-
蒙古栎(Quercus mongolica)广泛分布于我国的北方地区,具有耐严寒、耐干旱、耐贫瘠的特点,在山顶或者山脊附近常形成片状成林或单优势群落,因此通常作为北方森林植被的主要建群种(张中惠等,2021;连俊华等,2022)。六盘山位于黄土高原的中西部,地处北方农牧交错带与暖温半湿润带向半干旱地区过渡的生态脆弱带上,森林覆盖率高达70%,被誉为黄土高原的“湿岛”和关中平原的天然屏障。蒙古栎次生林是六盘山区森林群落的优势种和顶级群落,对于维护当地生态平衡具有重要的研究价值(王占印,2009)。
-
在自然界中,植物器官往往定殖有大量的互惠共生真菌,尤其以根系中的种类最为丰富,主要包括外生菌根真菌(ectomycorrhiza fungi, ECMF)、丛枝菌根真菌(arbuscular mycorrhiza fungi, AMF)和深色有隔内生真菌(dark septate endophyte,DSE)等(刘润进和王琳,2018)。共生真菌对于维护植物生态系统的健康发展发挥着重要的生态功能,具有提高植物吸收水分和矿质营养、促进植物生长、增强植物抗逆的能力,尤其在逆境胁迫下植物恢复和生态重建过程中发挥着积极作用(王思佳等,2018;Zobel et al.,2024)。菌根真菌通过向外延伸的菌丝网络,将根与周围的土壤连接起来,扩大根系面积,从而促进植物吸收、运输水分和营养物质(Fors et al.,2023)。DSE 大量存在于干旱、养分贫瘠和重金属等胁迫环境中,通过调整内含的超氧化物歧化酶、可溶性蛋白和黑色素等,DSE增强植物对干旱环境的适应能力,提高植物体抗逆能力(González-Teuber et al.,2018; Liu &Wei,2019);在重镉环境中,DSE通过调整植物根的形态、限制重金属离子的迁移来促进植物生长并限制对宿主的金属毒性(Chen et al.,2023)。
-
已有研究表明,蒙古栎根系定殖有丰富的共生真菌,其群落结构随着树龄的增长表现出动态变化。通过菌根形态特征和根尖ITS序列分析的方法,Wang等(2017)从中国北部太白山、子午岭、灵空山、东灵山和香山5个典型蒙古栎林的外生菌根真菌群落中共鉴定出220种外生菌根真菌,其丰富度与海拔高度和土壤有机质呈正相关。Wang等(2012)采用分子生物学方法对不同树龄的蒙古栎外生菌根真菌群落进行研究,共鉴定出66种外生菌根真菌,其中51种隶属于担子菌门,15种隶属于子囊菌门,土生空球菌(Cenococcum geophilum)是优势真菌,树龄显著影响了蒙古栎外生菌根真菌群落结构。
-
虽然已有分子生物学技术为蒙古栎共生真菌多样性特征提供了大量的研究数据,但分离纯化的菌丝体是解析共生菌与植物互作关系的前提。目前,蒙古栎根系可培养共生真菌的多样性特征还处于未知状态。因此,本研究采用根段直接分离法,对六盘山区幼龄蒙古栎根系共生真菌进行分离和鉴定,旨在阐明蒙古栎根系可培养共生真菌的群落结构和动态变化规律,为进一步研究蒙古栎与共生真菌间的互作机制提供基础数据和理论依据。
-
1 材料与方法
-
1.1 研究地区概况
-
六盘山区总面积90 071 hm2,海拔2 200~2 900 m,年均气温5.9℃,年均降水676 mm,年均相对湿度69%,属暖温带半湿润区的大陆性季风气候(王香亭,1988)。六盘山区蒙古栎主要分布于海拔1 100~1 650 m之间的缓坡和阴坡、半阴坡、半阳向沟坡地。
-
1.2 样品采集
-
2022年7—9月,在六盘山国家级自然保护区秋千架景区,选取3个50 m × 50 m的蒙古栎纯林作为试验样地。根据张婕等(2014)蒙古栎种群径级结构的划分标准,结合六盘山蒙古栎种群的实际生长情况,以4个不同树龄(1年生、2年生、3年生和4~5年生)的幼龄蒙古栎作为研究对象,依据5点采样法原则,分别采集不同树龄蒙古栎植株的整个根系各5份,共60份样品。采样时,用铁锹除去植株基部周围的地表覆盖物,将整个植株完整挖出并剪下所有根系放入自封袋中,根系周围保留少量土壤用于保鲜,采集的根样于冰箱4℃冷藏,3 d内带回实验室进行后续处理。
-
1.3 根系共生真菌的分离
-
在实验室将根样置于培养皿内,加入清水浸泡,待根样表面土壤松软后,用细小毛刷小心地移除根表面的土壤并剔除杂草等其他植物根系,蒸馏水冲洗根系3~5次。采用根段直接培养法进行根系共生真菌分离,分离和纯化采用马铃薯葡萄糖琼脂培养基(马铃薯200 g·L-1、葡萄糖20 g·L-1、琼脂粉16 g·L-1),待培养基常温冷却至45℃左右,加入终浓度50 mg·L-1氨苄青霉素抑制细菌生长。每份样品挑取30个末端2 cm的根系,依据不同树龄,采取不同的消毒方法。1年生、2年生的根系,采取2步消毒法,即先将准备好的根系于70%的酒精中浸泡 2 min,再于0.1%氯化汞中浸泡40 s,每次浸泡后用无菌水漂洗3次,最后一次漂洗之后用无菌滤纸吸干水分。3年生、4~5年生的根段,在2步消毒的基础上,再将根系置于70%的酒精中浸泡1 min,无菌水漂洗3次后吸干水分。将消毒后的根系切成0.2~0.3 cm的根段,每个PDA平板放置4个根段,每份样品接根段100个,生化培养箱25℃黑暗培养。菌落纯化参照肉斯塔木·艾买提等(2022)的方法,菌落形态特征描述依据McLean等(1999)和Johansson(2001)的方法,详细记录菌落颜色、质地、外形、是否有分泌物、边缘颜色及形状、直径。分离纯化后的所有菌株保藏于北方民族大学宁夏特殊生境微生物资源开发与利用重点实验室的微生物菌种保藏中心。
-
1.4 根系共生真菌分子鉴定
-
1.4.1 真菌DNA提取
-
待纯化的菌丝长满固体平板后,在无菌环境中,使用铁丝制作成的三角形刮板刮取表面菌丝进行收集,称取菌丝体约0.5 g,按照上海生工 UNIQ-10柱式真菌基因组试剂盒的说明书进行DNA抽提。
-
1.4.2 真菌rDNA ITS序列PCR扩增
-
采用真菌通用引物ITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′)和ITS4(5′-TCCTCCGCTTATTGATATGC-3′)进行菌落的PCR扩增。反应体系以50 μL为例:2×Hief PCR Mastr Mix 25 μL,Forward primer 10 μmol·L-1 2.5 μL,Reverse primer 10 μmol·L-1 2.5 μL,Template DNA 2 μL,ddH2O补足50 μL。反应条件如表1所示,对检测合格的样品送至生工生物工程(上海)股份有限公司测序。
-
1.4.3 ITS序列分析
-
对真菌测序结果的分析参照李敏奇等(2023)的方法进行分析并构建系统发育树。
-
1.5 根系共生真菌数量统计分析
-
幼龄蒙古栎根系不同共生真菌的分离数量采用分离频率分析。分离频率(%)=(分离的某种共生真菌的菌株数/分离的总菌株数)×100。
-
2 结果与分析
-
2.1 根系共生真菌菌落特征观察
-
从幼龄蒙古栎根系中共分离纯化得到249株真菌,依据菌落形态特征分为18个类型(图1,表2)。菌落多为圆形,少数是椭圆形,颜色有白色、黄白色、灰色、灰黑色、棕黄色、黑色等,大部分菌落不产色素,不同菌落类型生长速度差异较大,多数生长缓慢。其中,T5、T12、T15、T16菌落质地为薄蜡状,其余为绒毡状;T1、T4、T5、T11的菌落边缘为白色,T6菌落边缘为乳白色,T18的菌落边缘为黑色,T16菌落边缘为深灰色;T11菌落上有棕褐色水滴状分泌物,T12、T15菌落上有透明水滴状分泌物,T8菌落上有淡黄色水滴状分泌物,T3、T18菌落分泌物呈黑褐色水滴状;T2、T14、T16生长最快,纯化30 d后菌落直径分别为7.3~7.5 cm、7.2~7.5 cm、7.1~7.5 cm;T1和T10生长最慢,纯化30 d后菌落直径分别是2.2~2.5 cm和2.5~2.6 cm。
-
图1 在PDA培养基上生长30 d 后的真菌菌落形态特征
-
Fig.1 Morphological characteristics of fungal colony isolated from roots after culture for 30 days on PDA medium
-
2.2 分子鉴定结果
-
对分离获得的249个菌株的rDNA ITS片段进行拼接和质控,GenBank数据库比对得到数据库中的同源序列相似度为87.01%~100%(表3)。根据菌落形态型,从249个菌落中挑选39个代表菌株,参考模式菌株序列与同源序列共同构建系统发育树(图2),分离的菌株归属于2门5纲7目8科15属18种(表4)。形态型T1、T2的代表菌株L2、L105聚集在分支Ⅴ上,隶属于担子菌门伞菌纲(Agaricomycetes),其余37个代表菌株均隶属于子囊菌门(Ascomycota)。其中,L15、L54、L16、L100、L55、L21共6个菌株序列聚集在分支Ⅰ上,隶属于座囊菌纲(Dothideomycetes);L81、L107、L120、L8、L65、L108、L66、L167、L159、L145、L184、L47共12个菌株序列聚集在分支Ⅱ上,隶属于锤舌菌纲(Leotiomycetes);L176、L151共2个菌株聚在分支Ⅲ上,隶属于散囊菌纲(Eurotiomycetes);L128、L178、L69、L182、L133、L46、L126、L4、L43等共17个菌株的序列集聚在分支Ⅳ上,隶属于粪壳菌纲(Sordariomycetes)。
-
2.3 分离频率
-
不同种类的真菌其分离数量和分离频率差别较大(表3),其中灰粉无柄盘孢菌、托雷斯氏丛赤壳菌、强壮土赤壳菌、北美黑盘菌分离频率最高,依次为81.93%、4.02%、2.01%、2.01%。无柄盘孢菌属(Pezicula)菌株是分离频率最高的优势属(81.93%),在蒙古栎各个生长发育阶段中均为优势属。
-
蒙古栎不同树龄的根系可培养共生真菌数量和分离频率明显不同(表5)。从蒙古栎1年生植株分离得到共生真菌15株,分离频率为6.02%;从2年生植株分离得到49株,分离频率为19.68%;从3年生植株分离得到73株,分离频率为29.32%;从4~5年生植株分离得到112株,分离频率为44.98%。
-
不同树龄的蒙古栎根系共生真菌的分离频率由高到低依次为4~5年生>3年生>2年生>1年生。
-
3 讨论
-
研究结果表明,幼龄蒙古栎根系可培养共生真菌种类丰富,以子囊菌为优势类群。前人采用分子生物学方法研究发现蒙古栎根系共生真菌的优势类群是以担子菌为代表的外生菌根真菌,本研究是在方法和结果上对已有研究的重要补充,完善了蒙古栎根系共生真菌物种多样性特征,为共生真菌与植物间的共生互作机制研究提供了基础,也为后期真菌在蒙古栎育苗、造林和生态系统恢复等被运用提供了科学依据。
-
注: —表示在数据库中未查询到该种模式菌株序列。
-
Note: — indicates that the sequence of model strain is not queried in the database.
-
不同生长阶段的蒙古栎根系分离获得的共生真菌数量和分离频率具有显著差异,植株生长年限越长,根系定植的共生真菌种类和数量越多。共生真菌的群落结构随着植物的生长出现动态的变化,但在不同的研究中表现出了不同的变化特征。肉斯塔木·艾买提等(2022)从不同树龄的青海云杉根系分离得到的共生真菌的种类和数量差异较大,其中幼树阶段分离频率最高,幼苗阶段次之,成树阶段最低;郑叔召等(2022)对1~5年生的毛竹茎秆内生真菌多样性进行比较发现,3年生毛竹的内生真菌多样性最高,4年生最低,竹龄会显著改变内生真菌群落组成;树蓼成树菌根真菌的多样性和丰度都明显高于幼苗(Séne et al.,2016),但墨西哥枫的幼苗和成树之间的外生菌根群落结构并没有明显差异(Corrales et al.,2016)。共生真菌群落动态受到植被类型、植物器官和土壤等不同条件的共同制约,探讨其变化特征时需要综合考虑多种生态因子的影响去揭示其变化规律。
-
图2 基于根系共生真菌及其近似种rDNA ITS序列采用最大似然法构建系统发育树
-
Fig.2 Phylogenetic tree based on rDNA ITS sequences of root symbiotic Fungi and related species using maximum likelihood
-
本研究首次在蒙古栎根系中分离出无柄盘孢菌属真菌且该属真菌占绝对优势地位。Zheng和Zhuang(2022)通过对分离得到的无柄盘孢菌属的211个菌株进行分离鉴定和统计,发现约有1/3的菌株是从裸子植物(如松树、云杉、落叶松和冷杉)中分离出来,而在被子植物中的分离频率较低。本文研究发现,蒙古栎根系中定殖有大量的无柄盘孢菌属菌株,说明该属真菌的宿主植物范围比已知的更为广泛。虽然无柄盘孢菌普遍定植于植物的不同器官,但从根系中分离出的频率最高(Yuan &Verkley,2015; Ma et al.,2021)。
-
无柄盘孢菌具有显著的生物防治和抑菌能力,产生的多种活性物质如棘球菌素,具有保护植物不受病原真菌侵害的功能,而其本身由于独特的自抗性遗传机制而不受杀菌剂的影响(Yue et al.,2018; Xu et al.,2019)。无柄盘孢菌属真菌产生的多种抗生素相互作用,合成挥发性化合物,降低植物病原真菌菌核病和大斑病菌的发病率,并抑制这两种病菌的发育(Zhang et al.,2018)。Wang等(2014)对连翘中分离得到的无柄盘孢菌属真菌进行体外抗菌实验,发现其对灰霉病菌和黄萎病具有很强的抑制作用。我们推测蒙古栎作为西北地区的主要建群种,根系大量定殖的无柄盘孢菌可能对其生长发育及抵抗病虫侵害方面存在积极影响。
-
4 结论
-
幼龄蒙古栎根系可培养共生真菌丰富,以子囊菌为优势类群;1年生蒙古栎根系可培养共生真菌分离频率最低(6.02%),4~5年生植株分离频率最高(44.98%),真菌物种和数量随树龄增长呈现递增趋势;灰粉无柄盘孢菌是幼龄蒙古栎根系中分离频率最高的优势种(81.93%),作为六盘山幼龄蒙古栎根系可培养共生真菌的绝对优势类群,其与蒙古栎互作关系值得进一步分析研究。
-
参考文献
-
CHEN S, ZHANG G, LIANG X, et al. , 2023. A dark septate endophyte improves cadmium tolerance of maize by modifying root morphology and promoting cadmium binding to the cell wall and phosphate [J]. J Fung, 9(5): 531.
-
CORRALES A, ARNOLD AE, AFERRER A, et al. , 2016. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a neotropical montane forest [J]. Mycorrhiza, 26(1): 1-17.
-
FORS RO, SORCI-UHMANN E, SANTOS ES, et al. , 2023. Influence of soil type, land use, and rootstock genotype on root-associated arbuscular mycorrhizal fungi communities and their impact on grapevine growth and nutrition [J]. Agriculture, 13(11): 2163.
-
GONZÁLEZ-TEUBER M, URZUA A, PLAZA P, et al. , 2018. Effects of root endophytic fungi on response of Chenopodium quinoa to drought stress [J]. Plant Ecol, 19(3): 231-240.
-
JOHANSSON M, 2001. Fungal associations of Danish Calluna vulgaris roots with special reference to ericoid mycorrhiza [J]. Plant Soil, 231(2): 225-232.
-
LI MQ, YAN XF, REN YF, et al. , 2023. Diversity of macrofungi in Liupanshan National Nature Reserve, Ningxia [J]. Mycosystema, 42(9): 1889-1905. [李敏奇, 闫兴富, 任玉锋, 等, 2023. 六盘山国家级自然保护区大型真菌多样性 [J]. 菌物学报, 42(9): 1889-1905. ]
-
LIAN JH, QIU YL, BAI YT, et al. , 2022. Study on main species and population dynamics of fruit pests of Quercus liaotungensis [J]. China Plant Prot, 42(9): 39-43. [连俊华, 邱雅林, 白应统, 等, 2022. 辽东栎种实害虫主要种类及为害动态和防治适期研究 [J]. 中国植保导刊, 42(9): 39-43. ]
-
LIU RJ, WANG L, 2018. Biological symbiotics [M]. Beijing: Science Press. [刘润进, 王琳, 2018. 生物共生学 [M]. 北京: 科学出版社. ]
-
LIU Y, WEI XL, 2019. Dark septate endophyte improves drought tolerance of Ormosia hosiei Hemsley & E. H. Wilson by modulating root morphology, ultrastructure, and the ratio of root hormones [J]. Forests, 10(10): 830.
-
MA XY, KANG JC, HYDE KD, et al. , 2021. Pezicula endophytica sp. nov. , endophytic in Dendrobium in Thailand [J]. Mycotaxon, 136(3): 563-577.
-
MCLEAN CB, CUNNINGTON JH, LAWRIE AC, 1999. Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae [J]. New Phytol, 144(2): 351-358.
-
ROUSITAMU A, QIN HY, YAN XF, et al. , 2022. Isolation and identification of symbiotic fungi in roots of Picea crassifolia on Helan Mountain in Ningxia, China [J]. Microbiol China, 49(2): 449-462. [肉斯塔木·艾买提, 秦红亚, 闫兴富, 等, 2022. 宁夏贺兰山青海云杉根系共生真菌的分离与鉴定 [J]. 微生物学通报, 49(2): 449-462. ]
-
SÉNE S, AVRIL R, CHAINTREUIL C, et al. , 2015. Ectomycorrhizal fungal communities of Coccoloba uvifera (L. ) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles) [J]. Mycorrhiza, 25(7): 547-559.
-
WANG JY, WANG GP, ZHANG YL, et al. , 2014. Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites [J]. World J Microbiol Biotechnol, 30(10): 2639-2644.
-
WANG Q, HE XH, GUO LD, 2012. Ectomycorrhizal fungus communities of Quercus liaotungensis of different ages in a Northern China temperate forest [J]. Mycorrhiza, 22(6): 461-470.
-
WANG SJ, LAI WZ, XIE XA, et al. , 2018. Solation and identification of symbiotic fungi in Eucalyptus roots [J]. Acta Bot Boreal-Occident Sin, 38(8): 1553-1561. [王思佳, 赖文珍, 谢贤安, 等, 2018. 桉树根系共生真菌的分离与鉴定 [J]. 西北植物学报, 38(8): 1553-1561. ]
-
WANG XB, LIU JJ, LONG DF, et al. , 2017. The ectomycorrhizal fungal communities associated with Quercus liaotungensis in different habitats across Northern China [J]. Mycorrhiza, 27(5): 441-449.
-
WANG XT, 1988. Scientific investigation of Liupanshan Nature Reserve [M]. Yinchuang: Ningxia people's Publishing House: 14-15. [王香亭, 1988. 六盘山自然保护区科学考察 [M]. 银川: 宁夏人民出版社: 14-15. ]
-
WANG ZY, 2009. Vegetation characteristics and its responses to water condition in Liupan Mts. [D]. Beijing: Chinese Academy of Forestry: 2-3. [王占印, 2009. 六盘山植被特征及其对水分条件的响应 [D]. 北京: 中国林业科学研究院: 2-3. ]
-
XU LX, DUAN XW, WEI XY, et al. , 2019. Fungal trisaccharide ester compounds and use thereof in preparing agents for preventing and controlling plant fungal diseases: US20190166835 [P]. 2019-06-06.
-
YUAN ZL, VERKLEY GJM, 2015. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe [J]. Mycoscience, 56(2): 205-213.
-
YUE Q, LI Y, CHEN L, et al. , 2018. Genomics driven discovery of a novel self-resistance mechanism in the echinocandin producing fungus Pezicula radicicola [J]. Environ Microbiol, 20(9): 3154-3167.
-
ZHENG HD, ZHUANG WY, 2022. Additions to the knowledge of the genus Pezicula (Dermateaceae, Helotiales, Ascomycota) in China [J]. Biology, 11(10): 1386.
-
ZHANG J, SHANGGUAN TL, DUAN YH, et al. , 2014. Age structure and dynamics of Quercus wutaishanica population in Lingkong Mountain of Shanxi Province, China [J]. Chin J Appl Ecol, 25(11): 3125-3130. [张婕, 上官铁梁, 段毅豪, 等, 2014. 灵空山辽东栎种群年龄结构与动态 [J]. 应用生态学报, 25(11): 3125-3130. ]
-
ZHENG SZ, SUI JL, WU ZY, et al. , 2022. Diversity and community composition of endophytic fungi in Phyllostachys edulis stem at different ages [J]. Mol Plant Breed: 1-18 [2024-03-26]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220621. 0949. 002. html. [郑叔召, 隋佳乐, 吴仲义, 等, 2022. 不同竹龄毛竹茎秆内生真菌种群多样性与群落组成 [J]. 分子植物育种: 1-18 [2024-03-26]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220621. 0949. 002. html. ]
-
ZHANG XH, ZHANG DJ, LIU JL, et al. , 2018. Antifungal effects of volatile organic compounds from the endophytic fungus Cryptosporiopsis ericae Cc-HG-7 isolated from Coptis chinensis [J]. Biocontrol Sci Technol, 28(5): 496-508.
-
ZHANG ZH, GUO JB, WANG YH, et al. , 2021. Population structure and spatial distribution pattern of Quercus wutaishanica in Liupan Mountains [J]. J Zhejiang A & F Univ, 38(6): 1091-1099. [张中惠, 郭建斌, 王彦辉, 等, 2021. 六盘山辽东栎林种群结构和空间分布格局 [J]. 浙江农林大学学报, 38(6): 1091-1099. ]
-
ZOBEL M, KOOREM K, MOORA M, et al. , 2024. Symbiont plasticity as a driver of plant success [J]. New Phytol, 241: 2340-2352.
-
摘要
为阐明幼龄蒙古栎根系可培养共生真菌的群落结构和动态变化,该文从不同年龄的幼龄蒙古栎(Quercus mongolica)根系分离可培养共生真菌,并通过菌落形态学结合分子生物学的方法对其物种进行鉴定,结果表明:(1)从幼龄蒙古栎根系中分离获得249株真菌,经鉴定隶属于2门5纲7目 8科 15属 18种,其中2种隶属于担子菌门(Basidiomycetes),16种隶属于子囊菌门(Ascomycota)。种水平上,以灰粉无柄盘孢菌(Pezicula pruinosa)分离频率最高,占分离菌株总数的81.93%;托雷斯氏丛赤壳菌(Dactylonectria torresensis)、强壮土赤壳菌(Ilyonectria robusta)、北美黑盘菌(Atrocalyx nordicus)次之,分别占分离菌株总数的4.02%、2.01%和2.01%。(2)共生真菌种类和数量在不同树龄的蒙古栎中表现出较大差异,其中4~5年生植株分离频率最高(44.98%),依次为3年生植株(29.32%)、2年生植株(19.68%)和1年生植株(6.02%)。综上认为,宁夏六盘山幼龄蒙古栎根系可培养共生真菌种类丰富,随树龄增长其种类和数量增加;灰粉无柄盘孢菌是六盘山幼龄蒙古栎根系可培养共生真菌的绝对优势物种。该研究结果为进一步挖掘植物共生微生物资源,探索蒙古栎与共生微生物互作在本地逆境的适应机制提供了参考。
Abstract
In order to elucidate community structures and dynamic changes of culturable symbiotic fungal colony in roots of Quercus mongolica, the symbiotic fungi in roots of young Q. mongolica at different ages were isolated directly. The isolated fungi were identified based on the morphological characteristics of colony and molecular analysis. The results were as follows: (1)A total of 249 fungal strains were isolated from the roots of young Q. mongolica, 18 species belonging to 15 genera, 8 families, 7 orders, 5 classes and 2 phyla were recognized. Among them, two species belonged to Basidiomycetes and 16 species belonged to Ascomycota. Pezicula pruinosa was the species with the highest isolation frequency (81.93%), followed by Dactylonectria torresensis (4.02%), Ilyonectria robusta (2.01%) and Atrocalyx nordicus (2.01%). (2)Significant differences in species and quantities of symbiotic fungi demonstrated in different ages of young Quercus mongolica, with the highest frequency of isolation occurring in the 4-5 years old (44.98%) followed by the triennial (29.32%), biennial (19.68%) and annual (6.02%). To sum up, culturable symbiotic fungi in the roots of young Q. mongolica on Liupan Mountain are highly diverse. Species and quantities of isolates vary at different ages of trees, the diversity increases with the growth of tree, and Pezicula pruinosa is the most dominant culturable symbiotic fungi in roots of young Quercus mongolica. The results provide the reference for further investigating symbiotic fungal resources and exploring the microbial symbiotic mechanism of Q. mongolica in adapting to local environment.
Keywords
Liupan Mountain ; Quercus mongolica ; symbiotic fungi ; isolation and culture ; identification