-
镉(Cd)是我国农田重金属污染元素之一,是植物非必需元素。随着工业化的发展,Cd通过汽车尾气、水泥厂、农用化肥和冶炼厂粉尘等途径排放到环境中,造成环境污染(Zhou et al.,2017;Lin et al.,2022)。Cd污染导致植物营养缺乏、光合强度降低、氧化应激发生等,表现为植物生长受抑制,严重会导致植物死亡(张星雨等,2021)。中药材是中医临床防病治病的物质基础,在临床治疗中占有重要地位,其质量好坏直接关系着临床疗效。已有研究表明,Cd在多种中药材中有超标的风险,并且对中草药生长发育及活性成分积累均有抑制作用(蒲翔等,2019;张德林等,2019)。
-
植物内生菌是一类存在于植物体内,不对寄主植物产生伤害的微生物类群(Hardoim et al.,2008)。在长期协同进化过程中,内生菌与宿主植物形成了互利共生的友好关系,表现为宿主植物为内生菌提供稳定的生存环境和营养物质,而内生菌则通过分泌代谢物调节宿主植物的生理活动,进而促进植物从土壤环境中汲取养分(姚雨轩,2022)。当寄主植物遭遇非生物(Cd2+)胁迫时,内生菌主要通过激素调节(He et al.,2017)、增强光合作用(Zhang et al.,2023)、增加蛋白质含量(Zhou et al.,2021)、增强抗氧化系统(Kuramshina et al.,2018)、强化根系细胞壁木质素沉积(Maslennikova et al.,2023)以及与宿主协同作用(Xie et al.,2023)等方式缓解重金属胁迫;或通过胞内积累、胞外固定等将有毒重金属转化成低毒或无毒形式(Long et al.,2021);还可通过分泌铁载体(Nakamoto et al.,2021)、有机酸(Li et al.,2017)、氨基酸(Latif et al.,2016)和提高土壤pH(Wang et al.,2022)等降低重金属的植物有效性;也可通过调节植物对重金属吸收、转运基因的表达,从而降低或增强植物对重金属的积累(Cheng et al.,2021;Qian et al.,2022)。
-
已有研究表明,超积累植物不同器官或组织内细菌群落组成与其重金属积累量密切相关(罗继鹏等,2018)。Cd积累会对原有内生菌产生选择性压力,导致一些不能适应Cd胁迫的内生菌群落数量减少或消失(邹淑华等,2019)。姚雨轩(2022)研究指出,重金属污染水平是影响刺槐(Robinia pseudoacacia)内生菌群落组成差异的关键因子之一,随着重金属含量增加,内生菌群落多样性(Shannon指数)降低,而丰富度(Chao1指数)增加,同时,内生菌共现网络模块的平均度、聚类系数、网络节点密度和连接边数均随重金属含量增加而减少。Cu-Cd矿区和良田蓖麻(Ricinus communis)内生细菌群落多样性和丰富度研究结果表明,无Cd区蓖麻内生细菌群落的多样性和丰富度均大于Cd污染区(Li et al.,2023)。在邹淑华等(2019)研究中,耐Cd型(HE)东南景天(Sedum alfredii)叶片内生细菌的丰富度在Cd0(未添加Cd)土壤上最大,而茎和根系内生细菌的丰富度在Cd5(土壤Cd添加水平为5 mg·kg-1)土壤上最大。另外,器官内生菌共发生网络结构受重金属的积累量影响,如刺槐根中因积累了大量的Cd2+,导致其根部共发生网络结构较地上部简单(姚雨轩,2022)。但在不同Zn污染水平上,东南景天茎和叶不仅积累大量的Zn,而且其内生菌丰富度大多高于根部(陆丽婷,2018)。
-
艾纳香(Blumea balsamifera)是贵州省道地药材,可用于治疗鼻窦炎、绞痛、咳嗽、肾结石、流感等疾病(Widhiantara &Jawi,2021)。艾纳香对Cd具有富集作用,富集系数为2.5~15.8,各器官Cd积累量表现为叶>茎>根(梁娟等,2016;陈子涵等,2022),由于定殖于植物器官、组织中与植物生长、生理密切相关的内生菌通常具有耐重金属性(Mufti et al.,2015),因此有必要探究不同器官Cd积累量对其内生菌群落结构的影响,为从内生菌角度探讨不同器官耐Cd差异性提供新思路。因此,本研究设置了2个不同实验组(Cd0和Cd2),利用16S rRNA基因高通量测序技术进行艾纳香根、茎、叶内生菌群落组成分析,并结合内生菌分子生态网络分析,以了解Cd积累对内生菌群落结构特征变化的影响,以及与器官Cd积累密切相关的内生细菌种类,为今后开发利用功能内生菌治理Cd污染土壤提供科学依据。
-
1 材料与方法
-
1.1 艾纳香植株培育
-
试验幼苗选自贵州省罗甸县艾纳香种植基地2~3个月幼苗,试验土壤选自贵州医科大学南校区农用土壤,基本理化性质为pH=7.54,速效氮4.15 mg·kg-1,有机磷0.74 mg·kg-1,速效钾87.40 mg·kg-1,有机质1.31 mg·kg-1,土壤Cd的背景值为0.031 mg·kg-1。本试验采用盆栽培养,设置两个处理 [无Cd处理组(Cd0,种植土壤无外源Cd添加)和Cd处理组(Cd2,种植土壤Cd添加浓度为2.0 mg·kg-1)],每个处理组6个重复,每盆分装5 kg试验土,种植大小一致的幼苗一株,共12株。
-
1.2 样本采集
-
盆栽培养170 d后,每处理组各采收3株生长健康的艾纳香(无菌斑、虫咬缺口和机械损伤)植株连同土壤一并带回实验室,用软毛刷收集植物根际土壤,并保存于-80℃。用自来水冲洗艾纳香植株完毕后,室温晾干,并将根、茎、叶分别称其鲜重。一部分根、茎、叶样品烘干至恒重、磨碎、过60目尼龙筛,储存于干燥器中用于各器官Cd含量测定;一部分样品进行表面消毒后用于内生菌DNA提取。
-
1.3 植株和土壤样品的化学分析
-
参考陈子涵等(2022)的方法,分别称取0.1 g植物样品(根、茎、叶)及土样,加入7 mL HNO3-H2O2(体积比V∶V=5∶2)酸泡过夜,再置于电热板上150℃消解,消解至体积不足1 mL(呈澄清或淡黄色),冷却、定容,用石墨炉原子吸收光谱仪(contrAA 700)测定Cd含量,进而计算各器官Cd质量分数。根际土壤Cd的测定参考《土壤环境质量标准》(夏家淇等,1995)。根据公式(1)、(2)计算转移系数和富集系数。
-
1.4 样本表面消毒
-
将采集的根、茎、叶样品剪成大段(长约5 cm),无菌水彻底清洗后,先用75%酒精表面消毒(根1 min、茎和叶10 s),无菌蒸馏水漂洗1次,再用1.0% NaClO消毒3 min,然后用无菌水清洗3次,收集最后1次无菌水冲洗液,吸取100 μL涂布至LB培养基(胰蛋白胨10 g·L-1,酵母提取物5 g·L-1,氯化钠10 g·L-1,琼脂15g·L-1)平板恒温(28℃)培养2~3 d,以检查组织表面消毒是否彻底。将表面消毒彻底的样本转移到无菌研钵中,加入液氮研磨成粉状,无菌转移至灭菌EP管内。各处理组根、茎和叶样品分别准备3份。
-
1.5 DNA提取和高通量测序
-
DNA提取采用FastDNA® Spin Kit for Soil试剂盒(MP Biomedicals,USA),按照说明书的提取步骤进行,将提取得到的总DNA通过微量分光光度计(NanoDrop2 000,Thermo Fisher Scientific,USA)测定DNA浓度和纯度。
-
采用引物338F:5′-ACTCCTACGGGAGGCAGC AG-3′和806R:5′-GGACTACHVGGGTWTCTAAT-3′对16S rRNA基因的V3-V4区进行扩增,扩增体系:5×FastPfu Buffer 4 μL,2.5 mmol·L-1 dNTPs 2 μL,上游引物(5 μmol·L-1)0.8 μL,下游引物(5 μmol·L-1)0.8 μL,FastPfu DNA Polymerase 0.4 μL,BSA 0.2 μL,基因组DNA 10 ng,补ddH2O至20 μL。PCR反应体系:预变性95℃ 3 min,30个循环(变性95℃ 30 min,退火55℃ 30 s,延伸72℃ 45 s),稳定延伸72℃ 10 min,10℃保存直至反应结束。每个样本3个重复,使用2%的琼脂糖凝胶电泳分离PCR产物,使用AxyPrep DNA Gel Extraction Kit纯化PCR产物,测序工作交由上海美吉生物医药科技有限公司完成。
-
1.6 高通量数据处理及分析
-
使用Fastp软件和FLASH软件对原始测序序列进行质控及拼接,过滤reads尾部质量值20以下的碱基,允许overlap区最大错配比率为0.2,根据97%的相似度对序列进行操作分类单元(operational taxonomic unit,OTU)聚类,去除所有样本中注释到的叶绿体和线粒体序列,将所有样本序列抽平至2 000,利用RDP classifier分类网站和Silva16 rRNA基因数据库进行OTU物种分类学注释,置信度阈值为70%。计算α多样性(Shannon指数、Simpson指数、Sobs指数、Chao1指数、Ace指数),并采用Wilxocon秩和检验进行α多样性组间差异分析。用线性判别分析(Linear discriminant analysis Effect Size,LEfSe)确定同一处理不同器官间或不同处理组间相同器官属水平差异显著的内生细菌类群(LDA值>2)。使用基于欧氏距离的冗余分析(redundancy analysis,RDA)探讨土壤Cd和器官Cd对艾纳香细菌群落结构的影响。对各器官中所有属(genus)间进行Spearman相关分析,得到相关系数矩阵和P值矩阵,并采用Benjamini and Hochberg false discovery rate(FDR)方法矫正上述计算中所得到的P值,根据属间Spearman相关系数(|r|>0.7)和P<0.001作为阈值进行物种间共发生网络图构建。利用Gephi软件(0.10.1)构建分子生态网络(molecular ecological networks,MENs),并计算包括网络平均连通度、网络直径、网络密度、平均聚类系数、模块化、模块个数等在内的网络拓扑属性。
-
1.7 数据处理
-
使用SPSS 26.0和Excel进行数据的整理分析和绘图,实验数据用平均值±标准差。服从正态分布和满足方差齐性时,采用t检验、方差分析(ANOVA)法分析数据差异,不满足正态分布和方差齐性时采用非参数Wilcoxon秩和检验及Kruskal-Wallis H秩和检验。
-
2 结果与分析
-
2.1 艾纳香器官生物量及Cd含量
-
由图1:a可知,与Cd0处理相比,Cd2处理下艾纳香各器官生物量均增加且茎的生物量增加明显(P<0.01),由此可见,2.0 mg·kg-1Cd处理对艾纳香生长无抑制作用,进而说明艾纳香对一定量的Cd有耐受性。
-
Cd含量测定结果(图1:b)表明,艾纳香各器官Cd积累量大小表现为叶>茎>根,并且Cd2处理下各器官Cd含量显著高于Cd0处理(P<0.001)。此外,由图1:c可知,艾纳香对外源Cd的转移系数达到15.82,富集系数达到7.39,说明艾纳香对Cd具有较强的转移和富集能力。
-
2.2 Cd对艾纳香内生细菌α多样性影响
-
使用Fastp、FLASH软件对18个样本的原始测序结果进行过滤、拼接、筛选等后续处理,共获得969 532条优化序列,其中Cd0处理样本平均获得159 421条优化序列,Cd2处理样本平均获得149 711条优化序列。在97%相似度下,序列被注释得到1 421个OTUs,Cd0和Cd2处理分别得到616个和805个OTUs(表1)。为验证艾纳香样本的测序深度能否充分反映艾纳香实验样本的内生菌多样性,本实验绘制了Chao1指数的稀释曲线,如图2所示,稀释曲线持续增高后呈平稳状态,说明测序量充足,支持后续的分析。
-
艾纳香根、茎、叶内生菌α多样性分析结果见表1。相同处理条件下,不同器官内生菌丰富度(Sobs指数、Ace指数和Chao1指数)和多样性(Shannon指数和Simpson指数)存在一定差异,具体表现为根中内生菌丰富度及多样性明显高于茎和叶(P<0.05),而茎、叶中内生菌多样性及丰富度无显著差异。总的来看,艾纳香各器官内生菌α多样性呈现为根>茎>叶。
-
图1 Cd处理对艾纳香不同器官生物量(a)、Cd含量(b)、富集系数及转移系数(c)的影响
-
Fig.1 Effects of Cd treatment on biomass (a) , Cd content (b) , bioaccumulation factor and translocation factor (c) of different organs in Blumea balsamifera
-
组间α多样性结果(表1)表明,Cd2处理下艾纳香各器官内生菌多样性及丰富度均高于Cd0处理,特别是茎中内生菌丰富度(P<0.05),由此可见外源Cd添加(2.0 mg·kg-1)提高了艾纳香内生菌α多样性,也进一步说明了宿主器官Cd积累会使植株‘招募’更多种类内生菌以使其适应体内不同微环境的变化。
-
2.3 Cd对艾纳香内生菌群落组成的影响
-
基于门水平的内生菌群落相对丰度分析表明,外源Cd处理会影响艾纳香各器官内生菌群落组成(图3:a)。变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)和厚壁菌门(Firmicutes)等在各器官中占绝对数量优势。Cd2处理下,根、茎、叶中放线菌门、厚壁菌门、酸杆菌门(Acidobacteria)相对丰度分别为10.6%、1.6%、0.4%,2.5%、9.8%、0.5%和1.1%、3.9%、0.1%,高于Cd0处理相应器官——根(3.9%、0.9%、0.0%)、茎(0.9%、1.7%、0.1%)、叶(1.1%、1.7%、0.0%)3个门水平的细菌数量;Cd2处理下,根、茎、叶中变形菌门相对丰度(84.8%、85.6%、93.9%)低于Cd0处理相应器官变形菌门数量(93.9%、96.2%、96.4%)。Cd0和Cd2处理叶中拟杆菌门(Bacteroidota)相对丰度无差异,但在根和茎中拟杆菌门数量有差异,表现为茎中Cd0>Cd2、根中Cd0<Cd2。
-
在属水平上,各处理器官以代尔夫特菌属(Delftia)、假单胞菌属(Pseudomonas)、乳杆菌属(Lactobacillus)、芽孢杆菌属(Bacillus)为主要菌属,代尔夫特菌属在各样本中的相对丰度范围为22%~92.7%(图3:b)。Cd0处理的茎、叶中代尔夫特菌属相对丰度均大于92%,其数量占绝对优势,此外Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、鞘氨醇菌属(Sphingobium)主要存在于根中。Cd2处理下,根中鞘氨醇菌属,茎中假单胞菌属、乳杆菌属,叶中芽孢杆菌属相对丰度均高于Cd0处理,但根中假单胞菌属、Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium,茎和叶中代尔夫特菌属相对丰度低于Cd0处理,该结果表明鞘氨醇菌属、假单胞菌属、乳杆菌属、芽孢杆菌属等内生菌具有耐Cd能力。
-
韦恩图分析(属水平)(图4)结果表明:Cd0处理下,根中独有菌属62个(20.9%),茎中独有菌属16个(5.4%),叶中独有菌属10个(3.4%),根、茎、叶中共有菌属132个(44.4%);Cd2处理下,根中独有菌属31个(10.1%),茎中独有菌属18个(5.8%),叶中独有菌属5个(1.6%),根、茎、叶中共有菌属175个(56.8%)。综上表明,各处理下艾纳香根、茎、叶中内生细菌的群落组成具有一定的相似性,但不同处理间相同器官内生菌组成的变化间接反映了内生菌对各器官不同化学组成环境适应的改变。此外,与Cd0处理相比,Cd2处理的茎和叶中拥有更多的内生菌属(图4),表明更多种属细菌参与宿主对高积累Cd胁迫的抵抗。
-
注: *表示不同处理相同器官之间存在差异,不同字母表示相同处理不同器官之间存在差异(P<0.05)。
-
Note: * indicates significant differences for the same organ between different treatments, and different letters indicate significant differences for different organs under the same treatment (P<0.05) .
-
图2 Chao1指数的稀释曲线图
-
Fig.2 Rarefaction curve diagram of Chao1 index
-
通过冗余分析(RDA)识别内生菌群落与根际土壤Cd和器官Cd含量之间的关系。由图5可知,在艾纳香根、茎、叶前20种物种中,Cd2处理各器官多数内生菌丰度与根际土壤Cd、器官Cd含量呈正相关,包括根中芽孢杆菌属、分枝杆菌属(Mycobacterium)、鞘氨醇单胞菌属(Sphingomonas)、假诺卡氏菌属(Pseudonocardia)、unclassified_f Comamonadaceae、塔希杆菌属(Tahibacter)、代尔夫特菌属等,茎中分枝杆菌属、类诺卡氏菌属(Nocardioides)、游动放线菌属(Actinoplanes)、芽孢杆菌属、短小杆菌属(Curtobacterium)、慢生根瘤菌属(Bradyrhizobium)、假单胞菌属等,叶中芽孢杆菌属、短小杆菌属、鞘氨醇菌属、食酸菌属(Acidovorax)、塔希杆菌属、unclassified_f Enterobacteriaceae、马赛菌属(Massilia)等;仅有少数内生菌与之呈负相关,如根中Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、假单胞菌属、食酸菌属、马赛菌属、鞘氨醇菌属,茎中食酸菌属、Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、马赛菌属、代尔夫特菌属,叶中慢生根瘤菌属、代尔夫特菌属、红微菌属(Rhodomicrobium)、unclassified_f Comamonadaceae、类诺卡氏菌属等。而Cd0处理各器官内生菌丰度与根际土壤Cd、器官Cd含量的关系与Cd2处理的结果相反。上述结果说明Cd处理下内生菌组成和结构的变化对艾纳香Cd富集作用有着重要的影响。
-
2.4 Cd对艾纳香内生菌物种差异的影响
-
以内生细菌类群为研究对象,利用线性判别分析(LEfSe)区分同一处理组内不同器官间及不同处理组相同器官之间的主要差异物种。结果发现,Cd0处理下,与茎、叶相比,根中的差异物种类较多,主要有Allorhizobium-Neorhizobium-Pararhizo-bium-Rhizobium、假单胞菌属、鞘氨醇菌属、食酸菌属、马赛菌属、游动放线菌属、塔希杆菌属、Rhizobacter、纤维单胞菌属(Cellulomonas)、Novosphingobium、Caulobacter、Bosea、鞘氨醇单胞菌属、Methylobacillus等物种;与根相比,茎、叶中主要差异物种有代尔夫特菌属和芽孢杆菌属;此外,叶中芽孢杆菌属、Bosea、乳杆菌属、Gaiella、Arenimonas、假诺卡氏菌属、Deinococcus等数量明显高于茎(图6:a)。
-
同样在Cd2处理下,与茎、叶相比,根中存在更多的差异物种,主要有鞘氨醇菌属、塔希杆菌属、Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、游动放线菌属、假诺卡氏菌属、分枝杆菌属、慢生根瘤菌属、鞘氨醇单胞菌属、红微菌属、食酸菌属、马赛菌属等物种;与根相比,茎中主要差异物种有乳杆菌属、水稻土菌属(Oryzihumus)、Acidothermus,叶中主要有代尔夫特菌属、芽孢杆菌属、Tsukamurella、Nakamurella;另外,茎中的差异物种较叶中多,主要有乳杆菌属、Sulfuritalea、纤维单胞菌属、Klenkia、Desulfocapsa、Iamia等物种(图6:b)。
-
不同处理相同器官比较发现(图7),Cd2处理各器官存在更多差异物种,根中主要有分枝杆菌属、假诺卡氏菌属、类诺卡氏菌属、慢生根瘤菌属、鞘氨醇单胞菌属、芽孢杆菌属、Devosia、Acidibacter、Lechevalieria等物种,茎中主要有乳杆菌属、纤维单胞菌属、假诺卡氏菌属、Sulfuritalea、水稻土菌属、Ahniella、Desulfocapsa等物种,叶中主要有芽孢杆菌属、Bosea、Pseudorhodoplanes、Mesorhizobium、Rhizobacter等物种;Cd0处理根中主要有假单胞菌属、Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、食酸菌属等物种,茎中主要有代尔夫特菌属、Novosphingobium等物种,叶中主要有Brevundimonas、Candidatus_Microthrix等物种。综上表明,Cd积累不但影响各器官内生菌物种组成,还有促使各器官‘招募’更多差异内生菌的趋向,这或许在艾纳香对Cd积累的适应中起着关键作用。
-
2.5 Cd对艾纳香内生菌共发生网络的影响
-
共发生网络总体拓扑性质分析结果见表2。Cd0处理下根、茎、叶共发生网络节点分别为162、117、114,边分别为1 558、1 250、1 347,平均连通度分别为19.235、21.368、23.632,网络密度分别为0.119、0.184、0.209;Cd2处理下根、茎、叶共发生网络节点分别为254、140、152,边分别为7 200、998、3 139,平均连通度分别为28.346、14.257、41.303,网络密度分别为0.112、0.103、0.274。上述结果表明,Cd2处理下根和叶内生菌共发生网络规模趋向大而复杂,茎则表现出相反效果。Cd0处理下根、茎、叶各器官内生菌共发生网络模块性数值分别为0.591、0.672、0.517,模块数分别为29、15、14,Cd2处理下各器官共发生网络模块性数值分别为0.654、0.693、0.346,模块数分别为68、28、17。该结果表明Cd2处理下根、茎和叶共发生网络内生菌功能单元均有所增加,各器官共发生网络模块表现(模块性)以叶网络模块间连接较多且紧密,茎次之。此外,各处理样本内生菌群落均以正相关为主,但随着Cd的施加,根、茎中共发生网络正相关连线比例减少(特别是根),而叶中正相关连线比例则有所增加,表明Cd处理改变了各器官内生菌物种间的相互作用,具体表现为叶中协同共生关系的加强和根、茎中物种间竞争关系的增强。
-
对物种进行相关性网络互作分析,由内生菌共发生网络结构组成(图8)可知:Cd0处理下,根中边数较大的物种为Pseudoxanthobacter(42)、Dokdonella(42)、Novispirillum(42)、Bryobacter(42)、Occallatibacter(42)、Gemmatimonas(42)、Azovibrio(42)、Cryomorpha(42)、Zymobacter(42)、Romboutsia(42)等,茎中边数较大的物种为Planococcus(31)、Aquaspirillum(31)、Turicibacter(31)、Dactylosporangium(31)、Devosia(31)、Thauera(31)、Haematobacter(31)、Garicola(31)、Agromyces(31)、Altererythrobacter(31)等,叶中边数较大的物种为Planococcus(41)、Bdellovibrio(41)、Dokdonella(41)、Ahniella(41)、Hyphomicrobium(41)、Luteimonas(41)、Cellulomonas(41)、Photobacterium(41)、Pseudarthrobacter(41)、Reyranella(41)等;Cd2处理下,根中边数较大的物种为Sporacetigenium(81)、乳杆菌属(81)、Novispirillum(81)、Truepera(81)、Altererythrobacter(81)、 Romboutsia(81)、 Reyranella(81)、Gordonia(81)、Brevundimonas(81)、Dongia(81)等,茎中边数较大的物种为Planifilum(28)、Luteimonas(28)、Dactylosporangium(28)、Thauera(28)、Streptococcus(28)、Ohtaekwangia(28)、Agromyces(28)、Zymobacter(28)、Microvirga(28)、Rubrobacter(28)等,叶中边数较大的物种为Deinococcus(70)、Pseudoxanthobacter(70)、Pedomicrobium(70)、Planococcus(70)、Rhodoplanes(70)、Planifilum(70)、Lechevalieria(70)、Aquaspirillum(70)、Nonomuraea(70)、Dokdonella(70)等。由此可见,器官Cd积累会影响各器官内生菌共发生网络结构和物种间的互作关系。
-
图3 Cd0和Cd2处理下艾纳香不同器官内生菌群落的组成
-
Fig.3 Concposition of endophytic bacterial community in different organs of Blumea balsamifera under Cd0 and Cd2 treatments
-
图4 Cd0和Cd2处理下艾纳香不同器官内生菌群落构成韦恩图(属水平)
-
Fig.4 Venn diagrams of endophytic bacteria community in different organs of Blumea balsamifera under Cd0 and Cd2 treatments (genus level)
-
3 讨论
-
3.1 Cd积累对艾纳香器官内生菌群落结构的影响
-
植物内生菌群落易受非生物和生物因子所调节(Hallmann et al.,1997;Fuentes-Ramirez et al.,1999;Seghers et al.,2004;Liang et al.,2021)。相关研究普遍认为Cd污染导致植物内生菌多样性下降(亓文钰,2021;Li et al.,2023),但在黑麦草(Lolium perenne)(Liang et al.,2021)、超积累型东南景天等(邹淑华等,2019)相关研究中发现,金属Cd污染导致内生菌多样性增加,同样在本研究中,艾纳香Cd胁迫积累不仅能促进植株生长,还能提高各器官内生细菌多样性和丰富度,该现象的发生与一些研究者指出的内生菌多样性越高,宿主植物对环境胁迫的适宜性越强结果相符(Sánchez-López et al.,2018)。另外,本研究Cd0和Cd2处理下,艾纳香根中内生细菌多样性和丰富度均显著高于茎和叶,这与三七(Panax notoginseng)内生菌分布结果相似(Liu et al.,2020),可能与根内生菌主要来源于土壤有关(Gao &Shi,2018)。
-
本研究中艾纳香内生菌群落由变形菌门、放线菌门和厚壁菌门等组成,其中变形菌门占主要地位,这与甘松(Nardostachys jatamansi)(李莹等,2022)、冰川棘豆(Oxytropis glacialis)(许国琪等,2021)等植物内生菌组成的研究结果一致,说明植物内生菌在较大分类单元下基本一致。在本研究中,与Cd0处理相比,Cd2处理根、茎、叶中变形菌门的相对丰度降低,而放线菌门、厚壁菌门、酸杆菌门的相对丰度升高,这与Liang等(2021)和邹淑华等(2019)的研究结果一致。从属水平上来看,Cd积累导致艾纳香根、茎、叶中优势菌属增加,如根中的代尔夫特菌属、鞘氨醇菌属,茎中的假单胞菌属、乳杆菌属以及叶中的芽孢杆菌属,RDA分析结果也表明上述菌属与器官Cd含量和土壤Cd含量的密切相关性。各器官不同程度的Cd积累导致内生菌群落结构不同也体现在东南景天上(邹淑华等,2019),如超积累型东南景天(HE)茎中Alphaproteobacteria,叶片中Gammaproteobacteria、Negativicutes和Clostridia 4个纲内生菌的相对丰度随Cd2+积累的增多显著增加。与根部相比,超积累植物Thlaspi caerulescens subsp. calaminaria地上部内生菌不仅有耐高浓度Cd2+、Zn2+等特点,还存在器官特定优势菌属,如Methylobacterium(Lodewyckx et al.,2002),由此可见,内生菌群落结构受宿主植物和土壤环境的影响。
-
图5 艾纳香内生菌数量与器官、根际土壤Cd含量的 RDA 相关分析(属水平)
-
Fig.5 RDA correlation analysis among the quantity of endophytic bacteria and Cd contents in organs and rhizosphere soils of Blumea balsamifera (genus level)
-
图6 艾纳香不同器官内生菌响应Cd的LEfSe分析(组内)
-
Fig.6 LEfSe analysis on the response of endophytic bacteria to Cd in different organs of Blumea balsamifera (within the group)
-
图7 艾纳香不同器官内生菌响应Cd的LEfSe分析(组间)
-
Fig.7 LEfSe analysis on the response of endophytic bacteria to Cd in different organs of Blumea balsamifera (between groups)
-
相关研究指出,在Cd胁迫下,植物能够‘招募’特定的内生菌种群,从而实现高Cd抗性和植物生长促进特性(台喜生等,2021;Liang et al.,2021)。一般来说,‘招募’的特定内生菌种群往往具有较强的耐Cd性,如东南景天从根际土壤中‘招募’大量耐Cd/Zn内生菌,包括Burkholderia、芽孢杆菌属、Novosphingobium等来强化其对重金属胁迫的抵抗(Wu et al.,2020)。本文研究结果发现,Cd处理艾纳香根、茎、叶中存在大量的差异优势物种,如芽孢杆菌属、假单胞菌属、乳杆菌属等。Maslennikova等(2023)研究指出,芽孢杆菌属能够强化根系细胞壁木质素的沉积,进而阻止Cd向地上部转移,以减轻其毒害作用。假单胞菌属可通过调节东南景天重金属ATPase(HMA)、天然抗性相关巨噬蛋白(NRAMP)、ZRT/IRT-like蛋白(ZIP)等基因的表达来实现对Cd转移的调控和耐性(Chen et al.,2017)。乳杆菌属的胞外多糖通过改变水稻根Cd亚细胞分布和Cd化学形态形式来减少Cd向地上部籽粒的转移和减轻Cd毒害(Li KT et al.,2022)。由此可见,艾纳香各器官中更多差异内生菌可能参与艾纳香生长及Cd2+的吸收、积累和解毒生理代谢过程。
-
3.2 Cd积累对艾纳香内生菌共发生网络结构的影响
-
在生态系统中,微生物通常以复杂的网络结构共存和相互作用,构建微生物共发生网络为探究微生物群落内潜在的相互作用提供了技术支撑(Chu et al.,2021)。一般来说,网络越复杂,群落结构越稳定(Li H et al.,2022)。艾纳香各器官内生菌共发生网络分析结果表明,无论是Cd0处理,还是Cd2处理,根部内生菌网络结构都比茎、叶复杂且物种间以正相关为主,这与Zhang等(2022)的研究结果一致,即在两种农业种植模式中,均表现为番茄根中内生细菌网络比茎中复杂。两处理组对比发现,Cd2处理下根、叶内生菌共发生网络比Cd0更复杂(表现为更多的边数和较大的平均连通度和网络密度数值),并且增加了根、茎中内生菌共发生网络负相关边比例和叶中正相关边比例,进而说明Cd积累导致各器官内生菌之间的相互作用关系有所改变,即在根、茎中物种间竞争关系的增强,而在叶中则为物种间共生关系的增强,但从总体而言,各器官物种间的共生关系占主导地位。同样在He等(2021)研究中,高镉污染提高鸭跖草(Commelina communis)内生菌共发生网络复杂性且物种间主要以正相关关系存在,而超积累植物刺槐(Robinia pseudoacacia)在镉、铜、铅等污染状态下,器官内生菌共发生网络趋向于简单,物种间的关系并不以正相关作用为主,从各器官内生菌共发生网络模块特性来看,叶内生菌共发生网络比根更复杂(姚雨轩,2022),这与本研究中Cd2处理下器官内生菌共发生网络特点表现基本一致。镉污染下水稻器官内生菌共发生网络分析表明,与地上部(模块性为0.537)相比,根部(模块性为0.277)积累更多Cd的同时其内生菌群落结构表现为更复杂化(Zheng et al.,2022),这与Berry和Widder(2014)阐述的复杂网络能更好应对环境变化观点相一致。在本研究中,Cd积累下艾纳香器官叶的模块性远低于茎和根,说明叶部内生菌共发生网络模块间联系紧密且不同物种分布于不同的模块,有利于形成特定生态位相对稳定的共生内生菌群落以适应Cd积累胁迫。因此,在本研究中,Cd污染可能通过诱导艾纳香建立更加复杂的内生菌共发生网络和增强物种间的正向关联强度来应对Cd积累的影响。值得注意的是,本文并未设置Cd对艾纳香生长的抑制浓度且研究样本量有限,存在不足之处。因此,在后续的研究中将进一步改进研究方案,使其变得更加深入、合理。
-
图8 Cd积累对艾纳香不同器官内生菌群落结构的影响(门水平)
-
Fig.8 Effects of Cd accumulation on community structure of endophytic bacteria in different organs of Blumea balsamifera (phylum level)
-
4 结论
-
(1)MiSeq测序表明,Cd积累提高了艾纳香各器官内生菌α多样性,各器官α多样性总体表现为根>茎>叶。(2)RDA分析表明,艾纳香器官内生菌群落组成与植株器官Cd含量和根际土壤Cd含量密切相关,并且大多数内生菌与植株体Cd含量和根际土壤Cd含量呈正相关。(3)线性判别分析(LEfSe)表明,艾纳香根中内生菌差异物种较茎和叶丰富。此外,Cd积累显著增加了根、茎和叶中的分枝杆菌属、类诺卡氏菌属、慢性根瘤菌属、鞘氨醇单细胞菌属、乳杆菌属、纤维单胞菌属、芽孢杆菌属、Mesorhizobium、Rhizobacter等属的耐Cd内生菌数量。(4)共发生网络分析表明,艾纳香根和叶中Cd积累使内生菌共发生网络变得更加复杂。器官Cd积累增强了根、茎物种间的竞争关系和叶物种间的共生关系。
-
参考文献
-
BERRY D, WIDDER S, 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks [J]. Front Microbiol, 5: 219.
-
CHEN B, LUO S, WU YJ, et al. , 2017. The effects of the endophytic bacterium pseudomonas fluorescens sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance [J]. Front Microbiol, 8: 2538.
-
CHEN ZH, REN JG, PANG YX, et al. , 2022. Effects of cadmium stress on resistant physiology, subcellular distribution and chemical forms of cadmium in Blumea balsamifera [J]. Seed, 41(2): 31-39. [陈子涵, 任建国, 庞玉新, 等, 2022. 镉胁迫对艾纳香抗性生理、亚细胞镉分布和镉化学形态的影响 [J]. 种子, 41(2): 31-39. ]
-
CHENG C, WANG R, SUN LJ, et al. , 2021. Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa cliangyou 513) [J]. Chemosphere, 275: 130109.
-
CHU CQ, FAN MY, SONG CY, et al. , 2021. Unveiling endophytic bacterial community structures of different rice cultivars grown in a cadmium-contaminated paddy field [J]. Front Microbiol, 12: 756327.
-
FUENTES-RAMIREZ LE, CABALLERO-MELLADO J, SEPULVEDA J, et al. , 1999. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization [J]. Fems Microbiol Ecol, 29(2): 117-128.
-
GAO T, SHI XY, 2018. Preparation of a synthetic seed for the common reed harboring an endophytic bacterium promoting seedling growth under cadmium stress [J]. Environ Sci Pollut Res Int, 25(9): 8871-8879.
-
HALLMANN J, QUADT-HALLMANN A, MAHAFFEE WF, et al. , 1997. Bacterial endophytes in agricultural crops [J]. Can J Microbiol, 43(10): 895-914.
-
HARDOIM PR, VAN OVERBEEK LS, ELSAS JD, 2008. Properties of bacterial endophytes and their proposed role in plant growth [J]. Trends Microbiol, 16(10): 463-471.
-
HE L, REN YZ, ZENG WM, et al. , 2021. Deciphering the endophytic and rhizospheric microbial communities of a metallophyte Commelina communis in different Cu-polluted soils [J]. Microorganisms, 9(8): 1689.
-
HE YM, YANG ZX, LI MR, et al. , 2017. Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress [J]. Environ Sci Pollut Res Int, 24(22): 18494-18504.
-
KURAMSHINA ZM, SMIRNOVA YV, KHAIRULLIN RM, 2018. Cadmium and nickel toxicity for Sinapis alba plants inoculated with endophytic strains of Bacillus subtilis [J]. Russ J Plant Physiol, 65(2): 269-277.
-
LATIF KA, IHSAN U, JAVID H, et al. , 2016. Regulations of essential amino acids and proteomics of bacterial endophytes Sphingomonas sp. Lk11 during cadmium uptake [J]. Environ Toxicol, 31(7): 887-896.
-
LI H, LOU LY, TANG B, et al. , 2022. Dynamic changes of rhizosphere soil bacterial community and nutrients in cadmium polluted soils with soybean-corn intercropping [J]. BMC Microbiol, 22(1): 57.
-
LI KT, PENG SY, ZHANG B, et al. , 2022. Exopolysaccharides from Lactobacillus plantarum reduces cadmium uptake and mitigates cadmium toxicity in rice seedlings [J]. World J Microbiol Biotechnol, 38(12): 243.
-
LI Q, FU QL, ZHU J, et al. , 2023. Endophyticbacteria in Ricinus communis L. : diversity of bacterial community, plant-growth promoting traits of the isolates and its effect on Cu and Cd speciation in soil [J]. Agronomy, 13(2): 333.
-
LI Y, HAN H, HE LY, et al. , 2017. Inoculation with endophytic Bacillus megaterium H3 increases Cd phytostabilization and alleviates Cd toxicity to hybrid pennisetum in Cd-contaminated aquatic environments [J]. Environ Sci Pollut Res Int, 24(2): 1416-1423.
-
LI Y, ZHONG HR, LI YS, et al. , 2022. Community structure and diversity analysis of rhizosphere bacterial of Nardostachys jatamansi and endophytic bacteria in medicinal parts based on high-throughput sequencing technology [J]. Chin Herb Med, 55(3): 835-847. [李莹, 钟海蓉, 李奕松, 等, 2022. 基于高通量测序研究甘松根际细菌及药用部位内生细菌群落结构及多样性 [J]. 中草药, 53(3): 835-847. ]
-
LIANG J, ZHOU HF, REN JG, et al. , 2016. Physiological response to cadmium stress and distribution characteristics of cadmium in the body of Blumea balsamifera [J]. Jiangsu Agric Sci, 45(5): 271-274. [梁娟, 周华芳, 任建国, 等, 2016. 黔产艾纳香对镉胁迫的生理响应及其体内镉分布特征 [J]. 江苏农业科学, 45(5): 271-274. ]
-
LIANG SX, ZHANG Y, CUI BJ, 2021. Insights into the effects of cadmium stress on endophytic bacterial community in the hyperaccumulating plant ryegrass [J]. Environ Pollut Bioavailab, 33(1): 460-468.
-
LIN CL, CHEN YF, FANG SZ, et al. , 2022. Cadmium contamination of Chinese agricultural soils [J]. Fresenius Environ Bull, 31(3): 2466-2473.
-
LIU TH, ZHOU Y, TAO WC, et al. , 2020. Bacterial diversity in roots, stems, and leaves of Chinese medicinal plant Paris polyphylla var. yunnanensis [J]. Pol J Microbiol, 69(1): 91-97.
-
LODEWYCKX C, MERGEAY M, VANGRONSVELD J, et al. , 2002. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria [J]. Int J Phytorem, 4(2): 101-115.
-
LONG JY, YU MX, XU HH, et al. , 2021. Characterization of cadmium biosorption by inactive biomass of two cadmium-tolerant endophytic bacteria Microbacterium sp. D2-2 and Bacillus sp. C9-3 [J]. Ecotoxicology, 30(7): 1419-1428.
-
LU LT, 2018. The effect of Zinc pollution on endophytic bacteria diversity and infection characteristic of Sedum alfredii [D]. Guangzhou: South China Agricultural University. [陆丽婷, 2018. 土壤Zn污染水平对东南景天内生菌多样性及其定殖分布特征影响 [D]. 广州: 华南农业大学. ]
-
LUO JP, TAO Q, WU KR, et al. , 2018. Research progress in composition and function of hyperaccumulator-associated endogenous microorganism community [J]. J Zhejiang Univ, 44(5): 515-529. [罗继鹏, 陶琦, 吴可人, 等, 2018. 超积累植物内生微生物群落组成特征及其功能研究进展 [J]. 浙江大学学报, 44(5): 515-529. ]
-
MASLENNIKOVA D, KORYAKOV I, YULDASHEV R, et al. , 2023. Endophytic plant growth-promoting bacterium Bacillus subtilis reduces the toxic effect of cadmium on wheat plants [J]. Microorganisms, 11(7): 1653.
-
MUFTI R, AMNA RAFIQUE M, HAQ F, et al. , 2015. Genetic diversity and metal resistance assessment of endophytes isolated from Oxalis corniculata [J]. Soil Environ, 34(1): 89-99.
-
NAKAMOTO Y, DOYAMA K, HARUMA T, et al. , 2021. Fe, Mn and U-238 accumulations in Phragmites australis naturally growing at the mill tailings pond; iron plaque formation possibly related to root-endophytic bacteria producing siderophores [J]. Minerals, 11(12): 1337.
-
PU X, LONG LH, XIE Y, et al. , 2019. Determination of heavy metals in 11 Chinese medicinal materials by ICP-MS and its statistical analysis [J]. Lishizhen Med Mat Med Res, 30(10): 2345-2348. [蒲翔, 龙立慧, 谢宇, 等, 2019. 11种中药材中重金属含量的ICP-MS法测定及统计分析 [J]. 时珍国医国药, 30(10): 2345-2348. ]
-
QI WY, 2021. Regulation mechanism and endophytic flora of selenium nanoparticles alleviating cadmium stress in Brassica napus [D]. Jinan: Shandong University. [亓文钰, 2021. 纳米硒缓解甘蓝型油菜镉胁迫的调控机理与内生菌群研究 [D]. 济南: 山东大学. ]
-
QIAN L, SONG F, XIA J, et al. , 2022. A glucuronic acid-producing endophyte Pseudomonas sp. MCS15 reduces cadmium uptake in rice by inhibition of ethylene biosynthesis [J]. Front Plant Sci, 13: 876545.
-
SEGHERS D, WITTEBOLLE L, TOP EM, et al. , 2004. Impact of agricultural practices on the Zea mays L. endophytic community [J]. Appl Environ Microbiol, 70(3): 1475-1482.
-
SÁNCHEZ-LÓPEZ AS, THIJS S, BECKERS B, et al. , 2018. Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues [J]. Plant Soil, 422(1/2): 51-66.
-
TAI XS, YANG RQ, CHANG GH, et al. , 2021. Research progress of endophyte resources in metal mining area [J]. Chin Wild Plant Resour, 40(4): 64-76. [台喜生, 杨蕊琪, 常国华, 等, 2021. 金属矿区植物内生菌资源研究进展 [J]. 中国野生植物资源, 40(4): 64-76. ]
-
WANG YL, WANG R, KOU FL, et al. , 2022. Cadmium-tolerant facultative endophytic Rhizobium larrymoorei S28 reduces cadmium availability and accumulation in rice in cadmium-polluted soil [J]. Environ Technol Innovation, 26: 102294.
-
WIDHIANTARA IG, JAWI IM, 2021. Phytochemical composition and health properties of Sembung plant (Blumea balsamifera): A review [J]. Vet World, 14(5): 1185-1196.
-
WU YJ, MA LY, ZHANG XC, et al. , 2020. A hyperaccumulator plant Sedum alfredii recruits Cd/Zn-tolerant but not Pb-tolerant endospheric bacterial communities from its rhizospheric soil [J]. Plant Soil, 455: 257-270.
-
XIA JQ, CAI DJ, XIA ZL, et al. , 1995. The soil environmental quality standard: GB 15618-1995 [S]. Beijing: State Environmental Protection Administration, State Bureau of Technical Supervision. [夏家淇, 蔡道基, 夏增禄, 等, 1995. 土壤环境质量标准: GB 15618-1995 [S]. 北京: 国家环境保护局, 国家技术监督局. ]
-
XIE M, GAO X, ZHANG S, et al. , 2023. Cadmium stimulated cooperation between bacterial endophytes and plant intrinsic detoxification mechanism in Lonicera japonica Thunb [J]. Chemosphere, 325: 13841.
-
XU GQ, LIU YX, CAO PX, et al. , 2021. Endophytes diversity of Oxytropis glacialis different tissues based on Illumina MiSeq sequencing [J]. Acta Ecol Sin, 41(12): 4993-5003. [许国琪, 刘怡萱, 曹鹏熙, 等, 2021. 基于Illumina MiSeq测序技术对冰川棘豆(Oxytropis glacialis)不同组织内生菌多样性的研究 [J]. 生态学报, 41(12): 4993-5003. ]
-
YAO YX, 2022. Study on community characteristics and influencing factors of endophytic bacteria of Robinia pseudoacacia in heavy metal contaminated area [D]. Changsha: Central South University of Forestry and Technology. [姚雨轩, 2022. 重金属污染地刺槐内生菌群落特征及其影响因子研究 [D]. 长沙: 中南林业科技大学. ]
-
ZHANG DL, ZHANG SD, YANG HY, et al. , 2019. Effect of soil Cd pollution on yield and quality of Ligusticum chuanxiong Hort [J]. J Chin Med Mat, 42(6): 1228-1230. [张德林, 张思荻, 杨海燕, 等, 2019. 基于土壤Cd污染对川芎产量和品质的影响研究 [J]. 中药材, 42(6): 1228-1230. ]
-
ZHANG SQ, LI YM, WANG P, et al. , 2023. Lactic acid bacteria promoted soil quality and enhanced phytoextraction of Cd and Zn by mustard: a trial for bioengineering of toxic metal contaminated mining soils [J]. Environ Res, 216: 114646.
-
ZHANG XY, YE ZB, ZHANG YY, 2021. Advances in physiological and molecular mechanism of plant response to cadmium stress [J]. Plant Physiol J, 57(7): 1437-1450. [张星雨, 叶志彪, 张余洋, 2021. 植物响应镉胁迫的生理与分子机制研究进展 [J]. 植物生理学报, 57(7): 1437-1450. ]
-
ZHANG ZY, XIAO YS, ZHAN Y, et al. , 2022. Tomato microbiome under long-term organic and conventional farming [J]. iMeta, 1(3): e48.
-
ZHENG ZY, LI P, XIONG ZQ, et al. , 2022. Integrated network analysis reveals that exogenous cadmium-tolerant endophytic bacteria inhibit cadmium uptake in rice [J]. Chemosphere, 301: 134655.
-
ZHOU D, SONG X, ZHAO FJ, et al. , 2017. Soil environment and pollution remediation preface [J]. Pedosphere, 27(3): 387-388.
-
ZHOU X, LIU XQ, ZHAO JT, et al. , 2021. The endophytic bacterium Bacillus koreensis 181-22 promotes rice growth and alleviates cadmium stress under cadmium exposure [J]. Appl Microbiol Biotechnol, 105: 8517-8529.
-
ZOU SH, DENG PX, LONG XX, 2019. Impacts of cadmium on the diversity of endophytic bacteria associated with hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii [J]. Acta Microbiol Sin, 59(12): 2306-2322. [邹淑华, 邓平香, 龙新宪, 2019. 镉对超积累和非超积累生态型东南景天内生细菌多样性的影响 [J]. 微生物学报, 59(12): 2306-2322. ]
-
摘要
为探究器官镉(Cd)积累对艾纳香内生菌的影响,该文采用16S rRNA基因高通量测序技术结合分子生态网络分析,研究不同外源镉处理(0、2.0 mg·kg-1)下艾纳香根、茎、叶Cd积累对内生菌群落结构特征的影响。结果表明:(1)与未添加外源Cd(0 mg·kg-1,Cd0)相比,Cd(2.0 mg·kg-1,Cd2)处理促进了植株生长,根、茎、叶中Cd积累量顺序为叶(16.75 mg·kg-1)>茎(11.99 mg·kg-1)>根(3.96 mg·kg-1)。(2)α多样性分析表明,各器官内生菌丰富度(Sobs指数、Ace指数和Chao1指数)和多样性(Shannon指数和Simpson指数)均以根最高,茎次之,叶最低,并且Cd2处理各器官内生菌丰富度和多样性均高于Cd0处理。(3)在门水平上,两个处理根、茎、叶内生菌均以变形菌门、放线菌门和厚壁菌门为优势菌群;在属水平上,代尔夫特菌是Cd0和Cd2处理各器官的主要菌属,相对丰度分别为53.0%~92.7%和57.1%~89.2%;艾纳香根、茎、叶内生菌群落结构有一定的相似性,Cd2处理提高了根、茎、叶共有内生菌属的比例及各器官(根除外)独有内生菌属比例。(4)线性判别分析(LEfSe)表明,相同处理不同器官间及不同处理相同器官间内生菌属存在差异。(5)冗余分析(RDA)发现,根际土壤Cd含量、器官Cd含量与内生菌群落结构组成有明显的相关性。(6)共发生网络分析结果显示,Cd积累使艾纳香根、叶内生菌共发生网络变得复杂且增强了根、茎物种间的竞争作用和叶物种间的协同共生作用。综上认为,外源Cd处理影响了艾纳香各器官内生菌群落结构及相互作用模式。
Abstract
To probe into the impacts of organ cadmium accumulation on endophytic bacteria in Blumea balsamifera, the methods of high-throughput sequencing of 16S rRNA gene V3-V4 region and molecular ecological network analysis were employed to study the effects of Cd accumulation in root, stem and leaf of B. balsamifera on the community characteristics of endophytic bacteria under different exogenous cadmium treatments (0 and 2.0 mg·kg-1). The results were as follows: (1) In comparison with the control group without exogenous cadmium addition (0 mg·kg-1, Cd0), the treatment group with cadmium spiking (2.0 mg·kg-1, Cd2) in soils promoted plant growth and the cumulative Cd contents in root, stem and leaf, with the order of leaf (16.75 mg·kg-1) > stem (11.99 mg·kg-1) > root (3.96 mg·kg-1). (2) α diversity analysis showed that the endophytic bacteria richness (Sobs, Ace and Chao1 indices) and diversity (Shannon and Simpson indices) for organs were the highest in root, followed by stem and leaf under Cd0 and Cd2 treatments. Additionally, the indices of richness and diversity of endophytic bacteria for each organ under Cd2 treatment were superior to those under Cd0. (3) At the phylum level, Proteobacteria, Actinobacteriota and Firmicutes were the dominant bacterial phyla in all the organs for both treatments; at the genus level, Delftia was the main bacterial genus with the relative abundance ranged from 53.0% to 92.7% and 57.1% to 89.2% in the plant organs of Cd0 and Cd2, respectively; certain similarities existed among the endophytic bacterial community structures of root, stem and leaf of B. balsamifera, and Cd2 increased the proportion of mutual endophytic bacterial genera in root, stem and leaf and that of unique endophytic ones in each organ (except for the root). (4) Linear discriminant analysis Effect Size (LEfSe) analysis showed that there existed the differences on endophytic bacterial genera residing in different organs within the same treatment and also the same organ between treatments. (5) Redundancy analysis (RDA) showed that the contents of rhizosphere soil Cd and plant organ Cd were significantly correlated with the composition of endophytic bacterial community. (6) Co-occurrence network analysis clarified that cadmium accumulation in B. balsamifera complicated the interaction network of endophytic bacteria occurring in root and leaf, and enhanced the competition among endophytic bacterial species in root and stem, and the symbiosis in leaf. In summary, exogenous Cd treatment affected the community structure and interaction mode of endophytic bacteria in B. balsamifera organs.
Keywords
Blumea balsamifera ; endophytic bacteria ; cadmium(Cd) ; 16S rRNA ; co-occurrence network