY, MA XJ, MO CM, et al. , 2016. Effects of shading on contents of mogrosides and sugars in fruit flesh of Siraitia grosvenorii [J]. Guihaia, 36(11): 1344-1352. [王海英, 马小军, 莫长明, 等, 2016. 遮荫处理对罗汉果果肉组织中罗汉果苷和糖分含量的影响 [J]. 广西植物, 36(11): 1344-1352. ]
-
WANG L, LU FL, LIU JL, et al. , 2014. Postharvest handling study of Luo Han Guo bitter fruit [J]. SW Chin J Agric Sci, 27(1): 344-348. [王磊, 卢凤来, 刘金磊, 等, 2014. 罗汉果苦果的采后处理研究 [J]. 西南农业学报, 27(1): 344-348. ]
-
WU YH, MEN XJ, ZHOU J, et al. , 2023. Changes of physical characteristics of peach trees under extreme weather in early spring [J]. Xinjiang Farm Res Sci Technol, 46(3): 32-36. [吴杨焕, 门雪杰, 周进, 等, 2023. 早春极端低温天气下桃树生理特征变化 [J]. 新疆农垦科技, 46(3): 32-36. ]
-
XIE XY, YAN CM, DENG XR, 2020. Climatic suitability distribution of Momordica grosvenori in Guilin based on DEM data [J]. Meteorol Sci Technol, 48(6): 911-916. [谢晓燕, 严春梅, 邓肖任, 2020. 基于DEM的桂林市罗汉果气候适宜性分布 [J]. 气象科技, 48(6): 911-916. ]
-
YAN HF, 2011. studies on biological characteristics of triploid Luo Han Guo and changes in chemical composition of its seedless fruits [D]. Nanning: Guangxi University. [闫海锋, 2011. 三倍体罗汉果生物学特征及其无籽果实化学成分变化的研究 [D]. 南宁: 广西大学. ]
-
ZHANG M, LI S, NIE L, et al. , 2015. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis [J]. Plant Mol Biol, 89(4/5): 463-473.
-
ZHANG T, 2019. Research on physiological and ecological response mechanism of ginseng and its saponin biosynthesis to low temperature [D]. Changchun: Jilin Agricultural University. [张涛, 2019. 人参及其皂苷生物合成对低温的生理生态响应机制研究 [D]. 长春: 吉林农业大学. ]
-
ZHANG T, GAO Y, HAN M, et al. , 2021. Changes in the physiological characteristics of Panax ginseng embryogenic calli and molecular mechanism of ginsenoside biosynthesis under cold stress [J]. Planta, 253(4): 1-23.
-
ZHANG Y, SONG ML, LI LP, 2012. Effects of air humidity on tomato plant photosynthesis and dry matter accumulation at sub-high temperature [J]. Chin J Ecol, 31(2): 342-347. [张宇, 宋敏丽, 李利平, 2012. 亚高温下不同空气湿度对番茄光合作用和物质积累的影响 [J]. 生态学杂志, 31(2): 342-347. ]
-
摘要
为了探讨气候因子对不同季节授粉罗汉果品质影响及其分子作用机制,该文以主栽“青皮果”品种夏季与秋季授粉果实为研究对象,采用不同发育时间气候因子监测、形态大小测量、罗汉果苷代谢检测和基因表达qRT-PCR分析方法,统计分析二者生境气候因子、品质性状和基因表达差异。结果表明:(1)秋季授粉果实与夏季授粉果实相比,生境平均温度和有效积温35 d以后明显降低,昼夜温差65 d以前明显增加,并且平均温度、有效积温差异大于昼夜温差,光照强度和空气湿度则相近。(2)横径、纵径和单果重均增加,但是差异不显著。(3)罗汉果苷Ⅴ和11-O-罗汉果苷Ⅴ合成积累速度滞后10 d左右,含量从55 d开始均显著降低并且成熟时分别降低了40.66%和46.07%。(4)罗汉果苷Ⅴ合成酶基因55 d协同表达的一致性差,上调数目和幅度少,而且负责最后一步合成反应的葡萄糖基转移酶基因SgUGT94-289-3均下调表达。综上所述,夏季与秋季授粉罗汉果形态大小未受气候因子影响,而罗汉果苷Ⅴ品质则受温度影响显著,温度可能通过调控罗汉果苷Ⅴ合成酶基因协同表达的一致性和水平致使春季和秋季的罗汉果苷Ⅴ品质具有差异性。该研究结果为罗汉果优质栽培和遗传育种提供了理论依据。
Abstract
In order to investigate the impact of climatic factors on the quality of Siraitia grosvenorii fruits pollinated in different seasons and the underlying molecular mechanism involved, the differences in climate factors, quality traits, and gene expression between fruits of the main cultivar S. grosvenorii “Qingpiguo” pollinated in summer and autumn were statistically analyzed by monitoring climate factors at different developmental stages, measuring morphological changes, detecting mogroside metabolism, and analyzing gene expression using qRT-PCR. The results were as follows: (1) Compared to summer-pollinated fruits, the average temperature and effective accumulated temperature of autumn-pollinated fruits decreased significantly after 35 d. Additionally, the temperature difference between day and night increased significantly before 65 d. However, this difference was still less than that of the average temperature and effective accumulated temperature. The light intensity and air humidity remained similar. (2) The transverse diameters, longitudinal diameters, and single fruit weights of autumn-pollinated fruits increased compared to those of summer-pollinated fruits, however, these differences were not statistically significant. (3) Mogroside V and 11-O-mogroside V in autumn-pollinated fruits accumulated slowly from 55 d with a delay of about 10 d, moreover, the content of both compounds in ripe fruits decreased by 40.66% and 46.07%, respectively. (4) In autumn, the number and extent of up-regulated mogroside V synthetase genes were relatively lower, and their co-expression consistency was poorer than in summer. Furthermore, the glucosyltransferase gene SgUGT94-289-3 which was responsible for the final step in mogroside V biosynthesis, exhibited down-regulation at all time points of 55 d. In summary, the shape and size of S. grosvenorii fruits pollinated in different seasons were not significantly affected by climatic factors; however, the content of mogroside V was significantly influenced by the temperature, which potentially influences these variations in mogroside V by regulating both the co-expression consistency and expression level of mogroside V synthetase genes. The results of this study provide the theoretical reference for high-quality cultivation and genetic breeding of S. grosvenorii.