en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

牛苏燕(1986-),博士,讲师,主要从事薯类作物育种及功能基因组学等研究,(E-mail)niusuyan@zznu.edu.cn。

通讯作者:

崔波,博士,教授,主要从事植物分子育种等研究,(E-mail)laocuibo@163.com。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2023)02-0293-10

DOI:10.11931/guihaia.gxzw202112035

参考文献
AGUILAR-MARTÍNEZ JA, POZA-CARRIÓN C, CUBAS P, 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds [J]. Plant Cell, 19(2): 458-472.
参考文献
CHALLA KR, AGGARWAL P, NATH U, 2016. Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis [J]. Plant Cell, 28(9): 2117-2130.
参考文献
DANISMAN S, WAL F, DHONDT S, et al. , 2012. Arabidopsis Class I and Class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically [J]. Plant Physiol, 159(4): 1511-1523.
参考文献
DANISMAN S, VAN DIJK AD, BIMBO A, et al. , 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family [J] J Exp Bot, 64(18): 5673-5685.
参考文献
DENG WK, WANG YB, LIU ZX, et al. , 2014. HemI: a toolkit for illustrating heatmaps [J]. PLoS ONE, 9(11): e111988.
参考文献
GUAN P, RIPOLLI JJ, WANG R, et al. , 2017. Interacting TCP and NLP transcription factors control plant responses to nitrate availability [J]. Proc Natl Acad Sci USA, 114(9): 2419-2424.
参考文献
GUAN P, WANG R, NACRY P, et al. , 2014. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway [J]. Proc Natl Acad Sci USA, 111(42): 15267-15272.
参考文献
JEAN-MICHEL D, MICHAEL W, THOMAS R, et al. , 2014. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height [J]. Curr Biol, 24(16): 1923-1928.
参考文献
KAN BL, YANG Y, DU PM, et al. , 2022. Genome-wide identification of Musa acuminata TCP family and its response to low nitrogen stress [J]. Mol Plant Breed, 20(1): 64-75. [阚宝琳, 杨勇, 杜鹏萌, 等, 2022. 香蕉TCP家族的全基因组鉴定及对低氮胁迫的响应 [J]. 分子植物育种, 20(1): 64-75. ]
参考文献
KIEFFER M, MASTER V, WAITES R, et al. , 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis [J]. Plant J, 68(1): 147-158.
参考文献
KOYAMA T, FURUTANI M, TASAKA M, et al. , 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis [J]. Plant Cell, 19(2): 473-484.
参考文献
LI WP, CHEN GL, XIAO GS, et al. , 2020. Overexpression of TCP transcription factor OsPCF7 improves agronomic trait in rice [J]. Mol Breed, 40(5): 48.
参考文献
LI YQ, AN S, CHENG QQ, et al. , 2021. Analysis of evolution, expression and genetic transformation of TCP transcription factors in blueberry reveal that VcTCP18 negatively regulates the release of flower bud dormancy [J]. Front Plant Sci, (12): 697609.
参考文献
LI JH, XIE MQ, WAN CY, et al. , 2021. Prokaryotic expression of transcription factor StTCP13 in potato and its function of salt stress [J]. Acta Agric Boreal-Sin, 36(2): 33-39. [李佳皓, 谢敏秋, 万传银, 等, 2021. 马铃薯转录因子StTCP13基因的原核表达及盐胁迫功能研究 [J]. 华北农学报, 36(2): 33-39. ]
参考文献
LI XQ, SVESHNIKOV D, ZEBARTH BJ, et al. , 2010. Detection of nitrogen sufficiency in potato plants using gene expression markers [J]. Am J Potato Res, 87(1): 50-59.
参考文献
LIU HL, GAO YM, WU M, et al. , 2020. TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants [J]. Environ Exp Bot, 172(9): 104002.
参考文献
MALTAS A, DUPUIS B, SINAJ S, 2018. Yield and quality response of two potato cultivars to nitrogen fertilization [J]. Potato Res, 61(5): 97-114.
参考文献
MARTIN-TRILLO M, CUBAS P, 2010. TCP genes: a family snapshot ten years later [J]. Trends Plant Sci, 15(1): 31-39.
参考文献
MUKHOPADHYAY P, TYAGI AK, 2015. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways [J]. Sci Rep, 5(1): 9998.
参考文献
NIU SY, JIANG SH, YI ZF, et al. , 2021. Characterization of MYB transcription factors in Solanum tuberosum under low nitrogen fertilizer stress [J/OL]. Mol Plant Breed: 1-21 [2021-06-17]. https: //kns. cnki. net/kcms/detail/46. 1068. s. 20210617. 1124. 009. html. [牛苏燕, 蒋素华, 邰作峰, 等, 2021. 在低氮肥胁迫下马铃薯MYB转录因子的特征分析 [J/OL]. 分子植物育种: 1-21 [2021-06-17]. https: //kns. cnki. net/kcms/detail/46. 1068. s. 20210617. 1124. 009. html. ]
参考文献
REN L, 2019. Function analysis of BpTCP3 gene in Betula platyphylla [D]. Harbin: Northeast Forestry University. [任丽, 2019. 白桦BpTCP3基因的功能研究 [D]. 哈尔滨: 东北林业大学. ]
参考文献
SHANG Y, YUAN L, DI ZC, et al. , 2020. A CYC/TB1 type TCP transcription factor controls spikelet meristem identity in barley (Hordeum vulgare L. ) [J]. J Exp Bot, 71 (22): 7118-7131.
参考文献
SHARIFI M, ZEBARTH BJ, COLEMAN W, 2007. Screening for nitrogen-use efficiency in potato with a recirculating hydroponic system [J]. Commun Soil Sci Plan, 38(3/4): 359-370.
参考文献
SCHOMMER C, PALATNIK JF, AGGARWAL P, et al. , 2008. Control of jasmonate biosynthesis and senescence by miR319 targets [J]. PLoS Biol, 6(9): e230.
参考文献
TATEMATSU K, NAKABAYASHI K, KAMIYA Y, et al. , 2008. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana [J]. Plant J, 53(1): 42-52.
参考文献
WANG XY, GAO J, ZHU Z, et al. , 2015. TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana [J]. Plant J, 82(1): 151-162.
参考文献
XIAO XO, LIN WQ, FENG XF, et al. , 2018. Genome-wide identification and analysis of TCP gene in potato [J]. Mol Plant Breed, 16 (24): 7933-7938. [肖熙鸥, 林文秋, 冯雪峰, 等, 2018. 马铃薯TCP基因家族全基因组鉴定与分析 [J]. 分子植物育种, 16(24): 7933-7938. ]
参考文献
XIE XF, LI XQ, ZEBARTH BJ, et al. , 2018. Rapid screening of potato cultivars tolerant to nitrogen deficiency using a hydroponic system [J]. Am J Potato Res, 95: 157-163.
参考文献
ZHOU XJ, ZHA MR, HUANG J, et al. , 2017. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato [J]. J Exp Bot, 68(5): 1265-1281.
参考文献
ZHU L, LI SS, MA QY, et al. , 2022. The Acer palmatum TCP transcription factor ApTCP2 controls leaf morphogenesis, accelerates senescence, and affects flowering via miR319 in Arabidopsis thaliana [J]. J Plant Growth Regul, 41(1): 244-256.
目录contents

    摘要

    TCP转录因子是植物特有的一类转录因子,参与植物生物学过程的多个方面。为研究马铃薯TCP转录因子在响应低氮肥胁迫中的作用,该研究以氮肥供应不足(0.05 mmol·L-1)和氮肥供应充足(7.5 mmol·L-1)条件下马铃薯的根和叶片构建4个转录组文库进行测序,并对差异表达的TCP转录因子进行分析。结果表明:(1)在4个转录组文库中共鉴定TCP转录因子24个,它们主要分布在2号、3号、6号染色体上。(2)经结构域分析显示,24个TCP 转录因子均具有典型的basic-Helix-Loop-Helix结构域。(3)经系统进化分析显示,马铃薯与拟南芥TCP蛋白可聚集在一起,分属于10个亚类。(4)转录组测序结果显示,在低氮肥胁迫下,大多数TCP转录因子被抑制表达,有3个TCP转录因子在根中显著性差异表达,5个TCP转录因子在叶中特异性表达。(5)根据GO功能注释分析和马铃薯TCP转录因子与拟南芥TCP转录因子的亲缘关系分析推测,这些TCP转录因子参与了马铃薯对低氮肥胁迫的响应。该研究结果为进一步研究马铃薯与其他粮食作物TCP转录因子响应低氮肥胁迫的分子功能奠定了基础。

    Abstract

    TCP transcription factors are a type of plant-specific transcription factors, which have been implicated in multiple aspects of plant biological processes. To study the role of potato TCP transcription factors in response to low nitrogen fertilizer stress, here, four transcriptome libraries from potato roots and leaves under the conditions of low nitrogen fertilizer (0.05 mmol·L-1) and sufficient nitrogen fertilizer (7.5 mmol·L-1) were constructed for transcriptome sequencing, respectively. Meanwhile, the differentially expressed TCP transcription factor were analyzed. The results were as follows: (1) A total of 24 TCP transcription factors were identified in the four transcriptome libraries, and mainly distributed on the second, third and sixth chromosomes. (2) The analysis of domains showed that all of 24 transcription factors contained basic-Helix-Loop-Helix domain. (3) The phylogenetic analysis showed that the TCP proteins of potato and Arabidopsis thaliana were closely related, and clustered into ten subgroups. (4) Transcriptome sequencing results showed that the expression levels of most potato TCP transcription factors were suppressed by low nitrogen fertilizer stress. Among them, three TCP transcription factors were significantly differentially expressed in roots, while five TCP transcription factors were specifically expressed in leaves. (5) According to the GO functional analysis and the relationship between the potato and the A. thaliana TCP transcription factors, it is predicted that these TCP transcription factors were involved in response of potato to low nitrogen fertilizer stress. The research provides a foundation for further study on the molecular role of transcription factors in response to low nitrogen fertilizer stress in potato and other crops.

  • TCP转录因子是植物体内所特有的一类调控蛋白,参与植物的形态建成及生长过程中逆境响应的调控(Martín-Trillo &Cubas,2010; Jean-Michel et al.,2014; Mukhopadhyay &Tyagi,2015; Challa et al.,2016)。例如,大麦基因(BDI1)(Branched and Indeterminate Spikelet 1)编码了一个 CYC/TB1 型 TCP 转录因子,其在大麦花序结构和小穗发育中起着至关重要的作用(Shang et al.,2020)。过表达水稻基因OsPCF7不仅增加了转基因水稻幼苗的茎高、根长和总根数,促进水稻的分蘖和抽穗,还增加了单株穗数和饱满粒数(Li et al.,2020)。此外,Li等(2021)研究证明蓝莓VcTCP18在拟南芥中过表达显著降低了种子的发芽率,同时在转基因植株中出现了花期晚、莲座少、主枝少和芽休眠现象。槭树ApTCP2可通过miR319调控拟南芥叶片的形态发生来影响开花和正向调节叶片的衰老(Zhu et al.,2022)。Liu等(2020)研究证明TCP转录因子参与植物抗逆过程,如水稻和拟南芥中过表达毛竹(Phyllostachys edulisPeTCP10,不仅提高了转基因植株的耐旱性,也降低了对ABA 的敏感性。

  • 马铃薯(Solanum tuberosum)是世界上第四大粮食作物,广泛种植于中国、俄罗斯、印度、乌克兰、美国等国家。近年来,随着马铃薯主粮化在我国的推进,马铃薯的种植面积和产量越来越高,这对实现我国农业的可持续发展和保障我国粮食安全发挥着日益重要的作用。然而,马铃薯整个生育过程中总是受到氮素的限制,氮肥供应过量或不足均会严重影响商品薯的产量和质量(Maltas et al.,2018)。Guan等(2017)研究表明,转录因子参与调控植物生长发育过程中所面临的缺氮胁迫,如在低氮肥胁迫下,拟南芥AtTCP20基因能够与其他蛋白质互作后激活氨同化关键基因,从而提高植株的氮同化能力。此外,白桦BpTCP3和香蕉Ma06_g15900也参与低氮胁迫的应答反应(任丽,2019; 阚宝林等,2021)。随着基因组数据的发表,马铃薯中转录因子的研究也陆续有报道。例如,马铃薯StMYB44响应低磷胁迫,在缺少磷元素的情况下表达被抑制,能够通过抑制马铃薯块茎磷酸激酶1的表达,进而负调控马铃薯中的磷转运(Zhou et al.,2017)。此外,牛苏燕等(2021)基于转录组学方法,鉴定出响应低氮肥胁迫的36个MYB转录因子。肖熙鸥等(2018)对马铃薯基因组进行检索获得43条TCP转录因子,而未对转录因子进行功能分析和验证。李佳皓等(2021)研究证明,从马铃薯品种‘费乌瑞它’中克隆的StTCP13在响应盐胁迫逆境中发挥一定作用,而马铃薯TCP转录因子是否参与氮肥饥饿胁迫以及在其氮肥供应不足条件下的作用尚不明确。因此,本研究以马铃薯氮肥供应不足和充足条件下的转录组数据为基础,利用生物信息学技术分析研究TCP转录因子的基本信息和保守结构域,以及在不同组织和不同施氮水平下的表达情况、GO功能和与拟南芥TCP转录因子的亲缘关系,以期为进一步深入研究马铃薯TCP转录因子在响应氮肥胁迫中的作用奠定基础。

  • 1 材料与方法

  • 1.1 材料

  • 以马铃薯薯条型品种‘Russet Burbank’为材料,分别种植于氮肥供应充足(7.5 mmol·L-1)和供应不足(低氮肥胁迫,0.05 mmol·L-1)(Sharifi et al.,2007; Li et al.,2010)的水培系统中,植株的培养方法和生长条件参照Xie等(2018)的方法。培养10 d 后,按处理不同分取叶片和根进行转录组测序文库 [根对照(root control)和叶片对照(leaf control)为马铃薯氮供应充足的根和叶片测序文库; 根处理(root treatment)和叶片处理(leaf treatment)为马铃薯氮供应不足的根和叶片测序文库]的构建,以氮肥供应充足条件下的植株为对照,每个处理分别取4个生物学重复,最终进行转录组测序。

  • 1.2 马铃薯TCP基因家族响应氮肥胁迫相关基因的生物信息学分析

  • 基于转录组数据和Phytozome12.1(https://phytozome.jgi.doe.gov/pz/portal.html)马铃薯基因组数据库获取TCP基因序列信息; 利用在线分析软件ProtParam和SOPMA对TCP蛋白的理化性质和二级结构进行预测; 使用Blast2GO软件分析TCP转录因子的功能注释; 利用MEGA 7.0.14软件,将马铃薯TCP家族蛋白序列和拟南芥TCP家族蛋白序列数据库(http://planttfdb.gao-lab.org/family.php?sp=Ath&fam=TCP)比对分析后,采用邻接法构建系统进化树; 利用MEME Suite5.4.1(http://meme-suite.org/)程序分析马铃薯TCP家族蛋白的基序,设定基序宽度最小值为6、最大值为 60,基序数量为6,其余参数为默认值; 利用HemI 1.0.3.7软件,根据马铃薯TCP转录因子在4个不同测序文库中的表达量绘制基因表达热图(Deng et al.,2014),并以log2(foldchange)大于1或小于-1且P>0.05为显著性差异表达基因,对转录组获得的TCP转录因子进行差异分析。

  • 2 结果与分析

  • 2.1 马铃薯TCP转录因子的鉴定

  • 在马铃薯4个转录组测序文库中共鉴定24个TCP转录因子,以马铃薯基因组数据库Phytozome为参考获得这些基因的相关信息(表1)。表1结果表明,这些TCP转录因子主要来自2号染色体(5个基因),其次为3号、6号染色体,分别有4个基因。基因长度在606~2 137 bp之间,氨基酸数目在201~534个之间。外显子数目在1~6个之间,其中基因PGSC0003DMG400016363含有外显子最多(为6个)。

  • 2.2 马铃薯TCP家族蛋白理化性质分析

  • 由表2可知,24个TCP家族蛋白平均相对分子质量为37 693.70 Da,PGSC0003DMG400021568为最小值,编码蛋白的相对分子质量为21 143.87 Da,PGSC0003DMG400024928为最大值,编码蛋白的相对分子质量为57 554.24 Da; 等电点(pI)平均值为7.51,PGSC0003DMG400024254为最小值,编码蛋白(5.22),PGSC0003DMG400045197为最大值,编码蛋白(10.08),共有11个TCP家族蛋白呈酸性(pI<7)和13个TCP蛋白呈碱性(pI>7); 24个TCP家族蛋白的平均疏水性值均小于0,PGSC0003DMG400004054(-1.015)为最小值,PGSC0003DMG400016363(-0.188)为最大值; 二级结构预测结果显示,24个TCP蛋白均具有α螺旋、β转角、延伸链和无规则卷曲4种构型,其中α螺旋和无规则卷曲构成占平均比值分别为19.20%和63.34%,而延伸链和β转角占平均比值分别为4.09%和13.38%。在这些TCP家族蛋白中,24个TCP蛋白均表现为无规则卷曲占比最大,18个TCP蛋白α螺旋占比大于延伸链占比,而6个TCP蛋白PGSC0003DMG400024632、 PGSC0003DM G400004082、PGSC0003DMG400021568、PGSC0003D MG400001362、PGSC0003DMG400026568和PGSC0003 DMG400016363则表现相反,出现了α螺旋占比小于延伸链占比的现象。

  • 2.3 马铃薯TCP转录因子基序分析

  • 对获得的马铃薯TCP转录因子的结构域进行预测,结果表明24个转录因子均包含基序1即Motif 1且在所有基序中序列最长(60个氨基酸)(表3)。这说明该基序是马铃薯TCP转录因子中不可缺少的结构域(图1)。从整体来看,可以把TCP转录因子分为四类:第一类有11个基因都包含有基序1和基序3,同时有3个基因含有基序5; 第二类有9个基因都包含有基序1和基序2,其中有3个TCP蛋白(PGSC0003DMG400009406、PGSC0003DMG400012396和PGSC0003DMG4000 15377)含有基序4和基序6; 第三类有3个基因,只包含有基序1; 第四类只有1个基因(PGSC0003DMG400033078),包含有基序1、2、3。进一步分析保守的基序(motif)序列特征,发现24个TCP 转录因子均具有典型的basic-Helix-Loop-Helix(bHLH)结构域。

  • 表1 马铃薯TCP转录因子基因的特征

  • Table1 Characteristics of TCP transcription factor genes in Solanum tuberosum

  • 2.4 马铃薯TCP转录因子的蛋白进化分析

  • 为解析马铃薯TCP蛋白的进化关系并预测其功能,利用MEGA 7.0.14软件分析马铃薯TCP家族蛋白和拟南芥TCP家族蛋白(PlantTFDB数据库)的进化关系(图2)。图2结果表明,24个马铃薯TCP家族蛋白与拟南芥的TCP蛋白聚集在一起且分别归属于10个亚类,说明马铃薯TCP家族蛋白与拟南芥TCP 蛋白具有比较高的保守性。从图2可以看出,PGSC0003DMG400000597和PGSC0003DMG400033078与拟南芥AT3G47620.1(AtTCP14)亲缘关系较近; PGSC0003DMG400015377与拟南芥AT3G15030.1(AtTCP4)亲缘关系较近; PGSC0003DMG400004054、PGSC0003DMG400005705和PGSC0003DMG400000823与AT1G68800.1(AtTCP12)亲缘关系最近; PGSC0003DMG400004082和PGSC0003DM G400024632与拟南芥AT5G08070.1(AtTCP17)和AT5G60970.1(AtTCP5)亲缘关系较近; PGSC0003DMG400045197、PGSC0003DMG400024254和PGSC0003DMG400022738与拟南芥AT2G45680.1(AtTCP9)、AT5G51910.2(AtTCP19)和AT5G51910.1(AtTCP19)亲缘关系较近; PGSC0003DMG400009406与拟南芥AT2G31070.1(AtTCP10)亲缘关系较近。

  • 2.5 马铃薯TCP转录因子的GO功能注释分析

  • GO功能注释分析结果表明,24条TCP转录因子序列分别被注释到分子功能(15条)、生物过程(22条)和细胞组分(18条)。所有TCP序列被进一步富集到26个功能类别,其中DNA结合功能(11个)、细胞核功能(17个)、蛋白质结合功能(6个)、转录因子活性(13个)、转录调控(12个)、叶形态发生(8个)、细胞分化(8个)、发育正向调控(8个)、防御反应调控(6个)等功能组包含的序列较多; 细胞大小调控(4个)、叶片衰老的负调控(4个)、叶绿体功能(3)、次生枝形成调控(3个)、核心启动子近端序列特异性DNA结合(2)、核心启动子结合(2个)、脱落酸响应(2个)、营养期向生殖期过渡的调节(1个)、细胞增殖(2个)、细胞分裂素响应(2个)、赤霉素响应(2个)、种子休眠结束中胚发育(2个)、种子萌发调控(2个)、花序发育(2个)、根发育(2个)、生理节律调控(1个)和解剖结构形态发生(1个)功能组包含的序列较少。其中,生物过程主要集中在转录调控、发育正向调控、叶形态发生和细胞分化,细胞组分主要富集在细胞核的功能,分子功能集中在DNA结合和转录因子活性(图3)。

  • 2.6 马铃薯TCP转录因子在低氮肥胁迫和不同组织中的表达分析

  • 基于马铃薯转录组数据,获得了24个马铃薯TCP转录因子在不同转录组文库中的表达量,并绘制表达热图(图4)。从图4可以看出,低氮肥胁迫处理后,24个TCP转录因子在叶中虽被抑制或被诱导表达但都未达到显著性差异水平,只有2 个基因(基因号PGSC0003DMG400000823和PGSC0003DMG400022738)的差异表达水平最大,分别上调了1.81倍和1.58倍。在2个根转录文库中,共获得19个TCP转录因子,包括 11个被抑制表达的TCP转录因子和8个被诱导表达的TCP转录因子,其中3个TCP转录因子显著性差异表达(基因号PGSC0003DMG400000597和PGSC0003DMG400024254下调表达、基因号PGSC0003DMG400015377上调表达),2个TCP转录因子(基因号PGSC0003DMG400022964和PGSC0003DMG400033078)下调表达幅度较大。

  • 表2 马铃薯TCP家族蛋白的理化性质

  • Table2 Physicochemical properties of TCP family proteins in Solanum tuberosum

  • 表3 马铃薯TCP转录因子的保守基序长度及氨基酸序列

  • Table3 Length and amino acid sequences of motifs of TCP transcription factors in Solanum tuberosum

  • 图1 马铃薯TCP转录因子的基序分析

  • Fig.1 Motif analysis of TCP transcription factors in Solanum tuberosum

  • 此外,分析了TCP转录因子在不同组织中的表达差异,图4结果表明21个TCP转录因子在根和叶中显著性差异表达。除有5个TCP转录因子在叶中特异性表达外,还有5个TCP转录因子在叶中的表达量显著性低于在根中的表达量,而剩下的11个TCP转录因子在叶中显著性高表达[2个TCP转录因子(基因号PGSC0003DMG400009406和PGSC0003DMG400015377)差异表达水平最大,分别上调了6.40倍和8.45倍]。

  • 3 讨论与结论

  • 由于TCP转录因子在植物生长发育及抵御逆境胁迫中发挥着关键性调控作用,因此TCP转录因子家族越来越受到研究者的重视。马铃薯作为中国第四大粮食作物,在其生长发育过程中总是受到氮素的胁迫,而TCP转录因子是否参与马铃薯抵御低氮素胁迫的响应还鲜有报道。因此,本研究基于4个转录组文库共鉴定出24个马铃薯TCP转录因子家族成员,对其进行蛋白质序列结构分析发现这些转录因子都具有b-HLH结构。此外,还发现马铃薯TCP转录因子家族成员的序列、等电点、相对分子质量和外显子数目存在较大差异,在染色体上的分布呈现不均匀特征,这与肖熙鸥等(2018)的研究结果一致。此外,本研究还分析了TCP转录因子在氮肥低胁迫下不同组织中的表达情况,发现叶片中的TCP转录因子均未达到显著性差异水平,只有2个基因的诱导表达幅度较大,这一结果与阚宝林等(2021)研究香蕉中低氮肥胁迫后多数基因上调表达的响应情况不同,可能是物种的特异性导致TCP转录因子的响应模式不同; 根中(基因号PGSC0003DMG400000597和PGSC0003DMG400024254)显著性下调表达,而基因PGSC0003DMG400015377却呈现出相反的表达模式。由此可见,马铃薯TCP转录因子在叶片和根两个组织中响应氮肥胁迫的表达模式存在差异,并且不同转录因子成员响应低氮肥胁迫的模式也存在差异。

  • 本课题组曾利用循环水培系统研究了20个马铃薯栽培品种对低氮肥胁迫在生理水平上的响应,证明了基因型不同的马铃薯对低水平氮肥供应的耐受力和敏感度不同; 在低氮肥供应条件下生长的马铃薯(包括马铃薯品种‘Russet Burbank’)地上部分的高度和根的长度显著低于生长在氮肥供应充足条件下的植株; 同时,低氮肥生长条件下马铃薯的生物量积累也受到严重抑制(Xie et al.,2017)。在本研究中,转录因子(基因号PGSC0003DMG400000597和PGSC0003DMG40 0024254)在氮肥胁迫条件下的根和叶片中表达趋势一致,并在根中被显著性抑制表达,而转录因子(基因号PGSC0003DMG4000 15377)却表现出相反趋势,在根和叶片中被诱导表达。经聚类分析结果表明,这3个TCP转录因子与拟南芥转录因子AT3G47620.1(AtTCP14)、AT2G45680.1(AtTCP9)和AT3G15030.1(AtTCP4)亲缘关系最近,表明其可能与拟南芥转录因子AtTCP14、AtTCP4和AtTCP9具有相似的生物学功能。在拟南芥中,AtTCP14参与调节激活种子萌发过程中胚胎的生长潜力(Tatematsu et al.,2008),还可与AtTCP15一起通过促进幼嫩节间的细胞分裂来调节植物的形态(Kieffer et al.,2011); AtTCP4通过与功能基因的顺式作用元件结合参与调控植物激素(如生长素和油菜素内酯)的合成,从而影响植物的生长发育; 拟南芥AtTCP4受miR319调控,能通过调控拟南芥主根的伸长参与干旱胁迫响应(Schommer et al.,2008); Wang等(2015)研究报道 AtTCP9参与了激素合成酶1(isochorismate synthase1,ICS1)的协同调控,Danisman等(2012)研究报道在拟南芥中参与调节细胞的大小、叶片的衰老和根的发育。此外,Guan等(2014)研究报道,拟南芥AtTCP20可激活硝酸盐转运蛋白1.1(nitrate transporter 1.1,NRT1.1)的表达来调控硝酸盐运输期间侧根发育的系统信号转导途径而影响植株侧根的生长。在本研究中,马铃薯TCP转录因子(基因号PGSC0003DMG400020247和PGSC0003DM G400040232)与拟南芥 AT3G27010.1(AtTCP20)亲缘关系最近。结合前期马铃薯响应低氮肥胁迫的生理研究结果,生长在氮肥供应不足条件下马铃薯的地上部分和根的生长速度明显低于生长在氮肥供应充足条件下的马铃薯植株。由此推测,这些转录因子在马铃薯低氮肥胁迫中可能通过影响氮代谢相关基因的表达来调控植株形态的建成和生物量的形成与积累。

  • 图2 马铃薯TCP家族蛋白与拟南芥TCP家族蛋白的进化树

  • Fig.2 Phylogenetic tree of TCP protein in Solanum tuberosum and Arabidopsis thaliana

  • 图3 马铃薯TCP转录因子的功能注释

  • Fig.3 Function annotation of Solanum tuberosum TCP transcription factors

  • 在本研究中,我们发现马铃薯地上部组织叶片中4个转录因子在氮肥胁迫处理下被抑制表达,而它们在马铃薯地下部组织根中不表达,推测其可能通过响应低氮肥胁迫调控马铃薯地上部分的生长。其中,基因PGSC0003DMG400005705与拟南芥AtTCP12亲缘关系最近; 基因PGSC0003DMG400004082和PGSC0003DMG4000 24632与AtTCP17和AtTCP5亲缘关系较近; 基因PGSC0003DMG400045197与AtTCP9和AtTCP19亲缘关系较近。Aguilar-Martínez等(2007)研究表明,AtTCP12是一个防止腋芽生长的转录因子,能够延迟早期腋芽的发育,参与控制生长素诱导的顶端优势,Koyama等(2007)研究表明,AtTCP17和AtTCP5通过负调控边界特异性基因如CUC基因的表达,在调控地上部侧生分生组织形态发生中起关键作用。此外,GO功能注释分析结果显示,AtTCP19参与植物逆境胁迫的防御调控,并且该基因还能与 AtTCP20以冗余方式在控制叶片衰老中发挥作用(Danisman et al.,2013)。因此推测,这些马铃薯TCP转录因子可能具有与上述拟南芥TCP转录因子相似的生物学功能,为一进步验证这些TCP转录因子在马铃薯应对低氮肥胁迫中的调控作用提供了参考。

  • 综上所述,本研究依据马铃薯转录组数据,利用生物信息学方法鉴定了马铃薯氮肥供应不足和供应充足条件下的24个TCP转录因子,并对其染色体位置、TCP结构域、系统进化树和保守基序,以及不同组织在氮肥胁迫条件下的表达情况进行了分析,为进一步研究马铃薯TCP转录因子在氮肥供应不足和其他逆境胁迫下的功能奠定了基础。

  • 图4 马铃薯TCP转录因子的基因表达热图

  • Fig.4 Gene expression heatmap of Solanum tuberosum TCP transcription factors

  • 参考文献

    • AGUILAR-MARTÍNEZ JA, POZA-CARRIÓN C, CUBAS P, 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds [J]. Plant Cell, 19(2): 458-472.

    • CHALLA KR, AGGARWAL P, NATH U, 2016. Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis [J]. Plant Cell, 28(9): 2117-2130.

    • DANISMAN S, WAL F, DHONDT S, et al. , 2012. Arabidopsis Class I and Class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically [J]. Plant Physiol, 159(4): 1511-1523.

    • DANISMAN S, VAN DIJK AD, BIMBO A, et al. , 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family [J] J Exp Bot, 64(18): 5673-5685.

    • DENG WK, WANG YB, LIU ZX, et al. , 2014. HemI: a toolkit for illustrating heatmaps [J]. PLoS ONE, 9(11): e111988.

    • GUAN P, RIPOLLI JJ, WANG R, et al. , 2017. Interacting TCP and NLP transcription factors control plant responses to nitrate availability [J]. Proc Natl Acad Sci USA, 114(9): 2419-2424.

    • GUAN P, WANG R, NACRY P, et al. , 2014. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway [J]. Proc Natl Acad Sci USA, 111(42): 15267-15272.

    • JEAN-MICHEL D, MICHAEL W, THOMAS R, et al. , 2014. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height [J]. Curr Biol, 24(16): 1923-1928.

    • KAN BL, YANG Y, DU PM, et al. , 2022. Genome-wide identification of Musa acuminata TCP family and its response to low nitrogen stress [J]. Mol Plant Breed, 20(1): 64-75. [阚宝琳, 杨勇, 杜鹏萌, 等, 2022. 香蕉TCP家族的全基因组鉴定及对低氮胁迫的响应 [J]. 分子植物育种, 20(1): 64-75. ]

    • KIEFFER M, MASTER V, WAITES R, et al. , 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis [J]. Plant J, 68(1): 147-158.

    • KOYAMA T, FURUTANI M, TASAKA M, et al. , 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis [J]. Plant Cell, 19(2): 473-484.

    • LI WP, CHEN GL, XIAO GS, et al. , 2020. Overexpression of TCP transcription factor OsPCF7 improves agronomic trait in rice [J]. Mol Breed, 40(5): 48.

    • LI YQ, AN S, CHENG QQ, et al. , 2021. Analysis of evolution, expression and genetic transformation of TCP transcription factors in blueberry reveal that VcTCP18 negatively regulates the release of flower bud dormancy [J]. Front Plant Sci, (12): 697609.

    • LI JH, XIE MQ, WAN CY, et al. , 2021. Prokaryotic expression of transcription factor StTCP13 in potato and its function of salt stress [J]. Acta Agric Boreal-Sin, 36(2): 33-39. [李佳皓, 谢敏秋, 万传银, 等, 2021. 马铃薯转录因子StTCP13基因的原核表达及盐胁迫功能研究 [J]. 华北农学报, 36(2): 33-39. ]

    • LI XQ, SVESHNIKOV D, ZEBARTH BJ, et al. , 2010. Detection of nitrogen sufficiency in potato plants using gene expression markers [J]. Am J Potato Res, 87(1): 50-59.

    • LIU HL, GAO YM, WU M, et al. , 2020. TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants [J]. Environ Exp Bot, 172(9): 104002.

    • MALTAS A, DUPUIS B, SINAJ S, 2018. Yield and quality response of two potato cultivars to nitrogen fertilization [J]. Potato Res, 61(5): 97-114.

    • MARTIN-TRILLO M, CUBAS P, 2010. TCP genes: a family snapshot ten years later [J]. Trends Plant Sci, 15(1): 31-39.

    • MUKHOPADHYAY P, TYAGI AK, 2015. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways [J]. Sci Rep, 5(1): 9998.

    • NIU SY, JIANG SH, YI ZF, et al. , 2021. Characterization of MYB transcription factors in Solanum tuberosum under low nitrogen fertilizer stress [J/OL]. Mol Plant Breed: 1-21 [2021-06-17]. https: //kns. cnki. net/kcms/detail/46. 1068. s. 20210617. 1124. 009. html. [牛苏燕, 蒋素华, 邰作峰, 等, 2021. 在低氮肥胁迫下马铃薯MYB转录因子的特征分析 [J/OL]. 分子植物育种: 1-21 [2021-06-17]. https: //kns. cnki. net/kcms/detail/46. 1068. s. 20210617. 1124. 009. html. ]

    • REN L, 2019. Function analysis of BpTCP3 gene in Betula platyphylla [D]. Harbin: Northeast Forestry University. [任丽, 2019. 白桦BpTCP3基因的功能研究 [D]. 哈尔滨: 东北林业大学. ]

    • SHANG Y, YUAN L, DI ZC, et al. , 2020. A CYC/TB1 type TCP transcription factor controls spikelet meristem identity in barley (Hordeum vulgare L. ) [J]. J Exp Bot, 71 (22): 7118-7131.

    • SHARIFI M, ZEBARTH BJ, COLEMAN W, 2007. Screening for nitrogen-use efficiency in potato with a recirculating hydroponic system [J]. Commun Soil Sci Plan, 38(3/4): 359-370.

    • SCHOMMER C, PALATNIK JF, AGGARWAL P, et al. , 2008. Control of jasmonate biosynthesis and senescence by miR319 targets [J]. PLoS Biol, 6(9): e230.

    • TATEMATSU K, NAKABAYASHI K, KAMIYA Y, et al. , 2008. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana [J]. Plant J, 53(1): 42-52.

    • WANG XY, GAO J, ZHU Z, et al. , 2015. TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana [J]. Plant J, 82(1): 151-162.

    • XIAO XO, LIN WQ, FENG XF, et al. , 2018. Genome-wide identification and analysis of TCP gene in potato [J]. Mol Plant Breed, 16 (24): 7933-7938. [肖熙鸥, 林文秋, 冯雪峰, 等, 2018. 马铃薯TCP基因家族全基因组鉴定与分析 [J]. 分子植物育种, 16(24): 7933-7938. ]

    • XIE XF, LI XQ, ZEBARTH BJ, et al. , 2018. Rapid screening of potato cultivars tolerant to nitrogen deficiency using a hydroponic system [J]. Am J Potato Res, 95: 157-163.

    • ZHOU XJ, ZHA MR, HUANG J, et al. , 2017. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato [J]. J Exp Bot, 68(5): 1265-1281.

    • ZHU L, LI SS, MA QY, et al. , 2022. The Acer palmatum TCP transcription factor ApTCP2 controls leaf morphogenesis, accelerates senescence, and affects flowering via miR319 in Arabidopsis thaliana [J]. J Plant Growth Regul, 41(1): 244-256.

  • 参考文献

    • AGUILAR-MARTÍNEZ JA, POZA-CARRIÓN C, CUBAS P, 2007. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds [J]. Plant Cell, 19(2): 458-472.

    • CHALLA KR, AGGARWAL P, NATH U, 2016. Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis [J]. Plant Cell, 28(9): 2117-2130.

    • DANISMAN S, WAL F, DHONDT S, et al. , 2012. Arabidopsis Class I and Class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically [J]. Plant Physiol, 159(4): 1511-1523.

    • DANISMAN S, VAN DIJK AD, BIMBO A, et al. , 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family [J] J Exp Bot, 64(18): 5673-5685.

    • DENG WK, WANG YB, LIU ZX, et al. , 2014. HemI: a toolkit for illustrating heatmaps [J]. PLoS ONE, 9(11): e111988.

    • GUAN P, RIPOLLI JJ, WANG R, et al. , 2017. Interacting TCP and NLP transcription factors control plant responses to nitrate availability [J]. Proc Natl Acad Sci USA, 114(9): 2419-2424.

    • GUAN P, WANG R, NACRY P, et al. , 2014. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway [J]. Proc Natl Acad Sci USA, 111(42): 15267-15272.

    • JEAN-MICHEL D, MICHAEL W, THOMAS R, et al. , 2014. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height [J]. Curr Biol, 24(16): 1923-1928.

    • KAN BL, YANG Y, DU PM, et al. , 2022. Genome-wide identification of Musa acuminata TCP family and its response to low nitrogen stress [J]. Mol Plant Breed, 20(1): 64-75. [阚宝琳, 杨勇, 杜鹏萌, 等, 2022. 香蕉TCP家族的全基因组鉴定及对低氮胁迫的响应 [J]. 分子植物育种, 20(1): 64-75. ]

    • KIEFFER M, MASTER V, WAITES R, et al. , 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis [J]. Plant J, 68(1): 147-158.

    • KOYAMA T, FURUTANI M, TASAKA M, et al. , 2007. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis [J]. Plant Cell, 19(2): 473-484.

    • LI WP, CHEN GL, XIAO GS, et al. , 2020. Overexpression of TCP transcription factor OsPCF7 improves agronomic trait in rice [J]. Mol Breed, 40(5): 48.

    • LI YQ, AN S, CHENG QQ, et al. , 2021. Analysis of evolution, expression and genetic transformation of TCP transcription factors in blueberry reveal that VcTCP18 negatively regulates the release of flower bud dormancy [J]. Front Plant Sci, (12): 697609.

    • LI JH, XIE MQ, WAN CY, et al. , 2021. Prokaryotic expression of transcription factor StTCP13 in potato and its function of salt stress [J]. Acta Agric Boreal-Sin, 36(2): 33-39. [李佳皓, 谢敏秋, 万传银, 等, 2021. 马铃薯转录因子StTCP13基因的原核表达及盐胁迫功能研究 [J]. 华北农学报, 36(2): 33-39. ]

    • LI XQ, SVESHNIKOV D, ZEBARTH BJ, et al. , 2010. Detection of nitrogen sufficiency in potato plants using gene expression markers [J]. Am J Potato Res, 87(1): 50-59.

    • LIU HL, GAO YM, WU M, et al. , 2020. TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants [J]. Environ Exp Bot, 172(9): 104002.

    • MALTAS A, DUPUIS B, SINAJ S, 2018. Yield and quality response of two potato cultivars to nitrogen fertilization [J]. Potato Res, 61(5): 97-114.

    • MARTIN-TRILLO M, CUBAS P, 2010. TCP genes: a family snapshot ten years later [J]. Trends Plant Sci, 15(1): 31-39.

    • MUKHOPADHYAY P, TYAGI AK, 2015. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways [J]. Sci Rep, 5(1): 9998.

    • NIU SY, JIANG SH, YI ZF, et al. , 2021. Characterization of MYB transcription factors in Solanum tuberosum under low nitrogen fertilizer stress [J/OL]. Mol Plant Breed: 1-21 [2021-06-17]. https: //kns. cnki. net/kcms/detail/46. 1068. s. 20210617. 1124. 009. html. [牛苏燕, 蒋素华, 邰作峰, 等, 2021. 在低氮肥胁迫下马铃薯MYB转录因子的特征分析 [J/OL]. 分子植物育种: 1-21 [2021-06-17]. https: //kns. cnki. net/kcms/detail/46. 1068. s. 20210617. 1124. 009. html. ]

    • REN L, 2019. Function analysis of BpTCP3 gene in Betula platyphylla [D]. Harbin: Northeast Forestry University. [任丽, 2019. 白桦BpTCP3基因的功能研究 [D]. 哈尔滨: 东北林业大学. ]

    • SHANG Y, YUAN L, DI ZC, et al. , 2020. A CYC/TB1 type TCP transcription factor controls spikelet meristem identity in barley (Hordeum vulgare L. ) [J]. J Exp Bot, 71 (22): 7118-7131.

    • SHARIFI M, ZEBARTH BJ, COLEMAN W, 2007. Screening for nitrogen-use efficiency in potato with a recirculating hydroponic system [J]. Commun Soil Sci Plan, 38(3/4): 359-370.

    • SCHOMMER C, PALATNIK JF, AGGARWAL P, et al. , 2008. Control of jasmonate biosynthesis and senescence by miR319 targets [J]. PLoS Biol, 6(9): e230.

    • TATEMATSU K, NAKABAYASHI K, KAMIYA Y, et al. , 2008. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana [J]. Plant J, 53(1): 42-52.

    • WANG XY, GAO J, ZHU Z, et al. , 2015. TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana [J]. Plant J, 82(1): 151-162.

    • XIAO XO, LIN WQ, FENG XF, et al. , 2018. Genome-wide identification and analysis of TCP gene in potato [J]. Mol Plant Breed, 16 (24): 7933-7938. [肖熙鸥, 林文秋, 冯雪峰, 等, 2018. 马铃薯TCP基因家族全基因组鉴定与分析 [J]. 分子植物育种, 16(24): 7933-7938. ]

    • XIE XF, LI XQ, ZEBARTH BJ, et al. , 2018. Rapid screening of potato cultivars tolerant to nitrogen deficiency using a hydroponic system [J]. Am J Potato Res, 95: 157-163.

    • ZHOU XJ, ZHA MR, HUANG J, et al. , 2017. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato [J]. J Exp Bot, 68(5): 1265-1281.

    • ZHU L, LI SS, MA QY, et al. , 2022. The Acer palmatum TCP transcription factor ApTCP2 controls leaf morphogenesis, accelerates senescence, and affects flowering via miR319 in Arabidopsis thaliana [J]. J Plant Growth Regul, 41(1): 244-256.