en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈荣枢(1995-),硕士研究生,主要从事土壤生态学研究,(E-mail)RongshuC522@163.com。

通讯作者:

黄慧敏,主要从事森林群落生态及物种多样性研究,(E-mail)673727393@qq.com。

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2023)02-0242-11

DOI:10.11931/guihaia.gxzw202107061

参考文献
BURNS RG, DEFOREST JL, MARXSEN J, et al. , 2013. Soil enzymes in a changing environment: Current knowledge and future directions [J]. Soil Biol Biochem, 58: 216-234.
参考文献
CAO H, SUN H, YANG H, et al. , 2003. A review soil enzyme activity and its indication for soil quality [J]. Chin J Appl Environ Biol, 9(1): 105-109. [曹慧, 孙辉, 杨浩, 等, 2003. 土壤酶活性及其对土壤质量的指示研究进展 [J]. 应用与环境生物学报, 9(1): 105-109. ]
参考文献
CAO JH, YUAN DX, PAN GX, 2003. Some soil features in karst ecosystem [J]. Adv Earth Sci, 18(1): 37-44. [曹建华, 袁道先, 潘根兴, 2003. 岩溶生态系统中的土壤 [J]. 地球科学进展, 18(1): 37-44. ]
参考文献
CAO JH, YUAN DX, TONG LQ, et al. , 2015. An overview of karst ecosystem in Southwest China: current state and future management [J]. J Resour Ecol, 6(4): 247-256.
参考文献
CHEN H, LUO P, WEN L, et al. , 2017. Determinants of soil extracellular enzyme activity in a karst region, southwest China [J]. Eur J Soil Biol, 80: 69-76.
参考文献
CHEN H, LI DJ, XIAO KC, et al. , 2018. Soil microbial processes and resource limitation in karst and non-karst forests [J]. Funct Ecol, 32: 1400-1409.
参考文献
CONDRON LM, NEWMAN S, 2011. Revisiting the fundamentals of phosphorus fractionation of sediments and soils [J]. J Soils Sed, 11(5): 830-840.
参考文献
CUI YX, FANG LC, GUO XB, et al. , 2018. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the Northern Loess Plateau, China [J]. Soil Biol Biochem, 116: 11-21.
参考文献
CURTIN D, CAMPBELL CA, JALIL A, 1998. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils [J]. Soil Biol Biochem, 30(1): 57-64.
参考文献
DUAN CY, HE CX, SHEN YY, et al. , 2020. Soil microbe quantity and enzyme activity characteristics of Eucalyptus plantations of different forest ages in North Guangxi [J]. Guihaia, 40(12): 1877-1888. [段春燕, 何成新, 沈育伊, 等, 2020. 桂北不同林龄桉树人工林土壤微生物数量和酶活性特征研究 [J]. 广西植物, 40(12): 1877-1888. ]
参考文献
FENG C, MA YH, JIN X, et al. , 2019. Soil enzyme activities increase following restoration of degraded subtropical forests [J]. Geoderma, 351: 180-187.
参考文献
FIERER N, MCCAIN CM, MEIR P, et al. , 2011. Microbes do not follow the elevational diversity patterns of plants and animals [J]. Ecology, 92(4): 797-804.
参考文献
FAN ZZ, LU SY, WANG J, et al. , 2018. Microbial and enzyme activities in rhizosphere soil of different forest stand in karst and non karst areas [J]. J Beijing For Univ, 40(7): 55-61. [范周周, 卢舒瑜, 王娇, 等, 2018. 岩溶与非岩溶区不同林分根际土壤微生物及酶活性 [J]. 北京林业大学学报, 40(7): 55-61. ]
参考文献
GASTON KJ, 2000. Global patterns in biodiversity [J]. Nature, 405(6783): 220-227.
参考文献
GILLIS JD, PRICE G. W, 2016. Linking short-term soil carbon and nitrogen dynamics: Environmental and stoichiometric controls on fresh organic matter decomposition in agroecosystems [J]. Geoderma, 274: 35-44.
参考文献
GONG JF, CAI ZJ, 2018. Soil enzyme activity and their correlations under different vegetation types in karst area [J]. Guizhou Agric Sci, 46(5): 59-63. [宫杰芳, 蔡照军, 2018. 喀斯特地区不同植被类型的土壤酶活性及相关性 [J]. 贵州农业科学, 46(5): 59-63. ]
参考文献
GUAN HL, FAN JW, LU XK, 2022. Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas [J]. Appl Soil Ecol, 169: 104253.
参考文献
GUAN SY, 1986. Soil enzymes and their research methods [M]. Beijing: Agricultural Press. [关松荫, 1986. 土壤酶及其研究法 [M]. 北京: 农业出版社. ]
参考文献
HE XJ, HOU EQ, LIU Y, et al, 2016. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China [J]. Sci Rep, 6: 24261.
参考文献
HILL BH, ELONEN CM, SEIFERT LR, et al. , 2012. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers [J]. Ecol Indic, 18(4): 540-551.
参考文献
JIANG LL, HAN XG, DONG N, et al. , 2011. Plant species effects on soil carbon and nitrogen dynamics in a temperate steppe of northern China [J]. Plant Soil, 346(1): 331-347.
参考文献
JIANG MH, NI MY, ZHOU JC, et al. , 2018. Effects of warming and precipitation reduction on soil enzyme activity in a young Cunninghamia lanceolata plantation [J]. Chin J Ecol, 37(11): 3210-3219. [江淼华, 倪梦颖, 周嘉聪, 等, 2018. 增温和降雨减少对杉木幼林土壤酶活性的影响 [J]. 生态学杂志, 37(11): 3210-3219. ]
参考文献
LAI L, HUANG XJ, YANG H, et al. , 2016. Carbon emissions from land-use change and management in China between 1990 and 2010 [J]. Sci Adv, 2(11) : e1601063.
参考文献
LAUBER CL, RAMIREZ KS, AANDERUD Z, et al. , 2013. Temporal variability in soil microbial communities across land-use types [J]. Isme J, 7(8).
参考文献
LIAO YL, LU YH, NIE J, et al. , 2016. Effects of long-term fertilization on basic soil productivity and nutrient use efficiency in paddy soils [J]. J Plant Nutr Fert, 22(5): 1249-1258. [廖育林, 鲁艳红, 聂军, 等, 2016. 长期施肥稻田土壤基础地力和养分利用效率变化特征 [J]. 植物营养与肥料学报, 22(5): 1249-1258. ]
参考文献
LI C, LÜ JH, LU M, et al. , 2020. Variations of soil enzyme activity in typical evergreen broadleaved forests along altitude gradient in Southeast Yunnan [J]. Fore Res, 33(6): 170-179. [李聪, 吕晶花, 陆梅, 等, 2020. 滇东南典型常绿阔叶林土壤酶活性的海拔梯度特征 [J]. 林业科学研究, 33(6): 170-179. ]
参考文献
LIN HL LIANG SC, YAO YP, et al. , 2021. Species composition and environmental analysis of deciduous broad-leaf forests in the karst hills of Guilin [J]. Guihaia, 41(5): 758-768. [林红玲, 梁士楚, 姚义鹏, 等, 2021. 桂林岩溶石山落叶阔叶林种类组成及其环境解释 [J]. 广西植物, 41(5): 758-768. ]
参考文献
LIN JP, DENG AZ, ZHAO XM, et al. , 2019. Variation characteristics of soil nutrients of cultivated land in different elevation fields in typical hilly areas of Southern Mountains [J]. Trans Chin Soc Agric Mach, 50(5): 300-309. [林建平, 邓爱珍, 赵小敏, 等, 2019. 南方典型丘陵山区不同高程耕地土壤养分变化特征分析 [J]. 农业机械学报, 50(5): 300-309. ]
参考文献
LI XY, ZHANG WY, LIU F, et al. , 2016. The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain [J]. Res Soil Water Conserv, 23(3): 19-24. [李相楹, 张维勇, 刘峰, 等, 2016. 不同海拔高度下梵净山土壤碳、氮、磷分布特征 [J]. 水土保持研究, 23(3): 19-24. ]
参考文献
LONG J, LI J, JIANG XR, et al. , 2004. Soil microbial activities in Maolan karst forest, Guizhou Province [J]. Acta Pedol Sin, 41(4): 597-602. [龙健, 李娟, 江新荣, 等, 2004. 贵州茂兰喀斯特森林土壤微生物活性的研究 [J]. 土壤学报, 41(4): 597-602. ]
参考文献
LUAN LL, LIU EY, GU X, et al. , 2020. Effects of litter manipulation and nitrogen addition on soil ecoenzymatic stoichiometry in a mixed pine and oak forest [J]. Acta Ecol Sin, 40(24): 9220-9233. [栾历历, 刘恩媛, 顾新, 等, 2020. 凋落物处理和氮添加对松栎混交林土壤生态酶化学计量的影响 [J]. 生态学报, 40(24): 9220-9233. ]
参考文献
LUO N, TENG YB, HU JL, et al. , 2021. Changes of land use and its relationship with tourism development in Lijiang River Basin [J]. J NW For Univ, 36(5): 262-268. [罗楠, 滕耀宝, 胡金龙, 等, 2021. 漓江流域土地利用变化及与旅游发展关系研究 [J]. 西北林学院学报, 36(5): 262-268. ]
参考文献
LU RK, 2000. Soil agrochemical analysis methods [M]. Beijing: China Agricultural Science and Technology Publishing House: 34-38. [鲁如坤, 2000. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社: 34-38. ]
参考文献
MARGESIN R, MINERBI S, SCHINNER F, 2014. Long-term monitoring of soil microbiological activities in two forest sites in south tyrol in the Italian alps [J]. Microb Environ, 29(3): 277-285.
参考文献
NIE YY, WANG HH, LI XJ, et al. , 2018. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi mountains, southeastern China [J]. Chin J Appl Ecol, 29(3): 748-756. [聂阳意, 王海华, 李晓杰, 等, 2018. 武夷山低海拔和高海拔森林土壤有机碳的矿化特征 [J]. 应用生态学报, 29(3): 748-756. ]
参考文献
PORDER S, RAMACHANDRAN S, 2013. The phosphorus concentration of common rocks — a potential driver of ecosystem P status [J]. Plant Soil, 367(1): 41-55.
参考文献
SHAO WZ, ZHOU XG, WEN YG, et al. , 2022. Effects of mixing Castanopsis hystrix and Eucalyptus on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry [J]. Guihaia, 42(4): 543-555. [邵文哲, 周晓果, 温远光, 等, 2022. 桉树与红锥混交对土壤水解酶活性及其化学计量特征的影响 [J]. 广西植物, 42(4): 543-555. ]
参考文献
SHI Y, DU QP, LI Z, et al. , 2012. Change in 1, 4-dichlorobenzene residue and its effects on soil enzyme activities in cinnamon soil [J]. Chin J Appl Environ Biol, 18(2): 229-234. [石瑛, 杜青平, 李砧, 等, 2012. 1, 4-二氯苯在褐土中的残留量变化及对几种土壤酶活性的影响 [J]. 应用与环境生物学报, 18(2): 229-234. ]
参考文献
SONG XC, XIANG DY, GUO LM, et al. , 2016. Spatial variation pattern of soil nutrients in forests of Maoer Mountain [J]. J Fujian Coll For, 36(3): 349-354. [宋贤冲, 项东云, 郭丽梅, 等, 2016. 猫儿山森林土壤养分的空间变化特征 [J]. 福建林学院学报, 36(3): 349-354. ]
参考文献
STOCK SC, KÖSTER M, DIPPOLD MA, et al. , 2019. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale [J]. Geoderma, 337: 973-982.
参考文献
SUN CL, WANG YW, WANG CJ , et al. , 2021. Effects of land use conversion on soil extracellula renzyme activity and its stoichiometric characteristics in karst mountainous areas [J]. Acta Ecol Sin, 41(10): 4140-4149. [孙彩丽, 王艺伟, 王从军, 等, 2021. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响 [J]. 生态学报, 41(10): 4140-4149. ]
参考文献
TAO BX, ZHANG BH, DONG J, et al. , 2017. Effect of greenhouse cultivation on the decomposition of organic carbon in agricultural soils [J]. J Agro-Environ Sci, 36(12): 2486-2492. [陶宝先, 张保华, 董杰, 等, 2017. 设施耕作促进农田土壤有机碳矿化 [J]. 农业环境科学学报, 36(12): 2486-2492. ]
参考文献
TIAN J, SHENG MY, WANG P, et al. , 2019. Influence of land use change on litter and soil C, N, P stoichiometric characteristics and soil enzyme activity in karst ecosystem, Southwest China [J]. Environ Sci, 40(9): 4278-4286. [田静, 盛茂银, 汪攀, 等, 2019. 西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响 [J]. 环境科学, 40(9): 4278-4286. ]
参考文献
WANG LJ, WANG P, SHENG MY, 2018. Stoichiometric characteristics of soil nutrient elements and its influencing factors in typical karst rocky desertification ecosystems, Southwest China [J]. Acta Ecol Sin, 38(18): 6580-6593. [王霖娇, 汪攀, 盛茂银, 2018. 西南喀斯特典型石漠化生态系统土壤养分生态化学计量特征及其影响因素 [J]. 生态学报, 38(18): 6580-6593. ]
参考文献
WANG YQ, YIN YL, LI SX, 2019. Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees [J]. Ecol Environ Sci, 28(6): 1108-1116. [王玉琴, 尹亚丽, 李世雄, 等, 2019. 不同退化程度高寒草甸土壤理化性质及酶活性分析 [J]. 生态环境学报, 28(6): 1108-1116. ]
参考文献
WEI HQ, CAO JH, LIANG JH, et al. , 2008. Effects of straw returning to field on enzyme activity in karst and non-karst area [J]. Carsol Sin, 27(4): 316-320. [韦红群, 曹建华, 梁建宏, 等, 2008. 秸秆还田对岩溶区与非岩溶区土壤酶活性影响的对比研究 [J]. 中国岩溶, 27(4): 316-320. ]
参考文献
WU QF, XIE GX, WANG JW, et al. , 2018. The stability of organic carbon and aggregates of three limestone soils in the Western Zhejiang [J]. Chin J Soil Sci, 49(3): 567-574. [邬奇峰, 谢国雄, 王京文, 等, 2018. 浙西3类石灰岩发育土壤有机碳和团聚体稳定性的研究 [J]. 土壤通报, 49(3): 567-574. ]
参考文献
XIAO HC, LI JW, XIA Y, et al. , 2021. Characteristics of phosphorus fractions and their driving factors in forest soils with different parent materials in the mid-subtropics, China [J]. Chin J Appl Ecol, 32(1): 16-22. [肖华翠, 李靖雯, 夏允, 等, 2021. 中亚热带不同母质发育森林土壤磷组分特征及其影响因素 [J]. 应用生态学报, 32(1): 16-22. ]
参考文献
XU GP, GU DX, PAN FJ, et al. , 2014. Effects of different land-use types on soil enzyme activity in karst mountain areas of Southwest Guangxi [J]. Guihaia, 34(4): 460-466. [徐广平, 顾大形, 潘复静, 等, 2014. 不同土地利用方式对桂西南岩溶山地土壤酶活性的影响 [J]. 广西植物, 34(4): 460-466. ]
参考文献
XU J, DAI HM, LIU GD, et al. , 2020. Study on the changes of soil enzyme activity under different land use types [J]. Geol Resour, 29(6): 579-584. [许江, 戴慧敏, 刘国栋, 等, 2020. 不同土地利用方式下土壤酶活性的变化研究 [J]. 地质与资源, 29(6): 579-584. ]
参考文献
YANG JC, HAN XG, HUANG JH, et al. , 2003. Effects of land use change on carbon storage in terrestrial ecosystem [J]. Chin J Appl Ecol, 14(8): 1385-1390. [杨景成, 韩兴国, 黄建辉, 等, 2003. 土地利用变化对陆地生态系统碳贮量的影响 [J]. 应用生态学报, 14(8): 1385-1390. ]
参考文献
YANG X, WU JJ, YAN F, et al. , 2009. Assessment of regional soil moisture status based on characteristics of surface temperature/vegetation index space [J]. Acta Ecol Sin, 29(3): 1205-1216. [杨曦, 武建军, 闫峰, 等, 2009. 基于地表温度-植被指数特征空间的区域土壤干湿状况 [J]. 生态学报, 29(3): 1205-1216. ]
参考文献
YANG Y, LIANG C, WANG YQ, et al. , 2020. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration [J]. Soil Biol Biochem, 149: 107928.
参考文献
YAO L, ZHANG HC, HU LH, et al. , 2019. Soil labile organic carbon and nitrogen and their relationship with enzyme activities in different vegetation zones along an altitudinal gradient on Mount Huangshan [J]. J Zhejiang Agric For, 36(6): 1069-1076. [姚兰, 张焕朝, 胡立煌, 等, 2019. 黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系 [J]. 浙江农林大学学报, 36(6): 1069-1076. ]
参考文献
YUAN QF, XIE P, HUANG J, et al. , 2013. The influence on soil enzyme activities and soil nutrient contents in rhododendron soil at different altitudes in Yunnan Province [J]. J Trop Crops, 34(12): 2363-2367. [袁启凤, 解璞, 黄静, 等, 2013. 云南不同海拔高度对杜鹃土壤酶活性与土壤养分的影响 [J]. 热带作物学报, 34(12): 2363-2367. ]
参考文献
YU YH, CHENG W, YANG DL, 2013. Features of soil mineral elements in man-made forest of Guizhou karst mountain area [J]. Guihaia, 39(1): 108-116. [喻阳华, 程雯, 杨丹丽, 2019. 贵州喀斯特山区典型人工林土壤矿质元素特征 [J]. 广西植物, 39(1): 108-116. ]
参考文献
ZHANG W, XU YD, GAO DX, et al. , 2019. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China [J]. Soil Biol Biochem, 134: 1-14.
参考文献
ZHANG XB, WANG SJ, CAO JH, et al. , 2010. Characteristics of water loss and soil erosion and some scientific problems on karst rocky desertification in Southwest China karst area [J]. Carsol Sin, 29(3): 274-279. [张信宝, 王世杰, 曹建华, 等, 2010. 西南喀斯特山地水土流失特点及有关石漠化的几个科学问题 [J]. 中国岩溶, 29(3): 274-279. ]
参考文献
ZHANG XX, YANG LM, CHEN Z, et al. , 2018. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas [J]. Acta Ecol Sin, 38(16): 5828-5836. [张星星, 杨柳明, 陈忠, 等, 2018. 中亚热带不同母质和森林类型土壤生态酶化学计量特征 [J]. 生态学报, 38(16): 5828-5836. ]
参考文献
ZHAO C, SHENG MY, BAI YX, et al. , 2021. Soil available nitrogen and phosphorus contents and the environmental impact factors across different land use types in typical karst rocky desertification area, Southwest China [J]. Chin J Appl Ecol, 32(4): 1383-1392. [赵楚, 盛茂银, 白义鑫, 等, 2021. 喀斯特石漠化地区不同土地利用类型土壤氮磷有效性及其环境影响因子 [J]. 应用生态学报, 32(4): 1383-1392. ]
参考文献
ZHAO FZ, REN CJ, HAN XH, et al. , 2018. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems [J]. For Ecol Manage, 427: 289-295.
参考文献
ZHENG L, CHEN H, WANG YQ, et al. , 2020. Responses of soil microbial resource limitation to multiple fertilization strategies [J]. Soil Tillage Res, 196: 104474.
参考文献
ZHOU HC, ZHOU H, XIAO HL, et al. , 2020. The variation characteristics of heavy metal content, nutrient and enzyme activity in soil of alpine steppe with different degradation gradient in the Three River-Headwaters Region [J]. Acta Agr Sin, 28(3): 784-792. [周会程, 周恒, 肖海龙, 等, 2020. 三江源区不同退化梯度高寒草原土壤重金属含量及其与养分和酶活性的变化特征 [J]. 草地学报, 28(3): 784-792. ]
参考文献
ZHOU H, ZHOU HC, XIAO HL, et al. , 2019. Characteristics of enzyme activity in surface soil of alpine steppe under different altitudes on Qinghai-Tibetan Plateau [J]. Grassl Turf, 39(5): 20-30. [周恒, 周会程, 肖海龙, 等, 2019. 三江源不同海拔高寒草原表层土壤酶活性特征 [J]. 草原与草坪, 39(5): 20-30. ]
参考文献
ZHOU JH, GAO RR, WEI Q, et al. , 2020. Effects of different land use patterns on enzyme activities and microbial diversity in upland red soil [J]. J Soil Water Conserv, 34(1): 327-332. [周际海, 郜茹茹, 魏倩, 等, 2020. 旱地红壤不同土地利用方式对土壤酶活性及微生物多样性的影响差异 [J]. 水土保持学报, 34(1): 327-332. ]
参考文献
ZHOU ZH, WANG CK, 2016. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry [J]. Chin J Plant Ecol, 40(6): 620-630. [周正虎, 王传宽, 2016. 微生物对分解底物碳氮磷化学计量的响应和调节机制 [J]. 植物生态学报, 40(6): 620-630. ]
参考文献
ZUO YP, LI JP, ZENG H, et al. , 2018. Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts [J]. Biogeochemistry, 141: 23-39.
参考文献
ZHONG ZK, YANG GH, REN CJ, et al. , 2021. Effects of farmland abandonment on soil enzymatic activity and enzymatic stoichiometry in the Loess Hilly region, China [J]. Environ Sci, 42(1): 411-421. [钟泽坤, 杨改河, 任成杰, 等, 2021. 黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征 [J]. 环境科学, 42(1): 411-421. ]
目录contents

    摘要

    漓江流域海拔、土壤类型和植被类型多样。为研究其土壤养分和土壤酶活性特征,该研究以漓江流域石灰性土壤及酸性土壤的典型植被类型(自然林、毛竹林、马尾松林、果园、水稻田)的表层土壤(0~20 cm)为研究对象,测定土壤养分含量及碳氮转化相关胞外酶(淀粉酶、蔗糖酶、脲酶、蛋白酶、过氧化氢酶)活性及化学计量比特征。结果表明:(1)高海拔土壤的全氮(TN)、全磷(TP)、有效磷(AP)含量和淀粉酶、蔗糖酶、脲酶、蛋白酶活性相对较高,而过氧化氢酶活性则正好呈现相反的趋势。(2)相对于酸性土壤,石灰性土壤有较高的TP和AP含量。在酸性土壤中,植被类型对氮磷养分影响较大,总体上人工植被使得土壤氮素降低而使磷素增加;而石灰性土壤养分在不同植被类型间差异相对较小。(3)相比自然林,人工植被的土壤氮转化酶活性极大降低,而土壤碳转化酶活性受人为影响程度相对较小,土壤氮磷酶活性化学计量比显示自然林呈现氮限制而人工林呈现碳限制。(4)典范对应分析(CCA)显示土壤理化性质在第Ⅰ轴和第Ⅱ轴解释了86.56%的土壤酶活性变异,土壤理化性质解释贡献率排序为TN>pH>铵态氮(NH4+)>AP>TP>硝态氮(NO3-),其中前3个因子是造成土壤酶活性差异的主要因子。综上结果表明,漓江流域的酸性土壤对人为干扰的生态敏感性较高,植被变化易导致养分失衡,应注重土壤养分管理,防止土壤有机质的损失,提高漓江流域景观资源可持续利用的价值。该研究为当地生态系统的科学保育和开发提供了理论依据。

    Abstract

    The Lijiang River Basin covers great variation in altitude, soil and vegetation types. In order to study the characteristics of its soil nutrients and enzymes activities, we determined soil nutrient contents and activities of several extracellular enzymes (amylase, sucrose, urease, protease and catalase) of the surface soils (0-20 cm) of typical vegetation types [natural forest, bamboo (Phyllostachys edulis) forest, Pinus massoniana forest, orchard and rice paddy field] with calcareous soils and acid soils in the Lijiang River Basin. The results were as follows: (1) The soils at high altitude had greater total nitrogen (TN), total phosphorus (TP), available phosphorus (AP) contents as well as amylase, sucrose, urease and protease activities, whereas the catalase activity was to the contrary. (2) Compared with the acid soils, the calcareous soils had higher contents of total phosphorus (TP) and available phosphorus (AP). Among the acid soils, vegetation types had greater impact on soil nitrogen and phosphorus contents. In general, anthropogenic vegetation resulted in decrease of nitrogen content and increases of phosphorus content; while the nutrients in the calcareous soils had relatively little variation among different vegetation types. (3) Compared with the natural forest soils, soils from the anthropogenic vegetation had lower nitrogen related enzyme activities; whereas the carbon related enzyme activities was less impacted. The enzymatic stoichiometry revealed that soils of natural forests were nitrogen limited whereas those of anthropogenic vegetation was carbon limited. (4) The results of canonical correspondence analysis (CCA) showed that soil physiochemical properties in the first and second axes explained 86.56% of the variation of soil enzyme activities with the contribution order of TN>pH>NH4+>AP>TP>NO3-, with the first three as the main impacts. All the above results indicate that acid soils in the Lijiang River Basin have great ecological sensitivities; vegetation changes easily result in nutrient imbalance, therefore, in order to improve the sustainable utility of landscape resources of the Lijiang River Basin, special attention should be paid to the conservation of soil nutrients and prevention of the loss of soil organic matter. This study provides theoretical base for the scientific conservation and development of local ecosystem.

  • 土壤酶是土壤中最活跃的组分之一,主要来源于动植物、微生物的分泌及残体等。土壤酶通过催化复杂含碳、氮和磷有机化合物的矿化和水解等一系列生物化学过程,促进土壤有机物的分解(Burns et al.,2013),其活性大小能灵敏地反映土壤生物化学过程的方向和强度(曹慧等,2003; Yang et al.,2020)。植被类型改变所引起的生态系统特征的变化,如植被群落特征和发育阶段(Feng et al.,2019; 王玉琴等,2019)、土壤生物群落的组成(Lauber et al.,2013)、土壤水热条件(杨曦等,2009)等,对土壤的理化性质产生综合性的影响(Stock et al.,2019),如土壤pH、土壤养分及其化学计量特征(Zhao et al.,2018; 田静等,2019; 林红玲等,2021)和土壤温湿度(江淼华等,2018)等,从而直接或间接地影响土壤酶活性(段春燕等,2020; 邵文哲等,2022)。

  • 不同海拔间温度、湿度的差异强烈影响土壤生物化学过程,从而影响土壤养分和植被类型的分布(Gaston,2000; Fierer et al.,2013)并导致土壤酶活性的巨大差异。Margesin等(2014)对阿尔卑斯山脉研究发现土壤酶活性随着海拔的升高而降低,Zuo等(2018)对新疆山脉的研究结果则与其相反。而李聪等(2020)对滇东南典型常绿阔叶林土壤酶的研究发现,土壤过氧化氢酶、脲酶和蔗糖酶的活性随海拔的升高而增加,而土壤酸性磷酸酶活性则呈现先下降后上升的趋势。这表明不同地区或气候带下海拔梯度影响土壤酶活性的关键作用因子有很大差异,需要对不同地区进行针对性的研究。

  • 土壤酶化学计量比可以反映微生物对养分的需求与土壤养分限制之间的生物地球化学平衡模式(Hill et al.,2012; 张星星等,2018),全球尺度上土壤酶化学计量比为1∶1∶1,在区域尺度上,土壤微生物活性受到土壤养分影响,其实际值将会偏离(Zhao et al.,2018; Zhang et al.,2019)。不同植被类型下,土壤养分的来源、循环和含量及活性均有差异,间接地影响了植物和微生物通过分泌胞外酶获取养分的过程(龙健等,2004; 宫杰芳和蔡照军,2018; 田静等,2019)。许江等(2020)对黑龙江省海伦市相邻耕地和林地的研究发现蔗糖酶活性与植被类型无关,脲酶活性受植被类型影响较大,而过氧化氢酶主要受土壤有机碳的影响。周际海等(2020)研究了旱地红壤的5种土地利用方式对土壤酶活性的影响,结果表明蔗糖酶活性与过氧化氢酶活性受植被类型的影响较小,而脲酶活性受植被类型影响较大。钟泽坤等(2021)的研究发现土壤理化性质和植被多样性是调控土壤酶活性和酶化学计量比的主要因子。Cui等(2018)的研究发现植被类型对酶化学计量比的影响大于土壤类型。因此,对漓江流域土壤酶化学计量特征的变化及其影响因素仍需进一步研究。

  • 石灰性土壤具有较高的土壤pH值和钙、镁含量,土壤有机碳含量也普遍较高,是主要的有机碳库(曹建华等,2003)。范周周等(2018)研究发现岩溶区的碳酸酐酶、过氧化氢酶、脲酶及酸性磷酸酶的活性高于非岩溶区。韦红群等(2008)的研究表明岩溶区的过氧化氢酶、蔗糖酶、脲酶、纤维素酶活性高于非岩溶区,而蛋白酶活性则与其相反。Chen等(2018)的研究表明岩溶森林β-1,4-葡萄糖苷酶、亮氨酸氨基肽酶和多酚氧化酶活性显著高于非岩溶森林,但岩溶森林β-N-乙酰氨基葡萄糖酶和酸性磷酸酶活性显著低于非岩溶森林,岩溶森林中的β-1,4-葡萄糖苷酶∶酸性磷酸酶,β-1,4-葡萄糖苷酶∶(β-N-乙酰氨基葡萄糖酶+亮氨酸氨基肽酶)和(β-N-乙酰氨基葡萄糖酶+亮氨酸氨基肽酶)∶酸性磷酸酶高于非岩溶森林。由此可见,不同土壤由于养分含量有差异,酶活性也各有不同,因此有必要了解养分限制与酶活性之间的关系并揭示控制土壤养分供给的因素。

  • 岩溶地貌广泛分布在中国西南地区。岩溶地区土层发育浅薄,土壤渗漏性强,生态环境相对脆弱,石漠化是该区域最主要的土地退化方式(Cao et al.,2015)。由于人类不合理的开发,导致了水土流失、土壤侵蚀加剧、土地生产力降低,加剧了石漠化问题(张信宝等,2010)。漓江发源于广西东北部以花岗岩为基岩的猫儿山,流经桂林岩溶石灰岩区域,是桂林的生命线,在生态、经济领域中有着重要的地位。随着经济和城市化的发展,近20年来漓江流域受到粮食种植和林果种植的影响日益增加(罗楠等,2021),植被类型变化较大。为保持漓江流域生态系统的稳定,亟须对不同人为所造成的植被类型对该流域岩溶和非岩溶土壤生态系统中养分循环特征和影响因素进行系统性的分析和评估。当前,对岩溶石灰性土壤的研究主要着眼于石漠化及其生态恢复,不同恢复阶段土壤质地和植被构成的不同,土壤养分发生了显著变化(王霖娇等,2018; 喻阳华等,2019),胞外酶活性呈显著差异(Chen et al.,2017; 赵楚等,2021; Guan et al,2022)。研究表明,碳氮磷的转化酶与土壤养分显著相关,说明酶活性控制着土壤营养元素的循环(徐广平等,2014); 植被类型变化导致土壤的营养平衡发生转变(孙彩丽等,2021)。目前,从流域角度对不同母岩发育的土壤类型下不同植被类型对土壤养分和酶活性影响的研究开展还比较少,不利于在流域上针对不同植被及土壤等条件进行综合性的治理与管理。

  • 因此,本研究以漓江流域(源头猫儿山到下游阳朔段)为研究区域,通过对漓江流域不同植被类型的酸性土壤和石灰性土壤的10个样地表层土(0~20 cm)进行对比,采用土壤胞外酶活性和土壤理化性质测试方法,通过研究其土壤营养元素含量及土壤胞外酶活性特征,揭示土壤微生物生长代谢中的营养元素限制特征。拟探讨以下问题:(1)不同植被类型下土壤养分含量和酶活性的变化规律如何;(2)不同自然条件(海拔和土壤类型)对土壤酶活性影响主导环境因子是什么;(3)人工植被类型对土壤养分含量和酶活性有何影响,这是否导致了土壤养分限制的转变。

  • 1 材料与方法

  • 1.1 研究区域概况

  • 研究区域为广西桂林北部兴安县猫儿山到南部阳朔县一带,110°27′56.51″—110°29′31.19″ E、 24°50′12.4″—25°53′01.5″ N,海拔为135~1 120 m。该地区属于亚热带季风气候,全年光照充足、四季分明,年平均气温为17~20℃,年降水量为1 400~2 600 mm,由北至南逐渐减少,年蒸发量为137~1 857 mm,雨热基本同期。漓江流域源头位于猫儿山森林公园,其土壤母质为花岗岩,土壤类型为高山黄壤,呈酸性,森林覆盖率高; 自猫儿山往下,从中游灵川县往南,土壤类型逐渐转变为石灰岩和白云岩发育的石灰性土壤,呈中性或弱酸性; 同时亦有酸性红壤分布。主要植被类型为马尾松(Pinus massoniana)林和毛竹(Phyllostachys edulis)林等为代表的人工经济林以及农田; 下游阳朔县人工植被主要为金桔和蜜桔果园。

  • 1.2 样品采集与分析

  • 2016年7月,根据漓江流域的高海拔(1 120 m)到低海拔(135 m)地区分布的主要土壤、植被和经济作物类型分布特征选取自然林、毛竹林、马尾松林、果园和水稻田等5个广泛分布的植被类型,共10个样地采集土壤样品(表1)。其中,自然林均为常绿阔叶林,在猫儿山样地的优势树种主要为木樨(Osmanthus fragrans)、厚叶杜鹃(Rhododendron pachyphyllum)和青冈(Quercus glauca); 在低海拔石灰性土壤的自然林中,青冈形成单优势; 在酸性土壤的自然林中,优势种为青冈和香樟(Cinnamomum camphora),地表植被繁茂,无明显的人为干扰。毛竹、马尾松均为人工种植的树种,且人工清除了一定的地表植被。每个样地大小为20 m × 20 m,以梅花布点法选取5个样点,去除土壤表层的凋落物后采集表层土(0~20 cm)土壤样品并混合,共计10个土壤样品。将样品带回实验室,手动挑出根茎碎石并过2 mm筛。土壤样品分为两部分,一部分存储于4℃的冰箱中,用于测定土壤中的铵态氮(NH4+)和硝态氮(NO3-)的含量、与碳转化相关的蔗糖酶及淀粉酶,与氮转化相关的脲酶及蛋白酶、与氧化还原过程相关的过氧化氢酶5种胞外酶活性; 另一部分放入60℃的烘箱烘至恒重,用于测定土壤全氮(total nitrogen,TN)、全磷(total phosphorus,TP)、有效磷(available phosphorus,AP)和pH。除TN无平行外,其余指标测定均设置3个平行。

  • 土壤理化性质的测定如下(鲁如坤,2000):pH值采用电位法测定(水土比为2.5∶1); 土壤NH4+和NO3-的测定采用氯化钾溶液提取-分光光度法; 土壤TN和TP的测定采用H2SO4-HClO4-H2O2消解法; 土壤AP的测定采用碳酸氢钠浸提-钼锑抗比色法。土壤胞外酶的测定方法(关松荫,1986)如下:脲酶采用苯酚-次氯酸钠比色法; 蔗糖酶采用3-5-二硝基水杨酸比色法; 过氧化氢酶采用高锰酸钾滴定法; 蛋白酶采用茚三酮比色法; 淀粉酶采用二硝基水杨酸比色法。

  • 1.3 数据处理及分析

  • 本研究以酶活性的相对化学计量比(蔗糖酶+淀粉酶)/(脲酶+蛋白酶)表征土壤胞外酶对于有机碳和有机氮的利用强度。所有数据统计分析均在SPSS 22.0中完成,以海拔与植被类型及土壤类型与植被类型分别作为控制因子对土壤酶活性进行双因素方差分析(two-way ANOVA),土壤氮磷养分含量和土壤酶活性的显著性差异采用单因素方差分析(one-way ANOVA),并通过Duncan法进行显著性多重比较,差异显著性水平为P=0.05。土壤理化性质和土壤酶活性的典范对应分析(CCA)采用Canoco 5 for Windows 软件分析。

  • 2 结果与分析

  • 2.1 土壤氮磷养分含量

  • 由表1可见,石灰性土壤的pH均值显著高于酸性土壤的pH均值(P<0.05)。在酸性土壤中,高海拔自然林TN、TP和AP含量高于低海拔自然林,其无机氮形态以NO3-为主,NH4+含量较低; 反映了高海拔地区有机质累积量高的特征。而在高海拔毛竹林中,TN和NO3-含量较低而NH4+含量较高。相比自然生态系统,人为干扰在不同程度上改变了土壤的营养成分,在土壤类型和植被类型间有较大差异。在低海拔酸性土壤中,相比自然林,各植被类型中的土壤TN和NO3-的含量均降低; 而水稻田土壤NH4+的累积则显著提高(P<0.05); 果园TP和AP的累积显著提高(P<0.05); 其他植被类型(毛竹林和马尾松林)则主要表现为土壤速效养分(NO3-和AP平均含量)的降低。土壤TN和NO3-的降低,土壤矿化增加、养分的植物利用和淋溶损失,因此导致的土壤肥力的下降。而磷养分在人为干扰下则呈现增加的趋势。在石灰性土壤中,相比自然林,各植被类型中除NH4+外的其他养分含量均有不同程度的增加,尤其水稻田的养分增加最为显著。在低海拔的两种土壤中,石灰性土壤的TP含量相对较高。石灰性土壤的两种人工林与自然林相比,并未呈现出明显的养分损失,表明石灰性土壤养分对于人为干扰的敏感度较低。

  • 2.2 土壤酶活性及其化学计量比

  • 海拔、植被类型及土壤类型显著影响土壤酶活性(表2)。在酸性土壤中,高海拔自然林中氮转化酶活性(脲酶和蛋白酶)显著高于低海拔的其他植被(P<0.05); 高海拔毛竹林的蛋白酶活性显著高于其他植被(P<0.05)(图1:C,D)。高海拔土壤中碳转化酶活性(蔗糖酶和淀粉酶)也相对较高(图1:A,B); 而过氧化氢酶则正好呈现相反的趋势(图1:E)。低海拔的酸性土壤中,毛竹林和果园的淀粉酶显著低于自然林、马尾松林和水稻田(P<0.05); 而脲酶在果园和马尾松林中的活性几乎低至接近于零。在石灰性土壤中,水稻田的蔗糖酶显著低于自然林(P<0.05),脲酶显著高于自然林(P<0.05),而不同植被类型对淀粉酶和蛋白酶的影响则不大。石灰性土壤的碳循环相关酶(蔗糖酶和淀粉酶)和过氧化氢酶活性均显著高于酸性土壤对应植被类型的酶活性(P<0.05)。石灰性土壤自然林的碳转化酶活性相对人工植被类型较高。而氮转化酶在人工植被类型土壤中活性很低。总体而言,植被类型对于碳循环相关酶(尤其是淀粉酶)的影响相对较小; 与之相反,氮循环相关酶(尤其是脲酶)主要表现为植被类型而非土壤类型的差异(表2)。

  • 表1 不同植被类型土壤的pH值及氮磷养分含量(n=3)

  • Table1 pH value, nitrogen and phosphorus contents in soils under different vegetation covers (n=3)

  • 注: H. 高海拔; L. 低海拔; G. 酸性土壤; K. 石灰性土壤; NF. 自然林; BP. 毛竹林; OG. 果园; PP. 马尾松林; RP. 水稻田。不同大写字母代表同一土壤类型下不同植被类型之间存在显著差异(P<0.05); 不同小写字母代表同一植被覆盖下不同土壤类型之间存在显著差异(P<0.05)。下同。

  • Note: H. High altitude; L. Low altitude; G. Acid soil; K. Calcareous soil; NF. Natural forest; BP. Phyllostachys edulis forest; OG. Orchard; PP. Pinus massoniana forest; RP. Rice paddy field. Capital letters represent significant differences among different vegetation types within same soil type (P<0.05) ; lowercase letters represent significant differences in the same vegetation type among different soil types (P<0.05) . The same below.

  • 由于低海拔酸性土壤果园和马尾松林以及石灰性土壤果园的土壤脲酶活性较低(图1),它们所对应的酶化学计量比(蔗糖酶活性+淀粉酶活性)/(脲酶活性+蛋白酶活性)显著高于其他土壤(P<0.05)(图2)。高海拔地区以及低海拔的自然林的比值较低,说明氮转化酶的相对活性较大,反映了土壤氮限制的特征。酸性土壤自然林的比值均低于其他各类人工林和水稻田; 石灰性土壤中,果园土壤的酶化学计量比显著高于自然林和水稻田(P<0.05)。相同植被类型的两种土壤之间的变化没有呈现固定特征。除石灰性土壤的水稻田外,各植被类型的酶计量比均有大幅提高,说明土壤有机碳转化酶的相对活性较大,反映了在植被类型从原始林向人工林转变后,土壤从氮限制向碳限制的转变。

  • 图1 不同土壤类型和植被类型的蔗糖酶(A)、淀粉酶(B)、脲酶(C)、蛋白酶(D)和过氧化氢酶(E)酶活性

  • Fig.1 Enzyme activities of sucrase (A) , amylase (B) , urease (C) , protease (D) and catalase (E) in different soil types and vegetation types

  • 表2 不同因素对土壤酶活性的双因素方差分析(P值)

  • Table2 Results of two-way ANOVA of different factors on soil enzyme activities (P value)

  • 注: P<0.05。前三行为海拔和植被类型及两者交互作用的双因素方差分析; 后三行为土壤类型和植被类型及两者交互作用的双因素方差分析。

  • Note: P<0.05. The first three rows are two-way ANOVA with altitude, vegetation type and their interactions; the latter three rows are that with soil type, vegetation type and their interactions.

  • 2.3 土壤酶活性与土壤理化性质之间的关系

  • 利用典范对应分析(CCA)探讨土壤理化性质对土壤酶活性的影响(图3),并且检测了土壤pH及养分含量对5种土壤酶活性及其计量比差异的解释量(表3)。所选土壤理化性质对土壤酶活性的累积解释量在第Ⅰ轴、第Ⅱ轴的解释量分别为80.91%、5.65%,累积达86.56%,表明前两轴能够反映土壤pH及养分含量影响导致土壤酶活性变异的大部分信息。土壤TN、pH和NH4+值分别占变异的71.0%、14.3%和10.4%,表明TN、pH和NH4+是造成土壤酶活性差异的主要因子。

  • 图2 不同植被类型土壤碳/氮酶活性化学计量比

  • Fig.2 Stoichiometric ratios of soil C/N enzyme activity under different vegetation types

  • 3 讨论与结论

  • 3.1 自然因素及植被类型对养分分布特征的影响

  • 土壤是陆地生态系统的重要载体,其养分状况受到气候、海拔和地形、植被类型、土壤类型及人为活动干扰的影响,具有高度的空间异质性(王霖娇等,2018)。在流域尺度不同植被类型单元上,对土壤养分含量和循环特征进行研究是评估该流域生态功能现状和人为干扰程度以及揭示流域不同植被生态单元养分循环敏感性的基础。人工植被类型变化既能调节土壤的资源投入,又能调节土壤的微气候条件,因此对土壤有机碳和全氮库以及土壤营养循环方式起着重要影响(Jiang et al.,2011)。本研究选取漓江流域两类典型土壤,即主要分布在上中游的酸性红壤及集中分布在中下游的石灰性土壤,并将两者进行比较。结果表明,海拔、植被类型及土壤类型显著影响土壤养分。土壤母质是引起土壤养分变异的主要因子之一,尤其体现在土壤磷含量上。土壤母质磷含量可以解释土壤 TP 42%的变异量,而且石灰性土壤磷含量通常比酸性土壤更高(Porder &Ramachandran,2013; 肖华翠等,2021)。同时,两种土壤pH值的差异也会影响土壤磷的形态和稳定性,从而影响其在土壤中的累积(Condron &Newman,2011)。海拔因子反映了随着海拔梯度变化,水热条件、植物群落组成、凋落物性质、微气候及土壤理化性质等环境因子的综合变化。漓江流域高海拔的酸性土壤中养分的高累积量,与李相楹等(2016)和林建平等(2019)的研究结果一致。亚热带森林土壤有机质和养分含量随海拔变化而变化有以下两个原因:一方面,受气候因子和植被类型的影响; 另一方面,土壤有机质的分解速率也因为较高的碳氮和碳磷比而受养分限制的影响(He et al.,2016)。此外,漓江流域高海拔区域原始林保存完好,植被生物量较大,动植物残体的大量输入有利于土壤营养物质的累积(宋贤冲等,2016)。

  • 图3 土壤理化性质与土壤酶的典范对应分析(CCA,n=10)

  • Fig.3 Biplot of the first two axes of the CCA for soil physicochemical properties and soil enzyme activities (CCA, n=10)

  • 相比自然生态系统,人为干扰在不同程度上改变了土壤养分,这种改变与土壤类型和植被类型有较大关系。本研究发现,漓江流域酸性土壤的养分对于植被类型变化的响应更显著,石灰性土壤养分敏感性较低。一方面,这可能是因为石灰性土壤较高的酸缓冲能力以及大量赋存的有机质-钙复合体有较高的稳定性而有利于有机碳的累积和水稳定性团聚体的形成(邬奇峰等,2018)。同理,田静等(2019)发现在贵州花江喀斯特不同植被类型之间土壤的有机质和总磷差异不大,而自然林全氮则高于其他植被类型的土壤,说明喀斯特自然林在促进土壤养分积累上存在一定优势。另一方面,人为耕作通过施肥等方式增加土壤速效养分含量,这在人为干扰最为强烈的水稻田中有最明显的体现(廖育林等,2016)。同时,人为耕作改善了通气状况,促进了有机质的矿化(陶宝先等,2017),进而提高了NH4+和AP含量。

  • 表3 土壤理化性质的重要性和显著性检验结果

  • Table3 Importance and significance level of soil physicochemical properties

  • 3.2 自然因素及植被类型变化对土壤胞外酶活性及其化学计量比的影响

  • 土壤养分含量和转化在不同土壤类型和不同植被类型上的差异受到植被根系和土壤微生物所分泌的胞外酶控制(周正虎和王传宽,2016; 孙彩丽等,2021)。本研究发现,高海拔土壤酶活性高于低海拔土壤且与土壤TN和TP正相关,这与聂阳意等(2018)和周恒等(2019)的研究结果一致,表明高海拔土壤充分的营养物质驱动了其高酶活性; 而过氧化氢酶活性则在低海拔土壤中显著升高,这与袁启凤等(2013)和姚兰等(2019)的研究结果不一致,可能由于过氧化氢酶是土壤重要氧化还原酶系,作用于解除污染所带来的过氧化氢胁迫(石瑛等,2012; 周会程等,2020)。这些都反映了低海拔土壤中的微生物对污染胁迫的响应。随着海拔降低,氮转化相关酶活性急剧降低,表明高海拔土壤受氮素限制,而低海拔土壤有机质含量降低,主要受碳限制。土壤pH通过改变土壤养分的生物可利用性,对不同土壤的酶活性产生影响(孙彩丽等,2021)。本研究发现石灰性土壤pH接近中性,养分的生物可利用性较高,从而导致酶活性较强,这表明石灰性土壤矿化潜力较强(Curtin et al.,1998),由CCA分析所揭示的pH与酶活性正相关且是解释土壤养分和酶活性变异的第二主要贡献因子可印证这一点。同时,自然林与人工林的对比发现,土壤养分亦发生了从氮限制转变为碳限制,酶化学计量比更多地受到植被类型的影响而非土壤类型的影响,表明人为干扰是促进土壤养分限制的关键因子。在人为干扰下,植被类型变化导致土壤有机碳的损失(杨景成等,2003; Lai et al.,2016); 凋落物的质和量是影响土壤酶化学计量的主要因素(栾历历等,2020)。不同植被类型所引起的凋落物输入的变化改变土壤有机质输入的累积量以及土壤养分状况,从而影响土壤矿化速率(Gillis &Price,2016)。另外,人为干扰直接增加了土壤氮磷等养分,使土壤微生物通过分泌相关酶来获取养分的需求降低,因此人为干扰对氮循环相关酶的活性影响较大(Zheng et al.,2020)。

  • 本研究针对漓江流域海拔、植被和土壤类型空间异质性较大的特点,通过对从高海拔到低海拔分布的酸性土壤及石灰性土壤和在自然林和人工林条件下土壤养分和酶活性的变化特征比较后发现:(1)海拔、土壤类型、植被类型是影响漓江流域土壤养分含量和酶活性的主要因素;(2)漓江流域高海拔地区森林土壤养分含量较高,土壤胞外酶活性较高且呈现出生态系统氮限制的特征;(3)酸性土壤养分含量受人为干扰影响较大,而石灰性土壤中TP和AP含量较高,抗人为干扰能力较强;(4)在低海拔地区,人工植被类型变化促使土壤酶活性从氮限制向碳限制的转变,TN、pH和NH4+是影响漓江流域土壤酶活性的主要因素。这揭示了人为干扰一方面增加了外源氮的供应,另一方面也导致了土壤肥力的丧失。本研究表明,漓江流域酸性土壤的生态敏感性较高,对其应该主要采取生态系统保育措施并着眼于维持土壤肥力,以提高漓江流域自然景观资源保育和可持续利用能力。

  • 参考文献

    • BURNS RG, DEFOREST JL, MARXSEN J, et al. , 2013. Soil enzymes in a changing environment: Current knowledge and future directions [J]. Soil Biol Biochem, 58: 216-234.

    • CAO H, SUN H, YANG H, et al. , 2003. A review soil enzyme activity and its indication for soil quality [J]. Chin J Appl Environ Biol, 9(1): 105-109. [曹慧, 孙辉, 杨浩, 等, 2003. 土壤酶活性及其对土壤质量的指示研究进展 [J]. 应用与环境生物学报, 9(1): 105-109. ]

    • CAO JH, YUAN DX, PAN GX, 2003. Some soil features in karst ecosystem [J]. Adv Earth Sci, 18(1): 37-44. [曹建华, 袁道先, 潘根兴, 2003. 岩溶生态系统中的土壤 [J]. 地球科学进展, 18(1): 37-44. ]

    • CAO JH, YUAN DX, TONG LQ, et al. , 2015. An overview of karst ecosystem in Southwest China: current state and future management [J]. J Resour Ecol, 6(4): 247-256.

    • CHEN H, LUO P, WEN L, et al. , 2017. Determinants of soil extracellular enzyme activity in a karst region, southwest China [J]. Eur J Soil Biol, 80: 69-76.

    • CHEN H, LI DJ, XIAO KC, et al. , 2018. Soil microbial processes and resource limitation in karst and non-karst forests [J]. Funct Ecol, 32: 1400-1409.

    • CONDRON LM, NEWMAN S, 2011. Revisiting the fundamentals of phosphorus fractionation of sediments and soils [J]. J Soils Sed, 11(5): 830-840.

    • CUI YX, FANG LC, GUO XB, et al. , 2018. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the Northern Loess Plateau, China [J]. Soil Biol Biochem, 116: 11-21.

    • CURTIN D, CAMPBELL CA, JALIL A, 1998. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils [J]. Soil Biol Biochem, 30(1): 57-64.

    • DUAN CY, HE CX, SHEN YY, et al. , 2020. Soil microbe quantity and enzyme activity characteristics of Eucalyptus plantations of different forest ages in North Guangxi [J]. Guihaia, 40(12): 1877-1888. [段春燕, 何成新, 沈育伊, 等, 2020. 桂北不同林龄桉树人工林土壤微生物数量和酶活性特征研究 [J]. 广西植物, 40(12): 1877-1888. ]

    • FENG C, MA YH, JIN X, et al. , 2019. Soil enzyme activities increase following restoration of degraded subtropical forests [J]. Geoderma, 351: 180-187.

    • FIERER N, MCCAIN CM, MEIR P, et al. , 2011. Microbes do not follow the elevational diversity patterns of plants and animals [J]. Ecology, 92(4): 797-804.

    • FAN ZZ, LU SY, WANG J, et al. , 2018. Microbial and enzyme activities in rhizosphere soil of different forest stand in karst and non karst areas [J]. J Beijing For Univ, 40(7): 55-61. [范周周, 卢舒瑜, 王娇, 等, 2018. 岩溶与非岩溶区不同林分根际土壤微生物及酶活性 [J]. 北京林业大学学报, 40(7): 55-61. ]

    • GASTON KJ, 2000. Global patterns in biodiversity [J]. Nature, 405(6783): 220-227.

    • GILLIS JD, PRICE G. W, 2016. Linking short-term soil carbon and nitrogen dynamics: Environmental and stoichiometric controls on fresh organic matter decomposition in agroecosystems [J]. Geoderma, 274: 35-44.

    • GONG JF, CAI ZJ, 2018. Soil enzyme activity and their correlations under different vegetation types in karst area [J]. Guizhou Agric Sci, 46(5): 59-63. [宫杰芳, 蔡照军, 2018. 喀斯特地区不同植被类型的土壤酶活性及相关性 [J]. 贵州农业科学, 46(5): 59-63. ]

    • GUAN HL, FAN JW, LU XK, 2022. Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas [J]. Appl Soil Ecol, 169: 104253.

    • GUAN SY, 1986. Soil enzymes and their research methods [M]. Beijing: Agricultural Press. [关松荫, 1986. 土壤酶及其研究法 [M]. 北京: 农业出版社. ]

    • HE XJ, HOU EQ, LIU Y, et al, 2016. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China [J]. Sci Rep, 6: 24261.

    • HILL BH, ELONEN CM, SEIFERT LR, et al. , 2012. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers [J]. Ecol Indic, 18(4): 540-551.

    • JIANG LL, HAN XG, DONG N, et al. , 2011. Plant species effects on soil carbon and nitrogen dynamics in a temperate steppe of northern China [J]. Plant Soil, 346(1): 331-347.

    • JIANG MH, NI MY, ZHOU JC, et al. , 2018. Effects of warming and precipitation reduction on soil enzyme activity in a young Cunninghamia lanceolata plantation [J]. Chin J Ecol, 37(11): 3210-3219. [江淼华, 倪梦颖, 周嘉聪, 等, 2018. 增温和降雨减少对杉木幼林土壤酶活性的影响 [J]. 生态学杂志, 37(11): 3210-3219. ]

    • LAI L, HUANG XJ, YANG H, et al. , 2016. Carbon emissions from land-use change and management in China between 1990 and 2010 [J]. Sci Adv, 2(11) : e1601063.

    • LAUBER CL, RAMIREZ KS, AANDERUD Z, et al. , 2013. Temporal variability in soil microbial communities across land-use types [J]. Isme J, 7(8).

    • LIAO YL, LU YH, NIE J, et al. , 2016. Effects of long-term fertilization on basic soil productivity and nutrient use efficiency in paddy soils [J]. J Plant Nutr Fert, 22(5): 1249-1258. [廖育林, 鲁艳红, 聂军, 等, 2016. 长期施肥稻田土壤基础地力和养分利用效率变化特征 [J]. 植物营养与肥料学报, 22(5): 1249-1258. ]

    • LI C, LÜ JH, LU M, et al. , 2020. Variations of soil enzyme activity in typical evergreen broadleaved forests along altitude gradient in Southeast Yunnan [J]. Fore Res, 33(6): 170-179. [李聪, 吕晶花, 陆梅, 等, 2020. 滇东南典型常绿阔叶林土壤酶活性的海拔梯度特征 [J]. 林业科学研究, 33(6): 170-179. ]

    • LIN HL LIANG SC, YAO YP, et al. , 2021. Species composition and environmental analysis of deciduous broad-leaf forests in the karst hills of Guilin [J]. Guihaia, 41(5): 758-768. [林红玲, 梁士楚, 姚义鹏, 等, 2021. 桂林岩溶石山落叶阔叶林种类组成及其环境解释 [J]. 广西植物, 41(5): 758-768. ]

    • LIN JP, DENG AZ, ZHAO XM, et al. , 2019. Variation characteristics of soil nutrients of cultivated land in different elevation fields in typical hilly areas of Southern Mountains [J]. Trans Chin Soc Agric Mach, 50(5): 300-309. [林建平, 邓爱珍, 赵小敏, 等, 2019. 南方典型丘陵山区不同高程耕地土壤养分变化特征分析 [J]. 农业机械学报, 50(5): 300-309. ]

    • LI XY, ZHANG WY, LIU F, et al. , 2016. The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain [J]. Res Soil Water Conserv, 23(3): 19-24. [李相楹, 张维勇, 刘峰, 等, 2016. 不同海拔高度下梵净山土壤碳、氮、磷分布特征 [J]. 水土保持研究, 23(3): 19-24. ]

    • LONG J, LI J, JIANG XR, et al. , 2004. Soil microbial activities in Maolan karst forest, Guizhou Province [J]. Acta Pedol Sin, 41(4): 597-602. [龙健, 李娟, 江新荣, 等, 2004. 贵州茂兰喀斯特森林土壤微生物活性的研究 [J]. 土壤学报, 41(4): 597-602. ]

    • LUAN LL, LIU EY, GU X, et al. , 2020. Effects of litter manipulation and nitrogen addition on soil ecoenzymatic stoichiometry in a mixed pine and oak forest [J]. Acta Ecol Sin, 40(24): 9220-9233. [栾历历, 刘恩媛, 顾新, 等, 2020. 凋落物处理和氮添加对松栎混交林土壤生态酶化学计量的影响 [J]. 生态学报, 40(24): 9220-9233. ]

    • LUO N, TENG YB, HU JL, et al. , 2021. Changes of land use and its relationship with tourism development in Lijiang River Basin [J]. J NW For Univ, 36(5): 262-268. [罗楠, 滕耀宝, 胡金龙, 等, 2021. 漓江流域土地利用变化及与旅游发展关系研究 [J]. 西北林学院学报, 36(5): 262-268. ]

    • LU RK, 2000. Soil agrochemical analysis methods [M]. Beijing: China Agricultural Science and Technology Publishing House: 34-38. [鲁如坤, 2000. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社: 34-38. ]

    • MARGESIN R, MINERBI S, SCHINNER F, 2014. Long-term monitoring of soil microbiological activities in two forest sites in south tyrol in the Italian alps [J]. Microb Environ, 29(3): 277-285.

    • NIE YY, WANG HH, LI XJ, et al. , 2018. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi mountains, southeastern China [J]. Chin J Appl Ecol, 29(3): 748-756. [聂阳意, 王海华, 李晓杰, 等, 2018. 武夷山低海拔和高海拔森林土壤有机碳的矿化特征 [J]. 应用生态学报, 29(3): 748-756. ]

    • PORDER S, RAMACHANDRAN S, 2013. The phosphorus concentration of common rocks — a potential driver of ecosystem P status [J]. Plant Soil, 367(1): 41-55.

    • SHAO WZ, ZHOU XG, WEN YG, et al. , 2022. Effects of mixing Castanopsis hystrix and Eucalyptus on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry [J]. Guihaia, 42(4): 543-555. [邵文哲, 周晓果, 温远光, 等, 2022. 桉树与红锥混交对土壤水解酶活性及其化学计量特征的影响 [J]. 广西植物, 42(4): 543-555. ]

    • SHI Y, DU QP, LI Z, et al. , 2012. Change in 1, 4-dichlorobenzene residue and its effects on soil enzyme activities in cinnamon soil [J]. Chin J Appl Environ Biol, 18(2): 229-234. [石瑛, 杜青平, 李砧, 等, 2012. 1, 4-二氯苯在褐土中的残留量变化及对几种土壤酶活性的影响 [J]. 应用与环境生物学报, 18(2): 229-234. ]

    • SONG XC, XIANG DY, GUO LM, et al. , 2016. Spatial variation pattern of soil nutrients in forests of Maoer Mountain [J]. J Fujian Coll For, 36(3): 349-354. [宋贤冲, 项东云, 郭丽梅, 等, 2016. 猫儿山森林土壤养分的空间变化特征 [J]. 福建林学院学报, 36(3): 349-354. ]

    • STOCK SC, KÖSTER M, DIPPOLD MA, et al. , 2019. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale [J]. Geoderma, 337: 973-982.

    • SUN CL, WANG YW, WANG CJ , et al. , 2021. Effects of land use conversion on soil extracellula renzyme activity and its stoichiometric characteristics in karst mountainous areas [J]. Acta Ecol Sin, 41(10): 4140-4149. [孙彩丽, 王艺伟, 王从军, 等, 2021. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响 [J]. 生态学报, 41(10): 4140-4149. ]

    • TAO BX, ZHANG BH, DONG J, et al. , 2017. Effect of greenhouse cultivation on the decomposition of organic carbon in agricultural soils [J]. J Agro-Environ Sci, 36(12): 2486-2492. [陶宝先, 张保华, 董杰, 等, 2017. 设施耕作促进农田土壤有机碳矿化 [J]. 农业环境科学学报, 36(12): 2486-2492. ]

    • TIAN J, SHENG MY, WANG P, et al. , 2019. Influence of land use change on litter and soil C, N, P stoichiometric characteristics and soil enzyme activity in karst ecosystem, Southwest China [J]. Environ Sci, 40(9): 4278-4286. [田静, 盛茂银, 汪攀, 等, 2019. 西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响 [J]. 环境科学, 40(9): 4278-4286. ]

    • WANG LJ, WANG P, SHENG MY, 2018. Stoichiometric characteristics of soil nutrient elements and its influencing factors in typical karst rocky desertification ecosystems, Southwest China [J]. Acta Ecol Sin, 38(18): 6580-6593. [王霖娇, 汪攀, 盛茂银, 2018. 西南喀斯特典型石漠化生态系统土壤养分生态化学计量特征及其影响因素 [J]. 生态学报, 38(18): 6580-6593. ]

    • WANG YQ, YIN YL, LI SX, 2019. Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees [J]. Ecol Environ Sci, 28(6): 1108-1116. [王玉琴, 尹亚丽, 李世雄, 等, 2019. 不同退化程度高寒草甸土壤理化性质及酶活性分析 [J]. 生态环境学报, 28(6): 1108-1116. ]

    • WEI HQ, CAO JH, LIANG JH, et al. , 2008. Effects of straw returning to field on enzyme activity in karst and non-karst area [J]. Carsol Sin, 27(4): 316-320. [韦红群, 曹建华, 梁建宏, 等, 2008. 秸秆还田对岩溶区与非岩溶区土壤酶活性影响的对比研究 [J]. 中国岩溶, 27(4): 316-320. ]

    • WU QF, XIE GX, WANG JW, et al. , 2018. The stability of organic carbon and aggregates of three limestone soils in the Western Zhejiang [J]. Chin J Soil Sci, 49(3): 567-574. [邬奇峰, 谢国雄, 王京文, 等, 2018. 浙西3类石灰岩发育土壤有机碳和团聚体稳定性的研究 [J]. 土壤通报, 49(3): 567-574. ]

    • XIAO HC, LI JW, XIA Y, et al. , 2021. Characteristics of phosphorus fractions and their driving factors in forest soils with different parent materials in the mid-subtropics, China [J]. Chin J Appl Ecol, 32(1): 16-22. [肖华翠, 李靖雯, 夏允, 等, 2021. 中亚热带不同母质发育森林土壤磷组分特征及其影响因素 [J]. 应用生态学报, 32(1): 16-22. ]

    • XU GP, GU DX, PAN FJ, et al. , 2014. Effects of different land-use types on soil enzyme activity in karst mountain areas of Southwest Guangxi [J]. Guihaia, 34(4): 460-466. [徐广平, 顾大形, 潘复静, 等, 2014. 不同土地利用方式对桂西南岩溶山地土壤酶活性的影响 [J]. 广西植物, 34(4): 460-466. ]

    • XU J, DAI HM, LIU GD, et al. , 2020. Study on the changes of soil enzyme activity under different land use types [J]. Geol Resour, 29(6): 579-584. [许江, 戴慧敏, 刘国栋, 等, 2020. 不同土地利用方式下土壤酶活性的变化研究 [J]. 地质与资源, 29(6): 579-584. ]

    • YANG JC, HAN XG, HUANG JH, et al. , 2003. Effects of land use change on carbon storage in terrestrial ecosystem [J]. Chin J Appl Ecol, 14(8): 1385-1390. [杨景成, 韩兴国, 黄建辉, 等, 2003. 土地利用变化对陆地生态系统碳贮量的影响 [J]. 应用生态学报, 14(8): 1385-1390. ]

    • YANG X, WU JJ, YAN F, et al. , 2009. Assessment of regional soil moisture status based on characteristics of surface temperature/vegetation index space [J]. Acta Ecol Sin, 29(3): 1205-1216. [杨曦, 武建军, 闫峰, 等, 2009. 基于地表温度-植被指数特征空间的区域土壤干湿状况 [J]. 生态学报, 29(3): 1205-1216. ]

    • YANG Y, LIANG C, WANG YQ, et al. , 2020. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration [J]. Soil Biol Biochem, 149: 107928.

    • YAO L, ZHANG HC, HU LH, et al. , 2019. Soil labile organic carbon and nitrogen and their relationship with enzyme activities in different vegetation zones along an altitudinal gradient on Mount Huangshan [J]. J Zhejiang Agric For, 36(6): 1069-1076. [姚兰, 张焕朝, 胡立煌, 等, 2019. 黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系 [J]. 浙江农林大学学报, 36(6): 1069-1076. ]

    • YUAN QF, XIE P, HUANG J, et al. , 2013. The influence on soil enzyme activities and soil nutrient contents in rhododendron soil at different altitudes in Yunnan Province [J]. J Trop Crops, 34(12): 2363-2367. [袁启凤, 解璞, 黄静, 等, 2013. 云南不同海拔高度对杜鹃土壤酶活性与土壤养分的影响 [J]. 热带作物学报, 34(12): 2363-2367. ]

    • YU YH, CHENG W, YANG DL, 2013. Features of soil mineral elements in man-made forest of Guizhou karst mountain area [J]. Guihaia, 39(1): 108-116. [喻阳华, 程雯, 杨丹丽, 2019. 贵州喀斯特山区典型人工林土壤矿质元素特征 [J]. 广西植物, 39(1): 108-116. ]

    • ZHANG W, XU YD, GAO DX, et al. , 2019. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China [J]. Soil Biol Biochem, 134: 1-14.

    • ZHANG XB, WANG SJ, CAO JH, et al. , 2010. Characteristics of water loss and soil erosion and some scientific problems on karst rocky desertification in Southwest China karst area [J]. Carsol Sin, 29(3): 274-279. [张信宝, 王世杰, 曹建华, 等, 2010. 西南喀斯特山地水土流失特点及有关石漠化的几个科学问题 [J]. 中国岩溶, 29(3): 274-279. ]

    • ZHANG XX, YANG LM, CHEN Z, et al. , 2018. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas [J]. Acta Ecol Sin, 38(16): 5828-5836. [张星星, 杨柳明, 陈忠, 等, 2018. 中亚热带不同母质和森林类型土壤生态酶化学计量特征 [J]. 生态学报, 38(16): 5828-5836. ]

    • ZHAO C, SHENG MY, BAI YX, et al. , 2021. Soil available nitrogen and phosphorus contents and the environmental impact factors across different land use types in typical karst rocky desertification area, Southwest China [J]. Chin J Appl Ecol, 32(4): 1383-1392. [赵楚, 盛茂银, 白义鑫, 等, 2021. 喀斯特石漠化地区不同土地利用类型土壤氮磷有效性及其环境影响因子 [J]. 应用生态学报, 32(4): 1383-1392. ]

    • ZHAO FZ, REN CJ, HAN XH, et al. , 2018. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems [J]. For Ecol Manage, 427: 289-295.

    • ZHENG L, CHEN H, WANG YQ, et al. , 2020. Responses of soil microbial resource limitation to multiple fertilization strategies [J]. Soil Tillage Res, 196: 104474.

    • ZHOU HC, ZHOU H, XIAO HL, et al. , 2020. The variation characteristics of heavy metal content, nutrient and enzyme activity in soil of alpine steppe with different degradation gradient in the Three River-Headwaters Region [J]. Acta Agr Sin, 28(3): 784-792. [周会程, 周恒, 肖海龙, 等, 2020. 三江源区不同退化梯度高寒草原土壤重金属含量及其与养分和酶活性的变化特征 [J]. 草地学报, 28(3): 784-792. ]

    • ZHOU H, ZHOU HC, XIAO HL, et al. , 2019. Characteristics of enzyme activity in surface soil of alpine steppe under different altitudes on Qinghai-Tibetan Plateau [J]. Grassl Turf, 39(5): 20-30. [周恒, 周会程, 肖海龙, 等, 2019. 三江源不同海拔高寒草原表层土壤酶活性特征 [J]. 草原与草坪, 39(5): 20-30. ]

    • ZHOU JH, GAO RR, WEI Q, et al. , 2020. Effects of different land use patterns on enzyme activities and microbial diversity in upland red soil [J]. J Soil Water Conserv, 34(1): 327-332. [周际海, 郜茹茹, 魏倩, 等, 2020. 旱地红壤不同土地利用方式对土壤酶活性及微生物多样性的影响差异 [J]. 水土保持学报, 34(1): 327-332. ]

    • ZHOU ZH, WANG CK, 2016. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry [J]. Chin J Plant Ecol, 40(6): 620-630. [周正虎, 王传宽, 2016. 微生物对分解底物碳氮磷化学计量的响应和调节机制 [J]. 植物生态学报, 40(6): 620-630. ]

    • ZUO YP, LI JP, ZENG H, et al. , 2018. Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts [J]. Biogeochemistry, 141: 23-39.

    • ZHONG ZK, YANG GH, REN CJ, et al. , 2021. Effects of farmland abandonment on soil enzymatic activity and enzymatic stoichiometry in the Loess Hilly region, China [J]. Environ Sci, 42(1): 411-421. [钟泽坤, 杨改河, 任成杰, 等, 2021. 黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征 [J]. 环境科学, 42(1): 411-421. ]

  • 参考文献

    • BURNS RG, DEFOREST JL, MARXSEN J, et al. , 2013. Soil enzymes in a changing environment: Current knowledge and future directions [J]. Soil Biol Biochem, 58: 216-234.

    • CAO H, SUN H, YANG H, et al. , 2003. A review soil enzyme activity and its indication for soil quality [J]. Chin J Appl Environ Biol, 9(1): 105-109. [曹慧, 孙辉, 杨浩, 等, 2003. 土壤酶活性及其对土壤质量的指示研究进展 [J]. 应用与环境生物学报, 9(1): 105-109. ]

    • CAO JH, YUAN DX, PAN GX, 2003. Some soil features in karst ecosystem [J]. Adv Earth Sci, 18(1): 37-44. [曹建华, 袁道先, 潘根兴, 2003. 岩溶生态系统中的土壤 [J]. 地球科学进展, 18(1): 37-44. ]

    • CAO JH, YUAN DX, TONG LQ, et al. , 2015. An overview of karst ecosystem in Southwest China: current state and future management [J]. J Resour Ecol, 6(4): 247-256.

    • CHEN H, LUO P, WEN L, et al. , 2017. Determinants of soil extracellular enzyme activity in a karst region, southwest China [J]. Eur J Soil Biol, 80: 69-76.

    • CHEN H, LI DJ, XIAO KC, et al. , 2018. Soil microbial processes and resource limitation in karst and non-karst forests [J]. Funct Ecol, 32: 1400-1409.

    • CONDRON LM, NEWMAN S, 2011. Revisiting the fundamentals of phosphorus fractionation of sediments and soils [J]. J Soils Sed, 11(5): 830-840.

    • CUI YX, FANG LC, GUO XB, et al. , 2018. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the Northern Loess Plateau, China [J]. Soil Biol Biochem, 116: 11-21.

    • CURTIN D, CAMPBELL CA, JALIL A, 1998. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils [J]. Soil Biol Biochem, 30(1): 57-64.

    • DUAN CY, HE CX, SHEN YY, et al. , 2020. Soil microbe quantity and enzyme activity characteristics of Eucalyptus plantations of different forest ages in North Guangxi [J]. Guihaia, 40(12): 1877-1888. [段春燕, 何成新, 沈育伊, 等, 2020. 桂北不同林龄桉树人工林土壤微生物数量和酶活性特征研究 [J]. 广西植物, 40(12): 1877-1888. ]

    • FENG C, MA YH, JIN X, et al. , 2019. Soil enzyme activities increase following restoration of degraded subtropical forests [J]. Geoderma, 351: 180-187.

    • FIERER N, MCCAIN CM, MEIR P, et al. , 2011. Microbes do not follow the elevational diversity patterns of plants and animals [J]. Ecology, 92(4): 797-804.

    • FAN ZZ, LU SY, WANG J, et al. , 2018. Microbial and enzyme activities in rhizosphere soil of different forest stand in karst and non karst areas [J]. J Beijing For Univ, 40(7): 55-61. [范周周, 卢舒瑜, 王娇, 等, 2018. 岩溶与非岩溶区不同林分根际土壤微生物及酶活性 [J]. 北京林业大学学报, 40(7): 55-61. ]

    • GASTON KJ, 2000. Global patterns in biodiversity [J]. Nature, 405(6783): 220-227.

    • GILLIS JD, PRICE G. W, 2016. Linking short-term soil carbon and nitrogen dynamics: Environmental and stoichiometric controls on fresh organic matter decomposition in agroecosystems [J]. Geoderma, 274: 35-44.

    • GONG JF, CAI ZJ, 2018. Soil enzyme activity and their correlations under different vegetation types in karst area [J]. Guizhou Agric Sci, 46(5): 59-63. [宫杰芳, 蔡照军, 2018. 喀斯特地区不同植被类型的土壤酶活性及相关性 [J]. 贵州农业科学, 46(5): 59-63. ]

    • GUAN HL, FAN JW, LU XK, 2022. Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas [J]. Appl Soil Ecol, 169: 104253.

    • GUAN SY, 1986. Soil enzymes and their research methods [M]. Beijing: Agricultural Press. [关松荫, 1986. 土壤酶及其研究法 [M]. 北京: 农业出版社. ]

    • HE XJ, HOU EQ, LIU Y, et al, 2016. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China [J]. Sci Rep, 6: 24261.

    • HILL BH, ELONEN CM, SEIFERT LR, et al. , 2012. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers [J]. Ecol Indic, 18(4): 540-551.

    • JIANG LL, HAN XG, DONG N, et al. , 2011. Plant species effects on soil carbon and nitrogen dynamics in a temperate steppe of northern China [J]. Plant Soil, 346(1): 331-347.

    • JIANG MH, NI MY, ZHOU JC, et al. , 2018. Effects of warming and precipitation reduction on soil enzyme activity in a young Cunninghamia lanceolata plantation [J]. Chin J Ecol, 37(11): 3210-3219. [江淼华, 倪梦颖, 周嘉聪, 等, 2018. 增温和降雨减少对杉木幼林土壤酶活性的影响 [J]. 生态学杂志, 37(11): 3210-3219. ]

    • LAI L, HUANG XJ, YANG H, et al. , 2016. Carbon emissions from land-use change and management in China between 1990 and 2010 [J]. Sci Adv, 2(11) : e1601063.

    • LAUBER CL, RAMIREZ KS, AANDERUD Z, et al. , 2013. Temporal variability in soil microbial communities across land-use types [J]. Isme J, 7(8).

    • LIAO YL, LU YH, NIE J, et al. , 2016. Effects of long-term fertilization on basic soil productivity and nutrient use efficiency in paddy soils [J]. J Plant Nutr Fert, 22(5): 1249-1258. [廖育林, 鲁艳红, 聂军, 等, 2016. 长期施肥稻田土壤基础地力和养分利用效率变化特征 [J]. 植物营养与肥料学报, 22(5): 1249-1258. ]

    • LI C, LÜ JH, LU M, et al. , 2020. Variations of soil enzyme activity in typical evergreen broadleaved forests along altitude gradient in Southeast Yunnan [J]. Fore Res, 33(6): 170-179. [李聪, 吕晶花, 陆梅, 等, 2020. 滇东南典型常绿阔叶林土壤酶活性的海拔梯度特征 [J]. 林业科学研究, 33(6): 170-179. ]

    • LIN HL LIANG SC, YAO YP, et al. , 2021. Species composition and environmental analysis of deciduous broad-leaf forests in the karst hills of Guilin [J]. Guihaia, 41(5): 758-768. [林红玲, 梁士楚, 姚义鹏, 等, 2021. 桂林岩溶石山落叶阔叶林种类组成及其环境解释 [J]. 广西植物, 41(5): 758-768. ]

    • LIN JP, DENG AZ, ZHAO XM, et al. , 2019. Variation characteristics of soil nutrients of cultivated land in different elevation fields in typical hilly areas of Southern Mountains [J]. Trans Chin Soc Agric Mach, 50(5): 300-309. [林建平, 邓爱珍, 赵小敏, 等, 2019. 南方典型丘陵山区不同高程耕地土壤养分变化特征分析 [J]. 农业机械学报, 50(5): 300-309. ]

    • LI XY, ZHANG WY, LIU F, et al. , 2016. The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain [J]. Res Soil Water Conserv, 23(3): 19-24. [李相楹, 张维勇, 刘峰, 等, 2016. 不同海拔高度下梵净山土壤碳、氮、磷分布特征 [J]. 水土保持研究, 23(3): 19-24. ]

    • LONG J, LI J, JIANG XR, et al. , 2004. Soil microbial activities in Maolan karst forest, Guizhou Province [J]. Acta Pedol Sin, 41(4): 597-602. [龙健, 李娟, 江新荣, 等, 2004. 贵州茂兰喀斯特森林土壤微生物活性的研究 [J]. 土壤学报, 41(4): 597-602. ]

    • LUAN LL, LIU EY, GU X, et al. , 2020. Effects of litter manipulation and nitrogen addition on soil ecoenzymatic stoichiometry in a mixed pine and oak forest [J]. Acta Ecol Sin, 40(24): 9220-9233. [栾历历, 刘恩媛, 顾新, 等, 2020. 凋落物处理和氮添加对松栎混交林土壤生态酶化学计量的影响 [J]. 生态学报, 40(24): 9220-9233. ]

    • LUO N, TENG YB, HU JL, et al. , 2021. Changes of land use and its relationship with tourism development in Lijiang River Basin [J]. J NW For Univ, 36(5): 262-268. [罗楠, 滕耀宝, 胡金龙, 等, 2021. 漓江流域土地利用变化及与旅游发展关系研究 [J]. 西北林学院学报, 36(5): 262-268. ]

    • LU RK, 2000. Soil agrochemical analysis methods [M]. Beijing: China Agricultural Science and Technology Publishing House: 34-38. [鲁如坤, 2000. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社: 34-38. ]

    • MARGESIN R, MINERBI S, SCHINNER F, 2014. Long-term monitoring of soil microbiological activities in two forest sites in south tyrol in the Italian alps [J]. Microb Environ, 29(3): 277-285.

    • NIE YY, WANG HH, LI XJ, et al. , 2018. Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi mountains, southeastern China [J]. Chin J Appl Ecol, 29(3): 748-756. [聂阳意, 王海华, 李晓杰, 等, 2018. 武夷山低海拔和高海拔森林土壤有机碳的矿化特征 [J]. 应用生态学报, 29(3): 748-756. ]

    • PORDER S, RAMACHANDRAN S, 2013. The phosphorus concentration of common rocks — a potential driver of ecosystem P status [J]. Plant Soil, 367(1): 41-55.

    • SHAO WZ, ZHOU XG, WEN YG, et al. , 2022. Effects of mixing Castanopsis hystrix and Eucalyptus on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry [J]. Guihaia, 42(4): 543-555. [邵文哲, 周晓果, 温远光, 等, 2022. 桉树与红锥混交对土壤水解酶活性及其化学计量特征的影响 [J]. 广西植物, 42(4): 543-555. ]

    • SHI Y, DU QP, LI Z, et al. , 2012. Change in 1, 4-dichlorobenzene residue and its effects on soil enzyme activities in cinnamon soil [J]. Chin J Appl Environ Biol, 18(2): 229-234. [石瑛, 杜青平, 李砧, 等, 2012. 1, 4-二氯苯在褐土中的残留量变化及对几种土壤酶活性的影响 [J]. 应用与环境生物学报, 18(2): 229-234. ]

    • SONG XC, XIANG DY, GUO LM, et al. , 2016. Spatial variation pattern of soil nutrients in forests of Maoer Mountain [J]. J Fujian Coll For, 36(3): 349-354. [宋贤冲, 项东云, 郭丽梅, 等, 2016. 猫儿山森林土壤养分的空间变化特征 [J]. 福建林学院学报, 36(3): 349-354. ]

    • STOCK SC, KÖSTER M, DIPPOLD MA, et al. , 2019. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale [J]. Geoderma, 337: 973-982.

    • SUN CL, WANG YW, WANG CJ , et al. , 2021. Effects of land use conversion on soil extracellula renzyme activity and its stoichiometric characteristics in karst mountainous areas [J]. Acta Ecol Sin, 41(10): 4140-4149. [孙彩丽, 王艺伟, 王从军, 等, 2021. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响 [J]. 生态学报, 41(10): 4140-4149. ]

    • TAO BX, ZHANG BH, DONG J, et al. , 2017. Effect of greenhouse cultivation on the decomposition of organic carbon in agricultural soils [J]. J Agro-Environ Sci, 36(12): 2486-2492. [陶宝先, 张保华, 董杰, 等, 2017. 设施耕作促进农田土壤有机碳矿化 [J]. 农业环境科学学报, 36(12): 2486-2492. ]

    • TIAN J, SHENG MY, WANG P, et al. , 2019. Influence of land use change on litter and soil C, N, P stoichiometric characteristics and soil enzyme activity in karst ecosystem, Southwest China [J]. Environ Sci, 40(9): 4278-4286. [田静, 盛茂银, 汪攀, 等, 2019. 西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响 [J]. 环境科学, 40(9): 4278-4286. ]

    • WANG LJ, WANG P, SHENG MY, 2018. Stoichiometric characteristics of soil nutrient elements and its influencing factors in typical karst rocky desertification ecosystems, Southwest China [J]. Acta Ecol Sin, 38(18): 6580-6593. [王霖娇, 汪攀, 盛茂银, 2018. 西南喀斯特典型石漠化生态系统土壤养分生态化学计量特征及其影响因素 [J]. 生态学报, 38(18): 6580-6593. ]

    • WANG YQ, YIN YL, LI SX, 2019. Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees [J]. Ecol Environ Sci, 28(6): 1108-1116. [王玉琴, 尹亚丽, 李世雄, 等, 2019. 不同退化程度高寒草甸土壤理化性质及酶活性分析 [J]. 生态环境学报, 28(6): 1108-1116. ]

    • WEI HQ, CAO JH, LIANG JH, et al. , 2008. Effects of straw returning to field on enzyme activity in karst and non-karst area [J]. Carsol Sin, 27(4): 316-320. [韦红群, 曹建华, 梁建宏, 等, 2008. 秸秆还田对岩溶区与非岩溶区土壤酶活性影响的对比研究 [J]. 中国岩溶, 27(4): 316-320. ]

    • WU QF, XIE GX, WANG JW, et al. , 2018. The stability of organic carbon and aggregates of three limestone soils in the Western Zhejiang [J]. Chin J Soil Sci, 49(3): 567-574. [邬奇峰, 谢国雄, 王京文, 等, 2018. 浙西3类石灰岩发育土壤有机碳和团聚体稳定性的研究 [J]. 土壤通报, 49(3): 567-574. ]

    • XIAO HC, LI JW, XIA Y, et al. , 2021. Characteristics of phosphorus fractions and their driving factors in forest soils with different parent materials in the mid-subtropics, China [J]. Chin J Appl Ecol, 32(1): 16-22. [肖华翠, 李靖雯, 夏允, 等, 2021. 中亚热带不同母质发育森林土壤磷组分特征及其影响因素 [J]. 应用生态学报, 32(1): 16-22. ]

    • XU GP, GU DX, PAN FJ, et al. , 2014. Effects of different land-use types on soil enzyme activity in karst mountain areas of Southwest Guangxi [J]. Guihaia, 34(4): 460-466. [徐广平, 顾大形, 潘复静, 等, 2014. 不同土地利用方式对桂西南岩溶山地土壤酶活性的影响 [J]. 广西植物, 34(4): 460-466. ]

    • XU J, DAI HM, LIU GD, et al. , 2020. Study on the changes of soil enzyme activity under different land use types [J]. Geol Resour, 29(6): 579-584. [许江, 戴慧敏, 刘国栋, 等, 2020. 不同土地利用方式下土壤酶活性的变化研究 [J]. 地质与资源, 29(6): 579-584. ]

    • YANG JC, HAN XG, HUANG JH, et al. , 2003. Effects of land use change on carbon storage in terrestrial ecosystem [J]. Chin J Appl Ecol, 14(8): 1385-1390. [杨景成, 韩兴国, 黄建辉, 等, 2003. 土地利用变化对陆地生态系统碳贮量的影响 [J]. 应用生态学报, 14(8): 1385-1390. ]

    • YANG X, WU JJ, YAN F, et al. , 2009. Assessment of regional soil moisture status based on characteristics of surface temperature/vegetation index space [J]. Acta Ecol Sin, 29(3): 1205-1216. [杨曦, 武建军, 闫峰, 等, 2009. 基于地表温度-植被指数特征空间的区域土壤干湿状况 [J]. 生态学报, 29(3): 1205-1216. ]

    • YANG Y, LIANG C, WANG YQ, et al. , 2020. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration [J]. Soil Biol Biochem, 149: 107928.

    • YAO L, ZHANG HC, HU LH, et al. , 2019. Soil labile organic carbon and nitrogen and their relationship with enzyme activities in different vegetation zones along an altitudinal gradient on Mount Huangshan [J]. J Zhejiang Agric For, 36(6): 1069-1076. [姚兰, 张焕朝, 胡立煌, 等, 2019. 黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系 [J]. 浙江农林大学学报, 36(6): 1069-1076. ]

    • YUAN QF, XIE P, HUANG J, et al. , 2013. The influence on soil enzyme activities and soil nutrient contents in rhododendron soil at different altitudes in Yunnan Province [J]. J Trop Crops, 34(12): 2363-2367. [袁启凤, 解璞, 黄静, 等, 2013. 云南不同海拔高度对杜鹃土壤酶活性与土壤养分的影响 [J]. 热带作物学报, 34(12): 2363-2367. ]

    • YU YH, CHENG W, YANG DL, 2013. Features of soil mineral elements in man-made forest of Guizhou karst mountain area [J]. Guihaia, 39(1): 108-116. [喻阳华, 程雯, 杨丹丽, 2019. 贵州喀斯特山区典型人工林土壤矿质元素特征 [J]. 广西植物, 39(1): 108-116. ]

    • ZHANG W, XU YD, GAO DX, et al. , 2019. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China [J]. Soil Biol Biochem, 134: 1-14.

    • ZHANG XB, WANG SJ, CAO JH, et al. , 2010. Characteristics of water loss and soil erosion and some scientific problems on karst rocky desertification in Southwest China karst area [J]. Carsol Sin, 29(3): 274-279. [张信宝, 王世杰, 曹建华, 等, 2010. 西南喀斯特山地水土流失特点及有关石漠化的几个科学问题 [J]. 中国岩溶, 29(3): 274-279. ]

    • ZHANG XX, YANG LM, CHEN Z, et al. , 2018. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas [J]. Acta Ecol Sin, 38(16): 5828-5836. [张星星, 杨柳明, 陈忠, 等, 2018. 中亚热带不同母质和森林类型土壤生态酶化学计量特征 [J]. 生态学报, 38(16): 5828-5836. ]

    • ZHAO C, SHENG MY, BAI YX, et al. , 2021. Soil available nitrogen and phosphorus contents and the environmental impact factors across different land use types in typical karst rocky desertification area, Southwest China [J]. Chin J Appl Ecol, 32(4): 1383-1392. [赵楚, 盛茂银, 白义鑫, 等, 2021. 喀斯特石漠化地区不同土地利用类型土壤氮磷有效性及其环境影响因子 [J]. 应用生态学报, 32(4): 1383-1392. ]

    • ZHAO FZ, REN CJ, HAN XH, et al. , 2018. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems [J]. For Ecol Manage, 427: 289-295.

    • ZHENG L, CHEN H, WANG YQ, et al. , 2020. Responses of soil microbial resource limitation to multiple fertilization strategies [J]. Soil Tillage Res, 196: 104474.

    • ZHOU HC, ZHOU H, XIAO HL, et al. , 2020. The variation characteristics of heavy metal content, nutrient and enzyme activity in soil of alpine steppe with different degradation gradient in the Three River-Headwaters Region [J]. Acta Agr Sin, 28(3): 784-792. [周会程, 周恒, 肖海龙, 等, 2020. 三江源区不同退化梯度高寒草原土壤重金属含量及其与养分和酶活性的变化特征 [J]. 草地学报, 28(3): 784-792. ]

    • ZHOU H, ZHOU HC, XIAO HL, et al. , 2019. Characteristics of enzyme activity in surface soil of alpine steppe under different altitudes on Qinghai-Tibetan Plateau [J]. Grassl Turf, 39(5): 20-30. [周恒, 周会程, 肖海龙, 等, 2019. 三江源不同海拔高寒草原表层土壤酶活性特征 [J]. 草原与草坪, 39(5): 20-30. ]

    • ZHOU JH, GAO RR, WEI Q, et al. , 2020. Effects of different land use patterns on enzyme activities and microbial diversity in upland red soil [J]. J Soil Water Conserv, 34(1): 327-332. [周际海, 郜茹茹, 魏倩, 等, 2020. 旱地红壤不同土地利用方式对土壤酶活性及微生物多样性的影响差异 [J]. 水土保持学报, 34(1): 327-332. ]

    • ZHOU ZH, WANG CK, 2016. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry [J]. Chin J Plant Ecol, 40(6): 620-630. [周正虎, 王传宽, 2016. 微生物对分解底物碳氮磷化学计量的响应和调节机制 [J]. 植物生态学报, 40(6): 620-630. ]

    • ZUO YP, LI JP, ZENG H, et al. , 2018. Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts [J]. Biogeochemistry, 141: 23-39.

    • ZHONG ZK, YANG GH, REN CJ, et al. , 2021. Effects of farmland abandonment on soil enzymatic activity and enzymatic stoichiometry in the Loess Hilly region, China [J]. Environ Sci, 42(1): 411-421. [钟泽坤, 杨改河, 任成杰, 等, 2021. 黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征 [J]. 环境科学, 42(1): 411-421. ]