en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

韦鎔宜(1998—),硕士,主要从事植物分子生物技术研究,(E-mail)1435928499@qq.com。

通讯作者:

何涛,博士,教授,主要从事植物生物技术研究,(E-mail)hetaoxn@aliyun.com。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2024)12-2265-14

DOI:10.11931/guihaia.gxzw202312028

参考文献
AVIV DH, CHRISTINE RUSTÉRUCCI, HOLT BF, et al. , 2002. Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent [J]. Plant J, 29: 381-391.
参考文献
BAGGS EL, MONROE JG, THANKI AS, et al. , 2020. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response [J]. Plant Cell, 32(7): 2158-2177.
参考文献
BAILEY-SERRES J, VOESENEK LA, 2008. Flooding stress: Acclimations and genetic diversity [J]. Ann Rev Plant Biol, 59: 313-39.
参考文献
BERNACKI MJ, CZARNOCKA W, RUSACZONEK A, et al. , 2019. LSD1-, EDS1- and PAD4-dependent conditional correlation among salicylic acid, hydrogen peroxide, water use efficiency and seed yield in Arabidopsis thaliana [J]. Physiol Plant, 165(2): 369-382.
参考文献
BERNACKI MJ, MIELECKI J, ANTCZAK A, et al. , 2023. Biotechnological potential of the stress response and plant cell death regulators proteins in the biofuel industry [J]. Cells, 12(16): 2018.
参考文献
BERNACKI MJ, RUSACZONEK A, CZARNOCKA W, et al. , 2021. Salicylic acid accumulation controlled by LSD1 is essential in triggering cell death in response to abiotic stress [J]. Cells, 10(4): 962.
参考文献
BERNACKI MJ, CZARNOCKA W, WITON' D, et al. , 2018. Enhanced disease susceptibility 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides) [J]. J Plant Physiol, 226: 91-102.
参考文献
BUBICI C, PAPA S, DEAN K, et al. , 2006. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: Molecular basis and biological significance [J]. Oncogene, 25(51): 6731-6748.
参考文献
CHIANG YH, COAKER G, 2015. Effector triggered immunity: NLR immune perception and downstream defense responses [J]. Arabidopsis Book, 13: e0183.
参考文献
CIVÁŇ P, ŠVEC M, 2009. Genome-wide analysis of rice (Oryza sativa L. subsp. japonica) TATA box and Y patch promoter elements [J]. Genome, 52(3): 294-297.
参考文献
CUI H, GOBBATO E, KRACHER B, et al. , 2017. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity [J]. New Phytol, 213: 1802-1817.
参考文献
CZARNOCKA W, VAN DER KELEN K, WILLEMS P, et al. , 2017. The dual role of lesion simulating disease 1 as a condition-dependent scaffold protein and transcription regulator: Insight into the LSD1 molecular function [J]. Plant Cell Environ, 40: 2644-2662.
参考文献
DAWA ZM, BAI Y, ZHOU Y, et al. , 2009. Chemical constituents of the whole plants of Saussurea medusa [J]. J Nat Med, 63: 327-330.
参考文献
DONGUS JA, BHANDARI DD, PATEL M, et al. , 2020. The Arabidopsis PAD4 lipase-like domain is sufficient for resistance to green peach aphid [J]. Mol Plant Microb Interaction, 33(2): 328-335.
参考文献
FEYS BJ, MOISAN LJ, NEWMAN MA, et al. , 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 [J]. EMBO J, 20: 5400-5411.
参考文献
GAO C, WANG M, DING L, et al. , 2020. High water uptake ability was associated with root aerenchyma formation in rice: Evidence from local ammonium supply under osmotic stress conditions [J]. Plant Physiol Biochem, 150: 171-179.
参考文献
GAO F, DAI R, PIKE SM, et al. , 2014. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew [J]. Plant Mol Biol, 86: 381-393.
参考文献
GAO F, SHU X, ALI MB, et al. , 2010. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant [J]. Planta, 231: 1037-1047.
参考文献
GARCÍA, ANA V, BLANVILLAIN-BAUFUMÉ, et al. , 2010. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response [J]. Plos Pathog, 6(7): e1000970.
参考文献
GUO JL, WANG LX, LI FZ, et al. , 2020. Cloning and expression of anthocyanin-related gene in Saussurea medusa Maxim. [J]. Acta Bot Boreal-Occident Sin, 40(11): 1840-1846. [郭佳磊, 王联星, 李凤珍, 等, 2020. 水母雪莲花青素合成相关基因的克隆及表达 [J]. 西北植物学报, 40(11): 1840-1846. ]
参考文献
GUTTERSON N, REUBER TL, 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors [J]. Curr Opin Plant Biol, 7: 465-471.
参考文献
HANLING W, SUSHENG S, SHANG G, et al. , 2024. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis [J]. Plant Cell, 36(2): 427-446.
参考文献
JIANG XY, SHI GM, DAI WB, et al. , 2023. Cloning and expression of aerenchyma-related gene SmLSD1 in Saussurea medusa Maxim. [J]. Acta Bot Boreal-Occident Sin, 43(4): 550-558. [蒋欣悦, 史国民, 代吴斌, 等, 2023. 水母雪莲通气组织形成的相关基因SmLSD1克隆及表达 [J]. 西北植物学报, 43(4): 550-558. ]
参考文献
KARPIŃSKI S, SZECHYŃSKA-HEBDA M, WITUSZYŃSKA W, et al. , 2013. Light acclimation, retrograde signalling, cell death and immune defences in plants [J]. Plant Cell Environ, 36(4): 736-744.
参考文献
KONG S, WANG Z, GU YJ, et al. , 2008. Research progress on aerenchyma formation in plant roots [J]. Chin Bull Bot, 25(2): 248-253. [孔妤, 王忠, 顾蕴洁, 等, 2008. 植物根内通气组织形成的研究进展 [J]. 植物学通报, 25(2): 248-253. ]
参考文献
LAPIN D, BHANDARI DD, PARKER JE, 2020. Origins and immunity networking functions of EDS1 family proteins [J]. Ann Rev Phytopathol, 58: 253-276.
参考文献
LAPIN D, KOVACOVA V, SUN X, et al. , 2019. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-Domain immune receptors [J]. Plant Cell, 31(10): 2430-2455.
参考文献
LIU YG, CHEN Y, 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences [J]. Biol Techniques, 43(5): 649-656.
参考文献
LIU YY, DING Y, ZHENG JQ, et al. , 2023. Research progress on PRRs and NLRs mediated immune signaling pathways in plants [J]. Jiangsu Agric Sci, 51(8): 43-50. [刘艳艳, 丁颖, 郑佳秋, 等, 2023. 植物PRRs和NLRs介导的免疫信号通路研究进展 [J]. 江苏农业科学, 51(8): 43-50. ]
参考文献
LORBIECKE R, SAUTER M, 1999. Adventitious root growth and cell-cycle induction in deepwater rice [J]. Plant Physiol, 119: 21-29.
参考文献
MATEO A, MÜHLENBOCK P, RUSTÉRUCCI C, et al. , 2004. Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy [J]. Plant Physiol, 136: 2818-2830.
参考文献
MOLINA C, GROTEWOLD E, 2005. Genome wide analysis of Arabidopsis core promoters [J]. BMC Genomics, 6(1): 25.
参考文献
MÜHLENBOCK P, PLASZCZYCA M, PLASZCZYCA M, et al. , 2007. Lysigenous aerenchyma formation in Arabidopsis is controlled by lesion simulating disease 1 [J]. Plant Cell, 19(11): 3819-3830.
参考文献
MÜHLENBOCK P, SZECHYNSKA-HEBDA M, PLASZCZYCA M, et al. , 2008. Chloroplast signaling and lesion simulating disease 1 regulate crosstalk between light acclimation and immunity in Arabidopsis [J]. Plant Cell, 20(9): 2339-2356.
参考文献
NEUBAUER M, SERRANO I, RODIBAUGH N, et al. , 2020. Arabidopsis EDR1 protein kinase regulates the association of EDS1 and PAD4 to inhibit cell death [J]. Mol Plant Microb Interaction, 33(4): 693-703.
参考文献
NG DW, ABEYSINGHE JK, KAMALI M, 2018. Regulating the regulators: the control of transcription factors in plant defense signaling [J]. Int J Mol Sci, 19(12): 3737.
参考文献
PANT SR, KRISHNAVAJHALA A, MCNEECE BT, et al. , 2015. The syntaxin 31-induced gene, lesion simulating disease 1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines [J]. Plant Signal Behav, 10: e977737.
参考文献
PEGADARAJU V, LOUIS J, SINGH V, et al. , 2007. Phloem-based resistance to green peach aphid is controlled by Arabidopsis phytoalexin deficient 4 without its signaling partner enhanced disease susceptibility 1 [J]. Plant J, 52(2): 332-341.
参考文献
PETROV V, HILLE J, MUELLER-ROEBER B, et al. , 2015. ROS-mediated abiotic stress-induced programmed cell death in plants [J]. Front Plant Sci, 6: 69.
参考文献
PRUITT RN, LOCCI F, WANKE F, et al. , 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity [J]. Nature, 598(7881): 495-499.
参考文献
QI X, LI Q, MA X, et al. , 2019. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling [J]. Plant Cell Environ, 42(5): 1458-1470.
参考文献
RAJHI I, YAMAUCHI T, TAKAHASHI H, et al. , 2011. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses [J]. New Phytol, 190(2): 351-368.
参考文献
RIETZ S, STAMM A, MALONEK S, et al. , 2011. Different roles of enhanced disease susceptibility 1 (EDS1) bound to and dissociated from phytoalexin deficient4 (PAD4) in Arabidopsis immunity [J]. New Phytol, 191: 107-119.
参考文献
ŚLESAK I, SZECHYŃSKA-HEBDA M, FEDAK H, et al. , 2014. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides) [J]. Plant Cell Environ, 4(1): 55-61.
参考文献
SHI GZ, WANG ZY, SUN Q, et al. , 2022. Cloning and activity analysis of SikCDPK1 promoter from Saussurea involucrate [J]. Biotechnol Bull, 38(9): 191-197. [史光珍, 王兆晔, 孙琦, 等, 2022. 雪莲SikCDPK1启动子的克隆和活性分析 [J]. 生物技术通报, 38(9): 191-197. ]
参考文献
SHI SB, HAN F, 2006. Light sources for ultraviolet research and simulation of solar ultraviolet-B [J]. Biotechnol Bull (S1): 161-166. [师生波, 韩发, 2006. 紫外光源及太阳UV-B辐射的模拟实验 [J]. 生物技术通报 (S1): 161-166. ]
参考文献
SINGH K, FOLEY RC, OÑATE-SÁNCHEZ L, 2002. Transcription factors in plant defense and stress responses [J]. Curr Opin Plant Biol, 5: 430-436.
参考文献
SONG N, LIN J, LIU X, et al. , 2022. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat [J]. New Phytol, 236(2): 590-607.
参考文献
SZECHYNSKA-HEBDA M, CZARNOCKA W, HEBDA M, et al. , 2016. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties [J]. Plant Cell Rep, 35(3): 527-539.
参考文献
TANDON G, JAISWAL S, IQUEBAL MA, et al. , 2015. Evidence of salicylic acid pathway with EDS1 and PAD4 proteins by molecular dynamics simulation for grape improvement [J]. J Biomol Struct Dyn, 33: 2180-2191.
参考文献
WANG HL, SONG SS, GAO S, et al. , 2024. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis [J]. Plant Cell, 36(2): 427-446.
参考文献
WANG J, SHINE MB, GAO QM, et al. , 2014. Enhanced disease susceptibility 1 mediates pathogen resistance and virulence function of a bacterial effector in soybean [J]. Plant Physiol, 165(3): 1269-1284.
参考文献
WANG WH, YU JJ, TIAN HL, 2007. Comparative studies on the anatomical structures of leave of 3 species in Saussurea [J]. Bull Bot Res, 27(3): 275-278. [王文和, 于建军, 田晔林, 2007. 风毛菊属3种植物叶的解剖结构比较 [J]. 植物研究, 27(3): 275-278. ]
参考文献
WEI L, LIU JL, 2021. Overview of research on protein subcellular localization in plants [J]. Plant Sci, 39(1): 93-101. [未丽, 刘建利, 2021. 植物蛋白质亚细胞定位相关研究概述 [J]. 植物科学学报, 39(1): 93-101. ]
参考文献
WIERMER M, FEYS BJ, PARKER JE, 2005. Plant immunity: the EDS1 regulatory node [J]. Curr Opin Plant Biol, 8(4): 383-389.
参考文献
WITOŃD, SUJKOWSKA-RYBKOWSKA M, DĄBROWSKA-BRONK J, et al. , 2021. Mitogen-activated protein kinase 4 impacts leaf development, temperature, and stomatal movement in hybrid aspen [J]. Plant Physiol, 186(4): 2190-2204.
参考文献
WITUSZYŃSKA W, SLESAK I, VANDERAUWERA S, et al. , 2013. Lesion simulating disease 1, enhanced disease susceptibility 1, and phytoalexin deficient 4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis [J]. Plant Physiol, 161: 1795-1805.
参考文献
WITUSZYŃSKA W, SZECHYŃSKA-HEBDA M, SOBCZAK M, et al. , 2015. Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana [J]. Plant Cell Environ, 38: 315-330.
参考文献
WU ZQ, CHEN W, ZHAO Z, et al. , 2024. Genome-wide identification and bioinformatics analysis of GRAS gene family in maize [J]. J Agric Sci Technol, 26(3): 15-25. [吴占清, 陈威, 赵展, 等, 2024. 玉米GRAS基因家族的全基因组鉴定及生物信息学分析 [J]. 中国农业科技导报, 26(3): 15-25. ]
参考文献
YAMAUCHI T, WATANABE K, FULAZAWA A, et al. , 2014. Ethylene and reacive oxygen species are involved in oot aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions [J]. J Exp Bot, 65(1): 261-273.
参考文献
YOUSSEF RM, MACDONALD MH, BREWER EP, et al. , 2013. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes [J]. BMC Plant Biol, 13(1): 67.
参考文献
ZENG HY, LIU Y, CHEN DK, et al. , 2021. The immune components enhanced disease susceptibility 1 and phytoalexin deficient 4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis [J]. Plant J, 107(5): 1447-1465.
参考文献
ZHI TT, ZHOU Z, HAN CY, et al. , 2022. PAD4 mutation accelerating programmed cell death in Arabidopsis thaliana tyrosine degradation deficient mutant sscd1 [J]. Chin Bull Bot, 57(3): 288-298. [支添添, 周舟, 韩成云, 等, 2022. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡 [J]. 植物学报, 57(3): 288-298. ]
参考文献
ZHU JW, 2014. Effect of aerenchyma formation related genes on growth and nitrogen utilization in rice [D]. Nanjing: Nanjing Agricultural University: 55-58. [朱静雯, 2014. 通气组织形成相关基因对水稻生长和氮素利用的影响研究 [D]. 南京: 南京农业大学: 55-58. ]
目录contents

    摘要

    通气组织是水母雪兔子(Saussurea medusa)应对极端环境的适应性结构,其形成通常伴随着细胞程序性死亡(programmed cell death,PCD)的发生,而细胞的死亡与通气组织的形成通常受到PAD4基因(Phytoalexin Deficient 4)的调控,但PAD4如何调控水母雪兔子通气组织形成的机制尚不明确。该研究以水母雪兔子为试验材料,利用同源克隆和RACE技术克隆了通气组织形成相关基因SmPAD4,对其序列、系统进化、表达和亚细胞定位等进行分析,并采用hi-TAIL PCR技术扩增其启动子,以探讨该基因在环境适应中的功能。结果表明:(1)SmPAD4基因cDNA全长为2047 bp(GenBank登录号为OR766038),包括1866 bp的开放阅读框,编码621 个氨基酸,分子式为C3163H4906N848O910S26,该蛋白为碱性亲水性不稳定蛋白。(2)系统进化树分析显示,SmPAD4与刺苞菜蓟CcPAD4的氨基酸序列相似度最高。(3)扩增出1049 bp的SmPAD4启动子序列,包含有光响应元件、低氧应答元件、干旱和生长素应答元件等顺式作用元件。(4)实时荧光定量(qRT-PCR)分析显示,SmPAD4基因在根、茎和叶中均有表达且在叶中的表达量最高;在紫外和低氧胁迫下SmPAD4基因在叶和茎中表达量均上调,根中表达量下调。(5)亚细胞定位显示,SmPAD4分布于细胞核、细胞膜和叶绿体。该研究表明,SmPAD4基因拥有独特的蛋白结构域,并且响应低氧和紫外两种环境胁迫,在通气组织的形成以及对逆境胁迫的响应中具有重要作用,为进一步探究SmPAD4基因在水母雪兔子适应环境过程中的作用提供了理论依据。

    Abstract

    The aerenchyma is an adaptive structure of Saussurea medusa in response to extreme environments, and its formation is usually accompanied by programmed cell death (PCD). The death of cells and the formation of aerenchyma are typically regulated by the PAD4 gene (Phytoalexin Deficient 4). However, the mechanism by which SmPAD4 regulates the formation of aerenchyma in S. medusa remains unclear. In this study, S. medusa was used as the experimental material, and the gene SmPAD4 related to aerenchyma formation was cloned by homologous cloning and RACE technology, and its sequence, phylogenetic evolution, expression and subcellular localization were analyzed, and its promoter was amplified by hi-TAIL PCR technology to explore its function in environmental adaptation. The results were as follows:(1) The cDNA of SmPAD4 gene was successfully cloned with a total length of 2047 bp(GenBank accession number OR766038), including an open reading frame of 1866 bp, encoding 621 amino acids, a molecular formula of C3163H4906N848O910S26. The protein was an alkaline and hydrophilic unstable protein. (2)Phylogenetic tree analysis showed that SmPAD4 had high similarity with CcPAD4 of Cynara cardunculus. (3)A length of 1049 bp promoter sequence of SmPAD4 was amplified, which included cis-acting elements such as light response element, hypoxia response element, dry and auxin response elements.(4)Real-time quantitative fluorescence (qRT-PCR) analysis showed that SmPAD4 gene was expressed in root, stem and leaf, and the expression level was the highest in leaf. Under ultraviolet and hypoxia stresses, the expression of SmPAD4 gene was up-regulated in leaf and stem, and down-regulated in root. (5)Subcellular localization showed that SmPAD4 was distributed in the nucleus, cell membrane, and chloroplast. The results show that SmPAD4 gene has a unique protein domain and it responds to hypoxia and ultraviolet environmental stresses, so it plays an important role in the formation of aerenchyma and the response to adversity stress. This study provides theoretical reference for further exploring the role of SmPAD4 gene in the environmental adaptation process of Saussurea medusa.

  • 水母雪兔子(Saussurea medusa)属菊科(Asteraceae)风毛菊属(Saussurea),为多年生草本植物,主要分布于青藏高原地区(Pegadaraju et al.,2007;Dawa et al.,2009;Szechynska-Hebda et al.,2016),主要受高寒、低氧和强紫外辐射等极端环境的胁迫。根、茎和叶中发达的通气组织是水母雪兔子最具有代表性的应对极端环境的结构特征(王文和等,2007;蒋欣悦等,2023)。PAD4基因在植物细胞程序性死亡和形成通气组织形成中起着重要作用(Bernacki et al.,2019,2023),但目前水母雪兔子的非生物胁迫响应机制尚未明确。因此,研究水母雪兔子通气组织形成相关基因SmPAD4,对揭示高山植物适应环境的特殊机制具有重要的理论意义。

  • PAD4作为R(resistance)基因介导的信号转导分子,是参与植物免疫应答、PCD调控和通气组织形成的关键基因,在植物响应生物与非生物胁迫的过程中起到重要作用(Rietz et al.,2011;Zeng et al.,2021;支添添等,2022)。PAD4响应各种非生物胁迫(如强光、紫外线辐射、干旱和寒冷等)主要通过次级信使介导,如水杨酸(salicylic acid,SA)、活性氧(reactive oxygen species,ROS)、乙烯(ethylene,ET)和其他信号分子等,并且在拟南芥与木本植物中被证明参与调节植物细胞程序性死亡、细胞壁合成、种子产量、生物物质生成和水分利用(Feys et al.,2001;Ślesak et al.,2014;Cui et al.,2017)。已有大量研究表明,PAD4与LSD1(Lesion Simulating Disease1)和EDSI(Enhanced Disease Susceptibility 1)形成特定枢纽来调节植物细胞死亡和适应生物和非生物胁迫(Aviv et al.,2002;Mateo et al.,2004;Mühlenbock et al.,2007;Gao et al.,2010;Karpiński et al.,2013;Wituszyńska et al.,2015)。在拟南芥中,AtPAD4突变导致SA、ET和ROS稳态受损,从而中断适应反应和细胞死亡信号传导,并且在低氧条件下AtPAD4被AtLSD1.1负调控来参与乙烯途径的溶生型通气组织形成过程(Mühlenbock et al.,2007;Karpiński et al.,2013;Youssef et al.,2013;Bernacki et al.,2018)。在水稻中,朱静雯(2014)通过改变氮素含量来刺激水稻,使OsPAD4改变对氮素的响应模式,从而来调控细胞程序性死亡诱导通气组织形成。在葡萄中,VvPAD4与VvEDS1形成稳定的分子复合物来适应非生物胁迫和调控细胞死亡(Gao et al.,2014;Tandon et al.,2015)。在大豆中,GmPAD4是防御信号传导所必需,并且参与调控细胞死亡和生物胁迫应答过程(Wang et al.,2014;Pant et al.,2015)。目前,PAD4基因对通气组织形成及其调控研究主要集中于拟南芥、水稻和烟草等植物(Bubici et al.,2006;Hanling et al.,2024),对PAD4基因在水母雪兔子逆境适应过程中的功能研究尚未明确。

  • 鉴于此,本研究以自然生长于青藏高原地区的水母雪兔子为试验材料,通过分子生物学技术克隆与通气组织形成相关的基因SmPAD4及扩增其启动子,并研究该基因在紫外和低氧胁迫条件下的表达,从而分析基因与生态环境之间的关系,以期为水母雪兔子的分子适应机制和高山植物功能生态学研究提供科学依据。

  • 1 材料与方法

  • 1.1 材料和处理

  • 取青藏高原东北部祁连山支脉(青海西宁,101°41′ E、37°36′ N)的水母雪兔子植株及种子进行相关实验。于开花期采集幼嫩叶片用于基因克隆和启动子扩增。

  • 将采集的种子于实验室培养至长出两片真叶(约70 d),参照师生波等(2006)和蒋欣悦等(2023)的方法对其进行紫外胁迫和低氧胁迫,并于胁迫处理1、2、4、6、12 h后取样,用于基因的组织表达分析。

  • 1.2 SmPAD4基因cDNA全长的克隆

  • 从NCBI下载菊科植物刺苞菜蓟(Cynara cardunculus)、莴苣(Lactuca sativa)、向日葵(Helianthus annuus)和小蓬草(Erigeron canadensis)已上传的PAD4的CDS区域,利用DNAMAN 5.0比对后设计简并引物(表1)。

  • 以野外采集的水母雪兔子叶片为实验材料,利用MiniBest Universal RNA Extraction Kit试剂盒提取水母雪兔子总RNA,检测RNA质量合格后利用Prime Script TMⅡ1st strand cDNA synthesis Kit(TaKaRa)试剂盒反转cDNA第一链。根据简并引物扩增出的中间片段设计2个3′-RACE和2个5′-RACE的巢式PCR特异性引物(表1),利用SMARTer®RACE 5′/3′Kit试剂盒进行RACE实验,并对PCR产物进行1%琼脂糖凝胶电泳检测,将符合大小的条带回收并进行蓝白斑筛选,将阳性菌落挑出送生物公司测序。二轮巢式PCR扩增得到的序列与中间片段进行拼接得到水母雪兔子SmPAD4基因的cDNA全长,根据全长序列设计引物进行验证。

  • 1.3 SmPAD4基因的生物信息学分析

  • 利用Open Reading Frame Finder(ORF Finder)寻找开放阅读框和序列编码产物;通过ProtParam工具(http://web.expasy.org/protparam/)进行氨基酸序列等电点、分子量和不稳定系数等理化性质分析;用Pfam(http://pfam.xfam.org/)进行保守结构域分析,通过SOPMA(http://pbil.ibcp.fr)和 SWISS-MODEL数据库(http: //swissmodel.expasy.org/)预测SmPAD4蛋白的二级、三级结构;借助NCBI Blastp和DNAMAN 5.0软件进行同源序列比对;将同源性高的PAD4基因蛋白使用MEGA 11构建水母雪兔子SmPAD4与其他植物的同源蛋白系统进化树;通过WoLF PSORT(https://www.genscript.com/wolf-psor)对SmPAD4进行亚细胞定位预测。

  • 1.4 SmPAD4基因的表达分析

  • 用野外采取的水母雪兔子组织(根、茎、叶)为实验材料,提取RNA反转成cDNA为模板,进行野外环境下的组织表达分析。以实验室培养的水母雪兔子实生苗为实验材料进行紫外、低氧两种胁迫,于处理1、2、4、6、12 h后采集水母雪兔子不同组织(根、茎、叶)提取cDNA进行环境胁迫的组织表达分析。本实验参照郭佳磊等(2020)和蒋欣悦等(2023)的方法以UPL7作为内参基因,设计荧光定量引物(表1),每组处理进行3个生物学重复,按照SYBR Premix Ex Taq Ⅱ说明书流程进行qRT-PCR。反应程序:95℃预变性5 min;95℃变性10 s,60℃退火30 s,72℃延伸30 s(40个循环)。数据分析采用2-ΔΔCt计算水母雪兔子SmPAD4基因在根、茎和叶中的表达量,并使用SPSS 26、Excel 2021和Origin 2021进行分析与制图。

  • 1.5 SmPAD4启动子扩增

  • 依据已克隆出的SmPAD4基因组序列设计3个巢式下游特异性引物(表1)。按照Mini BEST通用型DNA提取试剂盒提取高浓度的水母雪兔子DNA。采用hi-TAIL PCR(Liu &Chen,2007;郭佳磊等,2020)的方法扩增SmPAD4启动子序列。分别进行预扩增、第一轮扩增和第二轮扩增PCR反应。扩增的启动子序列采用PlantCARE(https://bioinformatics.psb.ugent.be/webtools/plantcare/html)在线预测顺式作用元件。

  • 1.6 SmPAD4基因的亚细胞定位

  • 通过Primer Premier 5寻找SmPAD4基因中带有Sac Ⅰ和Xba Ⅰ的双酶切位点,之后加入5′和3′接头引物合成PAD4-2300F和PAD4-2300R引物(表1)。通过PCR扩增该基因的CDS区,对PCR产物和pCAMBIA2300-GFP载体进行双酶切。使用同源重组方法用T4DNA连接酶构建融合表达载体PAD4-2300。通过热激法将其转化大肠杆菌DH5α感受态细胞并筛选出阳性克隆,挑取阳性菌落进行菌落PCR检测。通过液氮冻融法将重组质粒转化农杆菌GV3101,再侵染本氏烟草叶片进行瞬时表达,培养2~3 d后,使用含2300-GFP空载体的农杆菌作为对照,利用FV10-ASW激光共聚焦显微镜观察叶片中的荧光信号。

  • 2 结果与分析

  • 2.1 SmPAD4基因cDNA全长的克隆

  • 通过RT-PCR扩增出574 bp的保守片段,3′ RACE和5′ RACE反应分别扩增出1 150 bp和1 359 bp的片段(图1)。该基因cDNA全长2 047 bp(GenBank登录号OR766038),其中包括1 866 bp的开放阅读框,编码621 个氨基酸,并进行了cDNA全长验证。

  • 2.2 SmPAD4基因的生物信息学分析

  • SmPAD4基因共编码621个氨基酸,分子式为C3163H4906N848O910S26,分子量为70.22 kDa,等电点为8.18,蛋白脂肪指数为87.13,无信号肽,总平均亲水系数为-0.194,不稳定系数为40.48,为碱性亲水性不稳定蛋白。跨膜结构预测结果显示有跨膜区域,说明SmPAD4蛋白属于跨膜蛋白。将水母雪兔子SmPAD4基因预测的编码氨基酸序列,通过Neighbor-Joining法构建SmPAD4和其他物种PAD4蛋白的系统进化树(图2)发现,水母雪兔子SmPDA4(WPA93990.1)和刺苞菜蓟(XP_024962884.1、XP_024962885.1)、莴苣(XP_023737098.1)、小蓬草(XP_043623496.1)、向日葵(XP_021989681.1)等PAD4蛋白亲缘关系较近,其中进化距离最近的是刺苞菜蓟(XP_024962884.1、XP_024962885.1)。蛋白多序列比对(图3)显示水母雪兔子PAD4与刺苞菜蓟相似度最高。将SmPAD4与菊科其他植物进行核苷酸和氨基酸序列比较发现,与刺苞菜蓟的核苷酸序列相似度高达87.16%,与其他菊科的核苷酸序列相似度在74%以上,与刺苞菜蓟的氨基酸序列相似度高达87.66%,与其他菊科的核苷酸序列相似度在73%以上。

  • SmPAD4含有多个磷酸化位点(图4:A),其中丝氨酸磷酸化位点最多且多个位点预测值在0.9以上,表明SmPAD4蛋白可受磷酸化作用调控。其蛋白质二级结构预测(图4:B)显示,该序列主要含有α-螺旋、延伸链、β-折叠和无规卷曲。其中,α-螺旋有314个氨基酸,占50.56%;延伸链有51个氨基酸,占8.21%;β-折叠有18个氨基酸,占2.90%;无规卷曲有238个氨基酸,占38.33%。α-螺旋、延伸链和无规卷曲贯穿于整个氨基酸链,β-折叠只有一点点且散布在α-螺旋附近。利用SWISS-MODEL对SmPAD4蛋白三级结构的预测见图4:C。并且该蛋白N端具有保守性较高的α/β水解酶折叠结构域,在菊科植物的进化过程中具有高度的保守性。C端包含EDS1-PAD4(EP)结构域,是稳定异二聚化所必需的,包括类脂酶蛋白家族(EDS1、PAD4、SAG101),这组蛋白质可参与细胞表面和细胞内免疫受体的信号传导,因此PAD4具有特定的结构域功能。

  • 2.3 SmPAD4基因的启动子扩增

  • 通过 hi-TAIL PCR的方法扩增出1 049 bp的SmPAD4启动子序列(图5)。通过PlantCARE在线预测发现该启动子区域除大量的TATA-box和CTAA-box启动子顺式元件外,还包含光响应元件(Box 4和GT1-motif)、低氧应答元件(ARE)、茉莉酸甲酯(MeJA)应答元件(CGTCA-motif和TGACG-motif)、干旱(MBS)和生长素应答元件(AuxRR-core)等顺式作用元件(表2)。这说明SmPAD4基因可参与光信号、低氧、干旱和茉莉酸甲酯以及WRKY转录因子的结合位点(W-box)等信号胁迫诱导的调控机制,因此推测SmPAD4在水母雪兔子生长发育过程中参与相关的调控及生理过程。

  • 表1 实验用引物

  • Table1 Primer sequences used in this study

  • 注: R为A或G,Y为C或T。

  • Note: R is A or G, Y is C or T.

  • 图1 SmPAD4基因的克隆

  • Fig.1 Cloning of SmPAD4 gene

  • 2.4 SmPAD4基因的组织表达

  • 组织表达结果(图6)表明,SmPAD4基因在野生水母雪兔子根、茎、叶中均有表达,表达量由高到低依次为叶>根>茎,其中叶中的表达量约为茎的5.3倍,根中的表达量约为茎的2.5倍,均差异显著(P<0.05)。

  • 图2 不同物种PAD4蛋白的进化关系分析

  • Fig.2 Phylogenetic tree of PAD4 proteins from various species

  • 紫外胁迫条件下,SmPAD4基因在根中的表达量均低于对照,处理4 h时达到最低峰值;茎中的表达量呈先升高后降低的趋势,处理6 h时达到最高峰值;叶中的表达量呈先升高后降低的趋势,处理4 h时达到最高峰值(图7:A)。低氧胁迫条件下,根中的表达量均低于对照,处理6 h时达到最低峰值;茎中的表达量呈上下反复波动趋势,处理时间表达量均高于对照表达量,处理12 h时达到最高峰值;叶中的表达量呈先上升后下降趋势,处理4 h时达到最高峰值(图7:B)。

  • 根据Lorbiecke和Sauter(1999)与孔妤等(2008)研究可知,在缺氧情况下1~3 h内乙烯积累促进生成通气组织,并且在胁迫时间达到12 h时基因响应胁迫产生的表达水平具有显著差异(Bailey-Serres &Voesenek,2008)。因此,本研究对水母雪兔子实生苗分别进行了4 h和12 h的紫外胁迫和低氧胁迫处理,并对SmPAD4在水母雪兔子根茎叶中的表达进行分析。结果表明,胁迫4 h时,紫外和低氧胁迫的响应均能显著影响水母雪兔子各组织中SmPAD4表达量(图8:A)。在根中,紫外胁迫和低氧胁迫显著降低了SmPAD4表达量(P<0.05),其中紫外胁迫下SmPAD4的表达量最低;在茎中,紫外胁迫和低氧胁迫显著提高了SmPAD4表达量(P<0.05),其中低氧胁迫下SmPAD4的表达量最高;在叶中,紫外胁迫和低氧胁迫显著提高了SmPAD4表达量(P<0.05),其中紫外胁迫下SmPAD4的表达量最高。胁迫12 h时,紫外和低氧胁迫的响应均能显著影响水母雪兔子各组织中SmPAD4表达量(图8:B)。在根中,紫外胁迫和低氧胁迫显著降低了SmPAD4表达量(P<0.05),其中紫外胁迫下PAD4的表达量最低;在茎和叶中,紫外胁迫和低氧胁迫显著提高了SmPAD4表达量(P<0.05),其中低氧胁迫下SmPAD4的表达量最高(P<0.05)。

  • 图3 菊科PAD4蛋白多序列比对

  • Fig.3 Multiple sequence alignment of PAD4 protein in Asteraceae

  • 2.5 SmPAD4基因的亚细胞定位

  • 亚细胞定位结果(图9)显示,含有目标基因的 PAD4-2300融合蛋白绿色荧光信号主要分布于细胞膜和细胞核,部分分布于叶绿体中,表明SmPAD4蛋白主要在细胞膜、细胞核和叶绿体中发挥功能。

  • 3 讨论与结论

  • PAD4是调控植物响应生物与非生物胁迫和PCD的关键基因,在植物生长发育中有着重要作用(Wituszynska et al.,2013)。本研究从水母雪兔子中克隆出2 047 bp的SmPAD4基因,包含1 866 bp的CDS区,编码621 个氨基酸。对SmPAD4进行蛋白分析,其蛋白脂肪指数为87.13,为碱性亲水性不稳定蛋白,属于水解酶超家族蛋白。SmPAD4蛋白含有多个磷酸化位点,表明其可受磷酸化作用调控。通过结构域预测,发现SmPAD4基因N端有α/β水解酶结构域,在菊科植物的进化过程中具有高度的保守性,C端包含着EP结构域,可以形成稳定的异二聚化结构。PAD4与同属于水解酶家族的EDS1的N端都有与酰基水解酶同源的结构域,使两者可为互作蛋白来响应逆境胁迫(Wiermer et al.,2005)。种子植物中,PAD4和EDS1因具有同源结构域特征能够形成异源二聚体,从而介导植物的细胞死亡和免疫反应(Lapin et al.,2019,2020)。在被子植物的研究中,沉默PAD4基因N端的稳定复合物并进行共表达,结果表明PAD4响应干旱、脱落酸以及生物胁迫(Baggs et al.,2020)。在拟南芥中,通过表达PAD4基因的N端脂肪酶样结构域(LLD),不表达其C端EP结构域,发现PAD4可以作为二分蛋白发挥作用,说明LLD和EP结构域在植物防御中发挥独特且可分离的作用(Dongus et al.,2020)。SmPAD4独特的结构域使其可作为二分蛋白来响应水解代谢和免疫信号,进一步参与调控植物的生物及非生物胁迫。

  • 图4 SmPAD4蛋白普通生物信息学分析

  • Fig.4 General bioinformatics analysis of SmPAD4 protein

  • 在植物中,大多数含TATA-box的启动子主要参与组织特异性表达和胁迫反应,并且已知AP2 / ERF、bZIP、NAC、MYB和WRKY是常见的参与病原体防御的启动子元件(Singh et al.,2002;Gutterson &Reuber,2004;Molina &Grotewold,2005;Civáň &Švec,2009;Ng et al.,2018)。本研究发现,SmPAD4启动子区域除大量的TATA-box和CTAA-box启动子顺式元件外,还包含光响应元件(Box 4和GT1-motif)、低氧应答元件(ARE)、茉莉酸甲酯应答元件(CGTCA-motif和TGACG-motif)、干旱(MBS)和生长素应答元件(AuxRR-core)以及WRKY转录因子结合位点(W-box)等顺式作用元件。在雪莲SikCDPK1基因和玉米GRAS基因家族启动子的研究中均包含了光信号、低氧、干旱、生长素和MeJA相关的顺式元件从而参与植物的生长发育和调控生物与非生物胁迫响应(史光珍等,2022;吴占清等,2024),与本研究结果一致。说明了SmPAD4基因可响应多种胁迫信号,来保障其在植物生长发育中的重要作用,进一步说明SmPAD4参与调控水母雪兔子的生长发育以及应答生物与非生物胁迫,在水母雪兔子适应极端环境中起到重要作用。

  • 图5 SmPAD4基因的启动子扩增

  • Fig.5 Promoter amplification of SmPAD4 gene

  • 蛋白质在植物细胞内的定位分布是了解其分子功能、基因调控和蛋白质-蛋白质相互作用的关键(未丽和刘建利,2021)。本研究通过侵染本氏烟草对SmPAD4基因进行了亚细胞定位,结果显示SmPAD4定位于细胞膜、细胞核和叶绿体中,这与植物响应生物与非生物胁迫时产生的蛋白质传导信号EDS1-PAD4复合物通常出现于细胞核中的结果一致(García et al.,2010;Gao et al.,2020)。在拟南芥中AtPAD4定位于细胞质和细胞核中(Czarnocka et al.,2017),产生防御信号转导促进细胞程序性死亡。在小麦中,TaPAD4同拟南芥一样定位于细胞质和细胞核中来参与植物免疫(Song et al.,2022)。本研究发现SmPAD4不止定位于细胞膜和细胞核中,还定位于叶绿体中,可能因为叶绿体是光响应场所,而PAD4在光响应的过量激发能量(excess excitation energy,EEE)中作为乙烯和ROS生产的上游来调节程序性细胞死亡、光驯化和整体防御反应的信号传导,同时PAD4可转导光氧化应激信号,导致细胞死亡和植物生长缓慢,以及参与植物适应性调节(Mühlenbock et al.,2008;Neubauer et al.,2020)。并且PAD4被认为是典型的NLR信号成分,可在细胞质、细胞核、质膜、液泡膜和内质网等亚细胞结构中发挥功能,对乙烯、活性氧产生、胼胝质积累及植保素基因表达起到诱导及抑制作用(Chiang &Coaker,2015;Pruitt et al.,2021;刘艳艳等,2023;Wang et al.,2024)。因此,SmPAD4的亚细胞定位结果进一步确定了其可响应生物或非生物胁迫产生的乙烯、活性氧、水杨酸和脱落酸等信号来维持植物的正常生长。

  • 水母雪兔子作为典型的高山植物,其生境具有强紫外辐射和缺氧等特征。为探究SmPAD4对其生境胁迫的响应,本研究对水母雪兔子进行了紫外和低氧胁迫,并对SmPAD4在其根、茎和叶中的表达量进行分析。qRT-PCR结果表明,紫外和低氧胁迫下,SmPAD4基因在根中的表达量始终低于对照;在茎和叶中的表达量始终高于对照。拟南芥受到紫外胁迫时,AtPDA4上调来调控PCD(Bernacki et al.,2021),与本研究结果一致。在低氧胁迫研究中发现,玉米、小麦和黄瓜的PAD4基因参与调控细胞程序性死亡(Rajil et al.,2011; Yamauchi et al.,2014; Qi et al.,2019)。在水稻通气组织相关基因研究中发现,低氧处理会下调OsPAD在根系中的表达而调控细胞程序性死亡(朱静雯,2014),这与本研究中低氧胁迫下SmPAD4基因在植物根中的表达情况一致。这可能是因为在缺氧的环境下,通过乙烯和生长素诱导ROS响应,使PAD4等相关基因协作后产生应答造成程序性细胞死亡从而形成通气组织(Yamauchi et al.,2014; Qi et al.,2019)。在对水母雪兔子SmLSD1的研究中发现,在紫外与低氧胁迫下SmLSD1于叶和茎中表达量下调,在根中表达量上调(蒋欣悦等,2023),而本研究中SmPAD4的表达量变化与SmLSD1相反。研究发现拟南芥中的AtPDA4被AtLSD1负调控来影响PCD(Bernacki et al.,2021),说明在环境胁迫中SmPAD4与SmLSD1均响应并做出了应答且SmPAD4在低氧和紫外胁迫下受SmLSD1负调控来适应极端环境。这与拟南芥中AtPADAtLSD1.1负调控后参与乙烯途径来诱导植物通气组织的形成结果一致(Mühlenbock et al.,2007),推测SmPAD4基因在水母雪兔子不同组织中存在着不同的表达模式来响应逆境胁迫。在紫外和低氧胁迫4 h后,SmPAD4表达量在各组织中显著变化,而SmPAD4在根和叶中的表达量变化高于低氧胁迫;进行12 h胁迫后,SmPAD4在紫外胁迫后根中的表达量变化高于低氧胁迫,说明SmPAD4基因在紫外胁迫下的表达量改变较显著。这可能因为PAD4可转导光氧化应激信号和乙烯与ROS生成的上游信号来调控植物的程序性细胞死亡(Mühlenbocket al.,2008;Petrov et al.,2015;Neubauer et al.,2020;Witoń et al.,2021)。本研究表明在两种胁迫下,SmPAD4基因在水母雪兔子各组织中均能发生响应,在根中起负响应,在叶和茎中起正响应,这与拟南芥中AtPADAtLSD1.1负调控后参与乙烯途径来影响植物通气组织的形成结果一致(Mühlenbock et al.,2007),推测逆境胁迫下SmPAD4基因在水母雪兔子不同组织中存在着不同的表达模式。尽管水母雪兔子SmPAD4基因对低氧和紫外辐射均能做出应答反应,但其通气组织是由低氧引起,还是与紫外辐射有关,还是高山各种环境因子综合影响的结果,目前还不清楚,还需要更多的研究来证明。

  • 表2 SmPAD4启动子中的顺式元件

  • Table2 Cis-acting elements in the SmPAD4 promoter

  • 图6 不同组织中SmPAD4 基因表达水平

  • Fig.6 Expression level of SmPAD4 gene in different tissues

  • 图7 不同胁迫下SmPAD4基因在根、茎和叶的表达量

  • Fig.7 Expression of SmPAD4 gene in root, stem and leaf under different stresses

  • 图8 胁迫4 h和12 h后SmPAD4基因在各组织的表达量

  • Fig.8 Expression of SmPAD4 gene in different tissues after 4 h and 12 h stresses

  • 图9 PAD4-2300融合蛋白在本氏烟草表皮细胞中的亚细胞定位

  • Fig.9 Subcellular localization of PAD4-2300 fusion protein in Nicotiana benthamiana epidermal cells

  • 参考文献

    • AVIV DH, CHRISTINE RUSTÉRUCCI, HOLT BF, et al. , 2002. Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent [J]. Plant J, 29: 381-391.

    • BAGGS EL, MONROE JG, THANKI AS, et al. , 2020. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response [J]. Plant Cell, 32(7): 2158-2177.

    • BAILEY-SERRES J, VOESENEK LA, 2008. Flooding stress: Acclimations and genetic diversity [J]. Ann Rev Plant Biol, 59: 313-39.

    • BERNACKI MJ, CZARNOCKA W, RUSACZONEK A, et al. , 2019. LSD1-, EDS1- and PAD4-dependent conditional correlation among salicylic acid, hydrogen peroxide, water use efficiency and seed yield in Arabidopsis thaliana [J]. Physiol Plant, 165(2): 369-382.

    • BERNACKI MJ, MIELECKI J, ANTCZAK A, et al. , 2023. Biotechnological potential of the stress response and plant cell death regulators proteins in the biofuel industry [J]. Cells, 12(16): 2018.

    • BERNACKI MJ, RUSACZONEK A, CZARNOCKA W, et al. , 2021. Salicylic acid accumulation controlled by LSD1 is essential in triggering cell death in response to abiotic stress [J]. Cells, 10(4): 962.

    • BERNACKI MJ, CZARNOCKA W, WITON' D, et al. , 2018. Enhanced disease susceptibility 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides) [J]. J Plant Physiol, 226: 91-102.

    • BUBICI C, PAPA S, DEAN K, et al. , 2006. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: Molecular basis and biological significance [J]. Oncogene, 25(51): 6731-6748.

    • CHIANG YH, COAKER G, 2015. Effector triggered immunity: NLR immune perception and downstream defense responses [J]. Arabidopsis Book, 13: e0183.

    • CIVÁŇ P, ŠVEC M, 2009. Genome-wide analysis of rice (Oryza sativa L. subsp. japonica) TATA box and Y patch promoter elements [J]. Genome, 52(3): 294-297.

    • CUI H, GOBBATO E, KRACHER B, et al. , 2017. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity [J]. New Phytol, 213: 1802-1817.

    • CZARNOCKA W, VAN DER KELEN K, WILLEMS P, et al. , 2017. The dual role of lesion simulating disease 1 as a condition-dependent scaffold protein and transcription regulator: Insight into the LSD1 molecular function [J]. Plant Cell Environ, 40: 2644-2662.

    • DAWA ZM, BAI Y, ZHOU Y, et al. , 2009. Chemical constituents of the whole plants of Saussurea medusa [J]. J Nat Med, 63: 327-330.

    • DONGUS JA, BHANDARI DD, PATEL M, et al. , 2020. The Arabidopsis PAD4 lipase-like domain is sufficient for resistance to green peach aphid [J]. Mol Plant Microb Interaction, 33(2): 328-335.

    • FEYS BJ, MOISAN LJ, NEWMAN MA, et al. , 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 [J]. EMBO J, 20: 5400-5411.

    • GAO C, WANG M, DING L, et al. , 2020. High water uptake ability was associated with root aerenchyma formation in rice: Evidence from local ammonium supply under osmotic stress conditions [J]. Plant Physiol Biochem, 150: 171-179.

    • GAO F, DAI R, PIKE SM, et al. , 2014. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew [J]. Plant Mol Biol, 86: 381-393.

    • GAO F, SHU X, ALI MB, et al. , 2010. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant [J]. Planta, 231: 1037-1047.

    • GARCÍA, ANA V, BLANVILLAIN-BAUFUMÉ, et al. , 2010. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response [J]. Plos Pathog, 6(7): e1000970.

    • GUO JL, WANG LX, LI FZ, et al. , 2020. Cloning and expression of anthocyanin-related gene in Saussurea medusa Maxim. [J]. Acta Bot Boreal-Occident Sin, 40(11): 1840-1846. [郭佳磊, 王联星, 李凤珍, 等, 2020. 水母雪莲花青素合成相关基因的克隆及表达 [J]. 西北植物学报, 40(11): 1840-1846. ]

    • GUTTERSON N, REUBER TL, 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors [J]. Curr Opin Plant Biol, 7: 465-471.

    • HANLING W, SUSHENG S, SHANG G, et al. , 2024. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis [J]. Plant Cell, 36(2): 427-446.

    • JIANG XY, SHI GM, DAI WB, et al. , 2023. Cloning and expression of aerenchyma-related gene SmLSD1 in Saussurea medusa Maxim. [J]. Acta Bot Boreal-Occident Sin, 43(4): 550-558. [蒋欣悦, 史国民, 代吴斌, 等, 2023. 水母雪莲通气组织形成的相关基因SmLSD1克隆及表达 [J]. 西北植物学报, 43(4): 550-558. ]

    • KARPIŃSKI S, SZECHYŃSKA-HEBDA M, WITUSZYŃSKA W, et al. , 2013. Light acclimation, retrograde signalling, cell death and immune defences in plants [J]. Plant Cell Environ, 36(4): 736-744.

    • KONG S, WANG Z, GU YJ, et al. , 2008. Research progress on aerenchyma formation in plant roots [J]. Chin Bull Bot, 25(2): 248-253. [孔妤, 王忠, 顾蕴洁, 等, 2008. 植物根内通气组织形成的研究进展 [J]. 植物学通报, 25(2): 248-253. ]

    • LAPIN D, BHANDARI DD, PARKER JE, 2020. Origins and immunity networking functions of EDS1 family proteins [J]. Ann Rev Phytopathol, 58: 253-276.

    • LAPIN D, KOVACOVA V, SUN X, et al. , 2019. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-Domain immune receptors [J]. Plant Cell, 31(10): 2430-2455.

    • LIU YG, CHEN Y, 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences [J]. Biol Techniques, 43(5): 649-656.

    • LIU YY, DING Y, ZHENG JQ, et al. , 2023. Research progress on PRRs and NLRs mediated immune signaling pathways in plants [J]. Jiangsu Agric Sci, 51(8): 43-50. [刘艳艳, 丁颖, 郑佳秋, 等, 2023. 植物PRRs和NLRs介导的免疫信号通路研究进展 [J]. 江苏农业科学, 51(8): 43-50. ]

    • LORBIECKE R, SAUTER M, 1999. Adventitious root growth and cell-cycle induction in deepwater rice [J]. Plant Physiol, 119: 21-29.

    • MATEO A, MÜHLENBOCK P, RUSTÉRUCCI C, et al. , 2004. Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy [J]. Plant Physiol, 136: 2818-2830.

    • MOLINA C, GROTEWOLD E, 2005. Genome wide analysis of Arabidopsis core promoters [J]. BMC Genomics, 6(1): 25.

    • MÜHLENBOCK P, PLASZCZYCA M, PLASZCZYCA M, et al. , 2007. Lysigenous aerenchyma formation in Arabidopsis is controlled by lesion simulating disease 1 [J]. Plant Cell, 19(11): 3819-3830.

    • MÜHLENBOCK P, SZECHYNSKA-HEBDA M, PLASZCZYCA M, et al. , 2008. Chloroplast signaling and lesion simulating disease 1 regulate crosstalk between light acclimation and immunity in Arabidopsis [J]. Plant Cell, 20(9): 2339-2356.

    • NEUBAUER M, SERRANO I, RODIBAUGH N, et al. , 2020. Arabidopsis EDR1 protein kinase regulates the association of EDS1 and PAD4 to inhibit cell death [J]. Mol Plant Microb Interaction, 33(4): 693-703.

    • NG DW, ABEYSINGHE JK, KAMALI M, 2018. Regulating the regulators: the control of transcription factors in plant defense signaling [J]. Int J Mol Sci, 19(12): 3737.

    • PANT SR, KRISHNAVAJHALA A, MCNEECE BT, et al. , 2015. The syntaxin 31-induced gene, lesion simulating disease 1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines [J]. Plant Signal Behav, 10: e977737.

    • PEGADARAJU V, LOUIS J, SINGH V, et al. , 2007. Phloem-based resistance to green peach aphid is controlled by Arabidopsis phytoalexin deficient 4 without its signaling partner enhanced disease susceptibility 1 [J]. Plant J, 52(2): 332-341.

    • PETROV V, HILLE J, MUELLER-ROEBER B, et al. , 2015. ROS-mediated abiotic stress-induced programmed cell death in plants [J]. Front Plant Sci, 6: 69.

    • PRUITT RN, LOCCI F, WANKE F, et al. , 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity [J]. Nature, 598(7881): 495-499.

    • QI X, LI Q, MA X, et al. , 2019. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling [J]. Plant Cell Environ, 42(5): 1458-1470.

    • RAJHI I, YAMAUCHI T, TAKAHASHI H, et al. , 2011. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses [J]. New Phytol, 190(2): 351-368.

    • RIETZ S, STAMM A, MALONEK S, et al. , 2011. Different roles of enhanced disease susceptibility 1 (EDS1) bound to and dissociated from phytoalexin deficient4 (PAD4) in Arabidopsis immunity [J]. New Phytol, 191: 107-119.

    • ŚLESAK I, SZECHYŃSKA-HEBDA M, FEDAK H, et al. , 2014. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides) [J]. Plant Cell Environ, 4(1): 55-61.

    • SHI GZ, WANG ZY, SUN Q, et al. , 2022. Cloning and activity analysis of SikCDPK1 promoter from Saussurea involucrate [J]. Biotechnol Bull, 38(9): 191-197. [史光珍, 王兆晔, 孙琦, 等, 2022. 雪莲SikCDPK1启动子的克隆和活性分析 [J]. 生物技术通报, 38(9): 191-197. ]

    • SHI SB, HAN F, 2006. Light sources for ultraviolet research and simulation of solar ultraviolet-B [J]. Biotechnol Bull (S1): 161-166. [师生波, 韩发, 2006. 紫外光源及太阳UV-B辐射的模拟实验 [J]. 生物技术通报 (S1): 161-166. ]

    • SINGH K, FOLEY RC, OÑATE-SÁNCHEZ L, 2002. Transcription factors in plant defense and stress responses [J]. Curr Opin Plant Biol, 5: 430-436.

    • SONG N, LIN J, LIU X, et al. , 2022. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat [J]. New Phytol, 236(2): 590-607.

    • SZECHYNSKA-HEBDA M, CZARNOCKA W, HEBDA M, et al. , 2016. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties [J]. Plant Cell Rep, 35(3): 527-539.

    • TANDON G, JAISWAL S, IQUEBAL MA, et al. , 2015. Evidence of salicylic acid pathway with EDS1 and PAD4 proteins by molecular dynamics simulation for grape improvement [J]. J Biomol Struct Dyn, 33: 2180-2191.

    • WANG HL, SONG SS, GAO S, et al. , 2024. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis [J]. Plant Cell, 36(2): 427-446.

    • WANG J, SHINE MB, GAO QM, et al. , 2014. Enhanced disease susceptibility 1 mediates pathogen resistance and virulence function of a bacterial effector in soybean [J]. Plant Physiol, 165(3): 1269-1284.

    • WANG WH, YU JJ, TIAN HL, 2007. Comparative studies on the anatomical structures of leave of 3 species in Saussurea [J]. Bull Bot Res, 27(3): 275-278. [王文和, 于建军, 田晔林, 2007. 风毛菊属3种植物叶的解剖结构比较 [J]. 植物研究, 27(3): 275-278. ]

    • WEI L, LIU JL, 2021. Overview of research on protein subcellular localization in plants [J]. Plant Sci, 39(1): 93-101. [未丽, 刘建利, 2021. 植物蛋白质亚细胞定位相关研究概述 [J]. 植物科学学报, 39(1): 93-101. ]

    • WIERMER M, FEYS BJ, PARKER JE, 2005. Plant immunity: the EDS1 regulatory node [J]. Curr Opin Plant Biol, 8(4): 383-389.

    • WITOŃD, SUJKOWSKA-RYBKOWSKA M, DĄBROWSKA-BRONK J, et al. , 2021. Mitogen-activated protein kinase 4 impacts leaf development, temperature, and stomatal movement in hybrid aspen [J]. Plant Physiol, 186(4): 2190-2204.

    • WITUSZYŃSKA W, SLESAK I, VANDERAUWERA S, et al. , 2013. Lesion simulating disease 1, enhanced disease susceptibility 1, and phytoalexin deficient 4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis [J]. Plant Physiol, 161: 1795-1805.

    • WITUSZYŃSKA W, SZECHYŃSKA-HEBDA M, SOBCZAK M, et al. , 2015. Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana [J]. Plant Cell Environ, 38: 315-330.

    • WU ZQ, CHEN W, ZHAO Z, et al. , 2024. Genome-wide identification and bioinformatics analysis of GRAS gene family in maize [J]. J Agric Sci Technol, 26(3): 15-25. [吴占清, 陈威, 赵展, 等, 2024. 玉米GRAS基因家族的全基因组鉴定及生物信息学分析 [J]. 中国农业科技导报, 26(3): 15-25. ]

    • YAMAUCHI T, WATANABE K, FULAZAWA A, et al. , 2014. Ethylene and reacive oxygen species are involved in oot aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions [J]. J Exp Bot, 65(1): 261-273.

    • YOUSSEF RM, MACDONALD MH, BREWER EP, et al. , 2013. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes [J]. BMC Plant Biol, 13(1): 67.

    • ZENG HY, LIU Y, CHEN DK, et al. , 2021. The immune components enhanced disease susceptibility 1 and phytoalexin deficient 4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis [J]. Plant J, 107(5): 1447-1465.

    • ZHI TT, ZHOU Z, HAN CY, et al. , 2022. PAD4 mutation accelerating programmed cell death in Arabidopsis thaliana tyrosine degradation deficient mutant sscd1 [J]. Chin Bull Bot, 57(3): 288-298. [支添添, 周舟, 韩成云, 等, 2022. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡 [J]. 植物学报, 57(3): 288-298. ]

    • ZHU JW, 2014. Effect of aerenchyma formation related genes on growth and nitrogen utilization in rice [D]. Nanjing: Nanjing Agricultural University: 55-58. [朱静雯, 2014. 通气组织形成相关基因对水稻生长和氮素利用的影响研究 [D]. 南京: 南京农业大学: 55-58. ]

  • 参考文献

    • AVIV DH, CHRISTINE RUSTÉRUCCI, HOLT BF, et al. , 2002. Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent [J]. Plant J, 29: 381-391.

    • BAGGS EL, MONROE JG, THANKI AS, et al. , 2020. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response [J]. Plant Cell, 32(7): 2158-2177.

    • BAILEY-SERRES J, VOESENEK LA, 2008. Flooding stress: Acclimations and genetic diversity [J]. Ann Rev Plant Biol, 59: 313-39.

    • BERNACKI MJ, CZARNOCKA W, RUSACZONEK A, et al. , 2019. LSD1-, EDS1- and PAD4-dependent conditional correlation among salicylic acid, hydrogen peroxide, water use efficiency and seed yield in Arabidopsis thaliana [J]. Physiol Plant, 165(2): 369-382.

    • BERNACKI MJ, MIELECKI J, ANTCZAK A, et al. , 2023. Biotechnological potential of the stress response and plant cell death regulators proteins in the biofuel industry [J]. Cells, 12(16): 2018.

    • BERNACKI MJ, RUSACZONEK A, CZARNOCKA W, et al. , 2021. Salicylic acid accumulation controlled by LSD1 is essential in triggering cell death in response to abiotic stress [J]. Cells, 10(4): 962.

    • BERNACKI MJ, CZARNOCKA W, WITON' D, et al. , 2018. Enhanced disease susceptibility 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides) [J]. J Plant Physiol, 226: 91-102.

    • BUBICI C, PAPA S, DEAN K, et al. , 2006. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: Molecular basis and biological significance [J]. Oncogene, 25(51): 6731-6748.

    • CHIANG YH, COAKER G, 2015. Effector triggered immunity: NLR immune perception and downstream defense responses [J]. Arabidopsis Book, 13: e0183.

    • CIVÁŇ P, ŠVEC M, 2009. Genome-wide analysis of rice (Oryza sativa L. subsp. japonica) TATA box and Y patch promoter elements [J]. Genome, 52(3): 294-297.

    • CUI H, GOBBATO E, KRACHER B, et al. , 2017. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity [J]. New Phytol, 213: 1802-1817.

    • CZARNOCKA W, VAN DER KELEN K, WILLEMS P, et al. , 2017. The dual role of lesion simulating disease 1 as a condition-dependent scaffold protein and transcription regulator: Insight into the LSD1 molecular function [J]. Plant Cell Environ, 40: 2644-2662.

    • DAWA ZM, BAI Y, ZHOU Y, et al. , 2009. Chemical constituents of the whole plants of Saussurea medusa [J]. J Nat Med, 63: 327-330.

    • DONGUS JA, BHANDARI DD, PATEL M, et al. , 2020. The Arabidopsis PAD4 lipase-like domain is sufficient for resistance to green peach aphid [J]. Mol Plant Microb Interaction, 33(2): 328-335.

    • FEYS BJ, MOISAN LJ, NEWMAN MA, et al. , 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 [J]. EMBO J, 20: 5400-5411.

    • GAO C, WANG M, DING L, et al. , 2020. High water uptake ability was associated with root aerenchyma formation in rice: Evidence from local ammonium supply under osmotic stress conditions [J]. Plant Physiol Biochem, 150: 171-179.

    • GAO F, DAI R, PIKE SM, et al. , 2014. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew [J]. Plant Mol Biol, 86: 381-393.

    • GAO F, SHU X, ALI MB, et al. , 2010. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant [J]. Planta, 231: 1037-1047.

    • GARCÍA, ANA V, BLANVILLAIN-BAUFUMÉ, et al. , 2010. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response [J]. Plos Pathog, 6(7): e1000970.

    • GUO JL, WANG LX, LI FZ, et al. , 2020. Cloning and expression of anthocyanin-related gene in Saussurea medusa Maxim. [J]. Acta Bot Boreal-Occident Sin, 40(11): 1840-1846. [郭佳磊, 王联星, 李凤珍, 等, 2020. 水母雪莲花青素合成相关基因的克隆及表达 [J]. 西北植物学报, 40(11): 1840-1846. ]

    • GUTTERSON N, REUBER TL, 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors [J]. Curr Opin Plant Biol, 7: 465-471.

    • HANLING W, SUSHENG S, SHANG G, et al. , 2024. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis [J]. Plant Cell, 36(2): 427-446.

    • JIANG XY, SHI GM, DAI WB, et al. , 2023. Cloning and expression of aerenchyma-related gene SmLSD1 in Saussurea medusa Maxim. [J]. Acta Bot Boreal-Occident Sin, 43(4): 550-558. [蒋欣悦, 史国民, 代吴斌, 等, 2023. 水母雪莲通气组织形成的相关基因SmLSD1克隆及表达 [J]. 西北植物学报, 43(4): 550-558. ]

    • KARPIŃSKI S, SZECHYŃSKA-HEBDA M, WITUSZYŃSKA W, et al. , 2013. Light acclimation, retrograde signalling, cell death and immune defences in plants [J]. Plant Cell Environ, 36(4): 736-744.

    • KONG S, WANG Z, GU YJ, et al. , 2008. Research progress on aerenchyma formation in plant roots [J]. Chin Bull Bot, 25(2): 248-253. [孔妤, 王忠, 顾蕴洁, 等, 2008. 植物根内通气组织形成的研究进展 [J]. 植物学通报, 25(2): 248-253. ]

    • LAPIN D, BHANDARI DD, PARKER JE, 2020. Origins and immunity networking functions of EDS1 family proteins [J]. Ann Rev Phytopathol, 58: 253-276.

    • LAPIN D, KOVACOVA V, SUN X, et al. , 2019. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-Domain immune receptors [J]. Plant Cell, 31(10): 2430-2455.

    • LIU YG, CHEN Y, 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences [J]. Biol Techniques, 43(5): 649-656.

    • LIU YY, DING Y, ZHENG JQ, et al. , 2023. Research progress on PRRs and NLRs mediated immune signaling pathways in plants [J]. Jiangsu Agric Sci, 51(8): 43-50. [刘艳艳, 丁颖, 郑佳秋, 等, 2023. 植物PRRs和NLRs介导的免疫信号通路研究进展 [J]. 江苏农业科学, 51(8): 43-50. ]

    • LORBIECKE R, SAUTER M, 1999. Adventitious root growth and cell-cycle induction in deepwater rice [J]. Plant Physiol, 119: 21-29.

    • MATEO A, MÜHLENBOCK P, RUSTÉRUCCI C, et al. , 2004. Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy [J]. Plant Physiol, 136: 2818-2830.

    • MOLINA C, GROTEWOLD E, 2005. Genome wide analysis of Arabidopsis core promoters [J]. BMC Genomics, 6(1): 25.

    • MÜHLENBOCK P, PLASZCZYCA M, PLASZCZYCA M, et al. , 2007. Lysigenous aerenchyma formation in Arabidopsis is controlled by lesion simulating disease 1 [J]. Plant Cell, 19(11): 3819-3830.

    • MÜHLENBOCK P, SZECHYNSKA-HEBDA M, PLASZCZYCA M, et al. , 2008. Chloroplast signaling and lesion simulating disease 1 regulate crosstalk between light acclimation and immunity in Arabidopsis [J]. Plant Cell, 20(9): 2339-2356.

    • NEUBAUER M, SERRANO I, RODIBAUGH N, et al. , 2020. Arabidopsis EDR1 protein kinase regulates the association of EDS1 and PAD4 to inhibit cell death [J]. Mol Plant Microb Interaction, 33(4): 693-703.

    • NG DW, ABEYSINGHE JK, KAMALI M, 2018. Regulating the regulators: the control of transcription factors in plant defense signaling [J]. Int J Mol Sci, 19(12): 3737.

    • PANT SR, KRISHNAVAJHALA A, MCNEECE BT, et al. , 2015. The syntaxin 31-induced gene, lesion simulating disease 1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines [J]. Plant Signal Behav, 10: e977737.

    • PEGADARAJU V, LOUIS J, SINGH V, et al. , 2007. Phloem-based resistance to green peach aphid is controlled by Arabidopsis phytoalexin deficient 4 without its signaling partner enhanced disease susceptibility 1 [J]. Plant J, 52(2): 332-341.

    • PETROV V, HILLE J, MUELLER-ROEBER B, et al. , 2015. ROS-mediated abiotic stress-induced programmed cell death in plants [J]. Front Plant Sci, 6: 69.

    • PRUITT RN, LOCCI F, WANKE F, et al. , 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity [J]. Nature, 598(7881): 495-499.

    • QI X, LI Q, MA X, et al. , 2019. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling [J]. Plant Cell Environ, 42(5): 1458-1470.

    • RAJHI I, YAMAUCHI T, TAKAHASHI H, et al. , 2011. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses [J]. New Phytol, 190(2): 351-368.

    • RIETZ S, STAMM A, MALONEK S, et al. , 2011. Different roles of enhanced disease susceptibility 1 (EDS1) bound to and dissociated from phytoalexin deficient4 (PAD4) in Arabidopsis immunity [J]. New Phytol, 191: 107-119.

    • ŚLESAK I, SZECHYŃSKA-HEBDA M, FEDAK H, et al. , 2014. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides) [J]. Plant Cell Environ, 4(1): 55-61.

    • SHI GZ, WANG ZY, SUN Q, et al. , 2022. Cloning and activity analysis of SikCDPK1 promoter from Saussurea involucrate [J]. Biotechnol Bull, 38(9): 191-197. [史光珍, 王兆晔, 孙琦, 等, 2022. 雪莲SikCDPK1启动子的克隆和活性分析 [J]. 生物技术通报, 38(9): 191-197. ]

    • SHI SB, HAN F, 2006. Light sources for ultraviolet research and simulation of solar ultraviolet-B [J]. Biotechnol Bull (S1): 161-166. [师生波, 韩发, 2006. 紫外光源及太阳UV-B辐射的模拟实验 [J]. 生物技术通报 (S1): 161-166. ]

    • SINGH K, FOLEY RC, OÑATE-SÁNCHEZ L, 2002. Transcription factors in plant defense and stress responses [J]. Curr Opin Plant Biol, 5: 430-436.

    • SONG N, LIN J, LIU X, et al. , 2022. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat [J]. New Phytol, 236(2): 590-607.

    • SZECHYNSKA-HEBDA M, CZARNOCKA W, HEBDA M, et al. , 2016. PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties [J]. Plant Cell Rep, 35(3): 527-539.

    • TANDON G, JAISWAL S, IQUEBAL MA, et al. , 2015. Evidence of salicylic acid pathway with EDS1 and PAD4 proteins by molecular dynamics simulation for grape improvement [J]. J Biomol Struct Dyn, 33: 2180-2191.

    • WANG HL, SONG SS, GAO S, et al. , 2024. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis [J]. Plant Cell, 36(2): 427-446.

    • WANG J, SHINE MB, GAO QM, et al. , 2014. Enhanced disease susceptibility 1 mediates pathogen resistance and virulence function of a bacterial effector in soybean [J]. Plant Physiol, 165(3): 1269-1284.

    • WANG WH, YU JJ, TIAN HL, 2007. Comparative studies on the anatomical structures of leave of 3 species in Saussurea [J]. Bull Bot Res, 27(3): 275-278. [王文和, 于建军, 田晔林, 2007. 风毛菊属3种植物叶的解剖结构比较 [J]. 植物研究, 27(3): 275-278. ]

    • WEI L, LIU JL, 2021. Overview of research on protein subcellular localization in plants [J]. Plant Sci, 39(1): 93-101. [未丽, 刘建利, 2021. 植物蛋白质亚细胞定位相关研究概述 [J]. 植物科学学报, 39(1): 93-101. ]

    • WIERMER M, FEYS BJ, PARKER JE, 2005. Plant immunity: the EDS1 regulatory node [J]. Curr Opin Plant Biol, 8(4): 383-389.

    • WITOŃD, SUJKOWSKA-RYBKOWSKA M, DĄBROWSKA-BRONK J, et al. , 2021. Mitogen-activated protein kinase 4 impacts leaf development, temperature, and stomatal movement in hybrid aspen [J]. Plant Physiol, 186(4): 2190-2204.

    • WITUSZYŃSKA W, SLESAK I, VANDERAUWERA S, et al. , 2013. Lesion simulating disease 1, enhanced disease susceptibility 1, and phytoalexin deficient 4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis [J]. Plant Physiol, 161: 1795-1805.

    • WITUSZYŃSKA W, SZECHYŃSKA-HEBDA M, SOBCZAK M, et al. , 2015. Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana [J]. Plant Cell Environ, 38: 315-330.

    • WU ZQ, CHEN W, ZHAO Z, et al. , 2024. Genome-wide identification and bioinformatics analysis of GRAS gene family in maize [J]. J Agric Sci Technol, 26(3): 15-25. [吴占清, 陈威, 赵展, 等, 2024. 玉米GRAS基因家族的全基因组鉴定及生物信息学分析 [J]. 中国农业科技导报, 26(3): 15-25. ]

    • YAMAUCHI T, WATANABE K, FULAZAWA A, et al. , 2014. Ethylene and reacive oxygen species are involved in oot aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions [J]. J Exp Bot, 65(1): 261-273.

    • YOUSSEF RM, MACDONALD MH, BREWER EP, et al. , 2013. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes [J]. BMC Plant Biol, 13(1): 67.

    • ZENG HY, LIU Y, CHEN DK, et al. , 2021. The immune components enhanced disease susceptibility 1 and phytoalexin deficient 4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis [J]. Plant J, 107(5): 1447-1465.

    • ZHI TT, ZHOU Z, HAN CY, et al. , 2022. PAD4 mutation accelerating programmed cell death in Arabidopsis thaliana tyrosine degradation deficient mutant sscd1 [J]. Chin Bull Bot, 57(3): 288-298. [支添添, 周舟, 韩成云, 等, 2022. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡 [J]. 植物学报, 57(3): 288-298. ]

    • ZHU JW, 2014. Effect of aerenchyma formation related genes on growth and nitrogen utilization in rice [D]. Nanjing: Nanjing Agricultural University: 55-58. [朱静雯, 2014. 通气组织形成相关基因对水稻生长和氮素利用的影响研究 [D]. 南京: 南京农业大学: 55-58. ]