en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

耿柳婷(1997-),硕士研究生,研究方向为作物遗传改良与种质创新,(E-mail)2214883304@qq.com。

通讯作者:

刘鹏,博士,教授,研究方向为作物遗传育种,(E-mail)mindaliupeng@126.com。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2023)02-0336-11

DOI:10.11931/guihaia.gxzw202207020

参考文献
ANWAR R, FATIMA S, MATTOO AK, et al. , 2019. Fruit architecture in polyamine-rich tomato germplasm is determined via a medley of cell cycle, cell expansion, and fruit shape genes [J]. Plants, 8(10): 387.
参考文献
AYDINOGLU F, 2020. Elucidating the regulatory roles of microRNAs in maize (Zea mays L. ) leaf growth response to chilling stress [J]. Planta, 251(2): 1-15.
参考文献
BAI X, CAO S, XIANG DJ, et al. , 2019. Transcriptome analysis of castor seeds at germination stage under low temperature [J]. Mol Plant Breed, 17(12): 3834-3844. [白雪, 曹帅, 向殿军, 等, 2019. 低温条件下蓖麻种子萌发期转录组分析 [J]. 分子植物育种, 17(12): 3834-3844. ]
参考文献
BORUC J, MYLLE E, DUDA M, et al. , 2010a. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes [J]. Plant Physiol, 152(2): 553-565.
参考文献
BORUC J, VAN DEN DAELE H, HOLLUNDER J, et al. , 2010b. Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network [J]. Plant Cell, 22(4): 1264-1280.
参考文献
BULANKOVA P, AKIMCHEVA S, FELLNER N, et al. , 2013. Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes [J]. PLoS Genet, 9(5): e1003508.
参考文献
CANAUD G, BROOKS CR, KISHI S, et al. , 2019. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair [J]. Sci Transl Med, 11(476): eaav4754.
参考文献
CHUN JI, KIM SM, KIM H, et al. , 2021. SlHair2 regulates the initiation and elongation of type I trichomes on tomato leaves and stems [J]. Plant Cell Physiol, 62(9): 1446-1459.
参考文献
ĆOSIĆ T, RASPOR M, SAVI J, et al. , 2019. Expression profiles of organogenesis-related genes over the time course of one-step de novo shoot organogenesis from intact seedlings of kohlrabi [J]. J Plant Physiol, 232: 257-269.
参考文献
DOU YJ, CAO F, MA Y, et al. , 2014. Cloning of bHLH78 gene expressed specifically in fruits of cultivated strawberry and construction of overexpression vector [J]. Mol Plant Breed, 12(3): 456-465. [豆玉娟, 曹飞, 马跃, 等, 2014. 栽培草莓果实中特异表达的bHLH78基因的克隆及过量表达载体构建 [J]. 分子植物育种, 12(3): 456-465]
参考文献
FAN W, XIA ZQ, LIU CY, et al. , 2022. Ionomics, transcriptomics and untargeted metabolomics analyses provide new insights into the Cd response and accumulation mechanisms of mulberry [J]. Environ Exp Bot, 196: 104821.
参考文献
FONSECA-GARCĺA C, NAVA N, LARA M, et al. , 2021. An NADPH oxidase regulates carbon metabolism and the cell cycle during root nodule symbiosis in common bean (Phaseolus vulgaris) [J]. BMC Plant Biol, 21(1): 1-16.
参考文献
HÉGARAT N, CRNCEC A, SUAREZ PEREDO RODRIGUEZ MF, et al. 2020. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B [J]. EMBO J, 39(11): e104419.
参考文献
HU X, CHENG X, JIANG H, et al. , 2010. Genome-wide analysis of cyclins in maize (Zea mays) [J]. Genet Mol Res, 9(3): 1490-1503.
参考文献
HUANG CZ, XU L, SUN JJ, et al. , 2020. Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L. ) [J]. J Integ Agric, 19(2): 518-527.
参考文献
HUANG Y, SRAMKOSKI RM, JACOBBERGER JW, et al. , 2013. The kinetics of G2 and M transitions regulated by B cyclins [J]. PLoS ONE, 8(12): e80861.
参考文献
ISHITANI M, LIU JP, HALFTER U, et al. , 2000. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding [J]. Plant Cell, 12(9): 1667-1678.
参考文献
IWATA E, IKEDA S, ABE N, et al. , 2012. Roles of GIG1 and UVI4 in genome duplication in Arabidopsis thaliana [J]. Plant Signal Behav, 7(9): 1079-1081.
参考文献
KÕIVOMÄGI M, VALK E, VENTA R, et al. , 2011. Dynamics of Cdk1 substrate specificity during the cell cycle [J]. Mol Cell, 42(5): 610-623.
参考文献
LARA-NÚÑEZ A, ROMERO-SÁNCHEZ DI, AXOSCO-MARÍN J, et al. , 2021. Two cyclin Bs are differentially modulated by glucose and sucrose during maize germination [J]. Biochimie, 182: 108-119.
参考文献
LARA-NÚÑEZ A, VENTURA-GALLEGOS JL, ANAYA AL, et al. , 2015. Phytotoxicity of Sicyos deppei during tomato germination and its effects on the role of ABA and cell wall enzymes [J]. Bot Sci, 93(4): 771-781.
参考文献
LOYER P, TREMBLEY JH, 2020. Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: Cyclins L and CDK11 at the cross-roads of cell cycle and regulation of gene expression [J]. Seminars Cell Dev Biol, 107: 36-45.
参考文献
MAGHULY F, VOLLMANN J, LAIMER M, 2015. Biotechnology of euphorbiaceae (Jatropha curcas, Manihot esculenta, Ricinus communis) [J]. Appl Plant Genom Biotechnol: 87-114.
参考文献
MENG J, PENG MD, YANG J, et al. , 2020. Genome-wide analysis of the cyclin gene family and their expression profile in Medicago truncatula [J]. Int J Mol Sci, 21(24): 9430.
参考文献
PODELL S, GRIBSKOV M, 2004. Predicting N-terminal myristoylation sites in plant proteins [J]. BMC Genom, 5(1): 37.
参考文献
ROY SK, CHO SW, KWON SJ, et al. , 2016. Morpho-physiological and proteome level responses to cadmium stress in sorghum [J]. PLoS ONE, 11(2): e0150431.
参考文献
SABELLI PA, DANTE RA, NGUYEN HN, et al. , 2014. Expression, regulation and activity of a B2-type cyclin in mitotic and endoreduplicating maize endosperm [J]. Front Plant Sci, 5: 561.
参考文献
SEVERINO LS, AULD DL, BALDANZI M, et al. , 2012. A review on the challenges for increased production of castor [J]. Agron J, 104(4): 853-880.
参考文献
STERKEN R, KIEKENS R, BORUC J, et al. , 2012. Combined linkage and association mapping reveals CYCD5; 1 as a quantitative trait gene for endoreduplication in Arabidopsis [J]. Proc Natl Acad Sci, 109(12): 4678-4683.
参考文献
SUI ZP, WANG TY, LI HJ, et al. , 2016. Overexpression of peptide-encoding OsCEP6. 1 results in pleiotropic effects on growth in rice (O. sativa) [J]. Front Plant Sci, 7: 228.
参考文献
SURYADINATA R, SADOWSKI M, SARCEVIC B, 2010. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates [J]. Biosci Rep, 30(4): 243-255.
参考文献
TAO ZX, HUANG WJ, WANG HJ, 2020. Soil moisture outweighs temperature for triggering the green-up date in temperate grasslands [J]. Theor Appl Climatol, 140(3): 1093-1105.
参考文献
TRABELSI ABH, ZAAFOURI K, BAGHDADI W, et al. , 2018. Second generation biofuels production from waste cooking oil via pyrolysis process [J]. Renew Energy, 126: 888-896.
参考文献
VAN LEENE J, HOLLUNDER J, EECKHOUT D, et al. , 2010. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana [J]. Mol Syst Biol, 6(1): 397.
参考文献
WANG XY, WU Y, SUN MD, et al. , 2022. Dynamic transcriptome profiling revealed key genes and pathways associated with cold stress in castor (Ricinus communis L. ) [J]. Ind Crops Products, 178: 114610.
参考文献
XU J, GAO GL, DU JJ, et al. , 2010. Cell cycle modulation in response of the primary root of Arabidopsis to ABA [J]. Pak J Bot, 42(4): 2703-2710.
参考文献
YAN XX, GUAN YY, LIU XY, et al. , 2021. NtCycB2 gene knockout enhances resistance to high salinity stress in Nicotiana tabacum [J]. Ind Crops Products, 171: 113886.
参考文献
ZHANG HY, LU XY, WANG ZJ, et al. , 2021. Excretion from long glandular trichomes contributes to alleviation of cadmium toxicity in Nicotiana tabacum [J]. Environ Poll, 285: 117184.
目录contents

    摘要

    G2/有丝分裂特异性细胞周期蛋白 2(G2/mitotic-specific cyclin-2,Msc2)作为高等植物应对逆境胁迫的关键调控蛋白,参与多个抗逆境胁迫的应答。为探究RcMsc2基因的功能,该研究从蓖麻叶片组织中成功克隆了RcMsc2,并利用生物信息学分析RcMsc2蛋白的结构和潜在功能,同时借助qRT-PCR方法分析RcMsc2基因的组织表达特性和非生物胁迫表达特性。结果表明:(1)RcMsc2基因位于蓖麻第5号染色体长臂,该基因的CDS(coding sequence)区是1299 bp,编码432个氨基酸。(2)RcMsc2蛋白拥有细胞周期(cyclin)家族特征结构域,是一个不稳定酸性亲水蛋白,无跨膜域和信号肽,相对分子量为49.38 kD。(3)RcMsc2蛋白质的二级、三级结构以α-螺旋和无规则卷曲为主。(4)RcMsc2蛋白与麻风树和巴西橡胶树的CYCB2蛋白的序列同源性最高,且同被聚为Group Ⅱ。(5)35S-RcMsc2-GFP融合蛋白定位于细胞核。(6)RcMsc2基因在蓖麻的所有组织中均有表达且主要在根和茎中发挥作用;非生物胁迫分析表明RcMsc2基因可以被脱落酸(abscisic acid, ABA)、盐、干旱和低温处理诱导表达,并且RcMsc2基因对低温胁迫的响应最敏感。综上表明,该研究较全面地分析了RcMsc2基因的结构特征、系统进化和表达模式,为揭示RcMsc2基因在蓖麻的生长发育和应答冷胁迫过程中的功能提供了理论参考。

    Abstract

    G2/mitotic-specific cyclin-2 (Msc2), as a key regulatory protein in response to stress in higher plants, is involved in multiple responses to stresses. In order to explore the function of RcMsc2 gene which was successfully cloned from castor leaf tissue, the structure and potential function of RcMsc2 protein were analyzed by bioinformatics, and the expression characteristics of RcMsc2 gene in tissue and abiotic stress were analyzed by qRT-PCR. The results were as follows: (1) RcMsc2 gene was located in the long arm of Chromosome 5 in castor, and its CDS region was 1299 bp, encoding 432 amino acids. (2) RcMsc2 protein has the characteristic domain of cyclin family, which was an unstable acidic hydrophilic protein without transmembrane domain and signal peptide, and its relative molecular weight was 49.38 kD. (3) The secondary and tertiary structures of RcMsc2 protein were mainly α-helix and random coil. (4) RcMsc2 protein had the highest sequence homology with CYCB2 protein of Jatropha curcas and Hevea brasiliensis, and was clustered into Group Ⅱ. (5) 35S-RcMsc2-GFP fusion protein was localized to the nucleus. (6) RcMsc2 gene was expressed in all tissues of castor, and mainly played a role in roots and stems; abiotic stress analysis showed that RcMsc2 gene could be induced by abscisic acid ( ABA ), salt, drought and low temperature treatment, and the response of RcMsc2 gene to low temperature stress was the most sensitive. In summary, this study comprehensively analyzed the structural characteristics, phylogenetic evolution and expression patterns of RcMsc2 gene, and provides a theoretical reference for revealing the function of RcMsc2 gene in castor growth and development and response to cold stress.

    关键词

    蓖麻RcMsc2基因克隆表达特性冷胁迫

  • 蓖麻(Ricinus communis)是一种产于非洲的大戟科多年生草本植物,可以在热带和温带地区种植(Maghuly et al.,2015)。因蓖麻油中含有丰富的蓖麻油酸,现已被列为第二代生物质绿色能源的重要原料(Trabelsi et al.,2018)。蓖麻拥有极强的抗旱和耐盐碱能力,可以在较贫瘠的土地上生长,但在苗期易受细菌感染和冷胁迫的危害,最终导致植株成活率降低和籽粒品质下降(Severino et al.,2012; Wang et al.,2022)。内蒙古通辽位于中纬度地区,在作物的生长期这里平均最低气温最高为16.1℃,最低仅有12.7℃,这种低温环境严重影响着蓖麻种子的萌发、生长和生物量的积累(Tao et al.,2020)。因此,如何改善低温环境对蓖麻生长发育的影响并选育出多抗非生物逆境胁迫的新品种,对未来的蓖麻种植产业及满足工业对蓖麻油的需求具有重要意义。

  • 细胞分裂是生物生长发育中最基本的过程(van Leene et al.,2010)。真核细胞的细胞周期进程主要是由细胞周期蛋白依赖性激酶(CDK)的蛋白激酶家族控制(Suryadinata et al.,2010)。根据生物体的类别不同,细胞周期蛋白也根据它们在细胞周期中发挥作用的阶段分为细胞周期蛋白M和细胞周期蛋白G1(Canaud et al.,2019)。G1周期蛋白包括C、D、E和G共4种类型以调节G1-S转换,M周期蛋白包括A和B共2种类型,可以在S-M转变、G2-M过渡阶段和M阶段内起作用(Kõivomägi et al.,2011)。G2/有丝分裂特异性细胞周期蛋白-2(G2/mitotic-specific cyclin-2,Msc2)属于B型细胞周期蛋白,可通过在G2期到M期的转变、G2期内和M期内的短暂时间内表达以响应环境变化(Hégarat et al.,2020)。最近研究发现,CYCB2基因可能参与植物的盐胁迫、重金属胁迫、脱落酸(abscisic acid,ABA)和冷胁迫下的表达(Hu et al.,2010; Xu et al.,2010; Huang et al.,2013; Fan et al.,2022),烟草(Nicotiana tabacumNtCycB2基因随着NaCl处理时间的延长表达量减少,而敲除NtCycB2基因可以提高植株在NaCl胁迫下的抵抗力(Yan et al.,2021); 高粱(Sorghum bicolor)的转录组研究发现CYCB2基因在100 μmol·L-1和150 μmol·L-1镉(Cd)金属离子胁迫下表达量均为上升趋势,说明高粱的CYCB2基因可能参与抗重金属胁迫调控机制(Roy et al.,2016); 拟南芥atl17突变株与野生型植株相比,在ABA不同浓度梯度处理下,CYCB2; 1在atl17的表达量显著高于WT,表明可能通过ABA调控机制抑制主根的生长而抵御逆境(Xu et al.,2010); 甘蓝(Brassica oleracea)的冷胁迫试验表明,CYCB2基因在2 d和7 d的表达模式差异显著,CYCB2; 1、CYCB2; 2、CYCB2; 3和CYCB2; 4的Log2值均高于对照,但处理7 d的CYCB2表达量显著低于2 d的,表明CYCB2基因可以在冷胁迫的短期内提高植株的细胞分化能力来减轻冷胁迫带来的伤害(Ćosić et al.,2019)。但是,CYCB2基因在蓖麻中的潜在功能及调控机制研究较少,而蓖麻作为重要的生物原料,研究其抗逆机制就显得尤为重要。

  • 蓖麻转录组数据中表达上调的DEGs有848个,而RcMsc2(XP_002521704.1)在低温(相较于适温25℃)下的表达显著上调,并且作为拟南芥CYCB2; 3的同源基因,很可能在蓖麻的冷适应过程中发挥作用(白雪等,2019)。因此,我们克隆了RcMsc2基因,用烟草叶片细胞明确RcMsc2基因的亚细胞位置,并通过qRT-PCR技术分析其在不同胁迫下的表达模式。本研究旨在探讨以下问题:(1)RcMsc2蛋白理化性质、结构及物种间的进化关系;(2)蓖麻RcMsc2基因的组织表达模式及非生物胁迫下的表达模式;(3)蓖麻RcMsc2在冷胁迫过程中的潜在功能。本研究可为蓖麻的抗低温育种提供潜在的基因资源,同时也可为解析蓖麻RcMsc2基因在应对冷胁迫方面的调控机制奠定基础。

  • 1 材料与方法

  • 1.1 试验材料

  • ‘通篦5号’由通辽市农牧科学研究所提供。植物总RNA提取试剂盒(MonzolTM Reagent)、反转录试剂盒(MonScriptTM RTIII All-in-One Mix with dsDNas)购自莫纳生物公司。T-载体(pMDTM 18-T vector)、限制性内切酶(Bsa I)和DNA连接试剂盒(DNA Ligation Kit)购自宝日医生物公司。高保真PCR酶(KOD Master Mix)、PCR产物回收和纯化试剂盒购自天根生化科技有限公司。Maxima Reverse Transcriptase和2X SG Fast qPCR Master Mix购自赛默飞世尔科技(上海)公司。大肠杆菌感受态(DH5α)、保真酶(2×Taq Master Mix)、引物合成和测序由生工生物工程(上海)股份有限公司完成。

  • 1.2 材料处理

  • 将健康的蓖麻种子消毒后置入适量的无菌水中,于30℃催芽3 d。出芽后将其平均分成4份,并整齐地摆放在水培盘中,待2片子叶展开后开始浇灌1/4 Hoagland溶液,每日补充200 mL。当幼苗长至4叶龄时,剪取幼苗的组织(根、茎、子叶和真叶)以检测RcMsc2基因的组织表达量; 然后分别对其进行4℃、150 mmol·L-1 NaCl、10% PEG 6000和100 μmol·L-1 ABA胁迫,经时间梯度(0、2、4、8、12、24、30、48 h)处理后采集幼苗的真叶并迅速存于液氮中,冷冻24 h后转移至-70℃冰箱备用。

  • 1.3 RcMsc2基因的克隆

  • 1.3.1 总RNA提取和第一链cDNA的合成

  • 参照MonzolTM Reagent试剂盒的说明书操作步骤,提取4℃处理12 h的蓖麻组织的总RNA,并检测纯度。以提取的RNA作为模板,参照MonScriptTM RTIII All-in-One Mix with dsDNas试剂盒说明书反转录合成第一链cDNA,作为克隆RcMsc2基因的模板。

  • 1.3.2 RcMsc2基因的克隆及测序

  • 根据NCBI数据库公布的RcMsc2基因(XP_002521704.1)的CDS区设计引物RcMsc2-F|RcMsc2-R(表1)。以蓖麻cDNA为模板,使用高保真酶(KOD Master Mix)扩增RcMsc2基因的CDS序列,PCR扩增反应程序:94℃预变性4 min; 94℃变性30 s,58℃退火45 s,72℃延伸90 s,35个循环; 最后延伸10 min。经电泳检测后将符合大小的片段回收,在3′端加A碱基后利用DNA纯化试剂盒纯化产物后连接至T载体,将pMDTM 18-T-RcMsc2热击转化DH5α,在Kan+培养基上筛选出阳性克隆送至生工生物工程(上海)股份有限公司测序。

  • 表1 本研究所用引物

  • Table1 Primers used in this study

  • 注: 下划线是Bsa I酶切位点,左侧是保护碱基,右侧是荧光表达载体的末端同源序列。

  • Note: Bottom line is the Bsa I cleavage site, the left is the protective base, and the right is the end homologous sequence of the fluorescent expression vector.

  • 1.4 RcMsc2蛋白质的生物信息学分析

  • 借助ExPASy(https://web.expasy.org/translate/)工具将RcMsc2基因的编码序列翻译成蛋白序列。在NCBI(https://www.ncbi.nlm.nih.gov)下载蓖麻的全基因组、蛋白组和注释文件,将RcMsc2蛋白作为靶序列进行本地BLASTp,以明确RcMsc2基因的具体位置。使用蛋白分析网站ExPASy-PROSITE(https://prosite.expasy.org)分析RcMsc2蛋白质的理化性质和亲水/疏水性。借助NCBI-CD-SEARCH(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi)、PSORT(http://psort.hgc.jp/)和Motif Scan(https://myhits.sib.swiss/cgi-bin/motif_scan/)工具分别预测蛋白的结构域、亚细胞位置和生物活性位点。使用在线工具SignalP 5.0(https://services.healthtech.dtu.dk/service.php?SignalP-5.0)、DeepTMHMM(https://dtu.biolib.com/DeepTMHMM)和Motif Scan(https://myhits.sib.swiss/cgi-bin/motif_scan)分别预测该蛋白的信号肽、跨膜域和生物活性位点。利用UniprotKB数据库(https://www.uniprot.org/help/uniprotkb)在线BLASTp程序下载RcMsc2蛋白质的同源序列,使用ClustalW和MEGA 11.0软件对下载的序列进行比对及可视化分析,将多序列比对结果提交至ENDscript/ESPript(https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi)网站进行美化并将进化树提交至iTOL(https://itol.embl.de)网站进行美化。蛋白质的二级结构在SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/secpred_sopma.pl)进行可视化预测。将RcMsc2蛋白质提交至SWISS-MODLE(https://swissmodel.expasy.org/)预测其三级结构并借助SAVES v6.0(https://saves.mbi.ucla.edu/)工具对预测模型打分,检测合格后对其蛋白质的三级结构进行分析。

  • 1.5 RcMsc2基因的表达分析

  • 根据RcMsc2基因的CDS序列设计qRT-PCR引物RcMsc2-Fx|RcMsc2-Rx(表1),以RcActin(NC_063262.1)基因作为内参基因,分析RcMsc2基因的组织表达模式及胁迫处理下的表达模式。以Trizol法提取蓖麻组织的总RNA,并反转录成单链cDNA作为PCR扩增的模板,严格按照2X SG Fast qPCR Master Mix的说明书操作步骤,在LightCycler480 Ⅱ型PCR仪上完成对基因的扩增。反应程序:预变性95℃ 3min,变性95℃ 5 s,退火和延伸60℃30 s,45个循环。用2-(ΔΔCt法计算RcMsc2基因的相对表达量。

  • 1.6 RcMsc2蛋白质亚细胞定位

  • 使用限制性酶Bsa I对pCAMBIA2300-CaMV 35S-GFP进行酶切后回收目的片段。将pMDTM 18-T-RcMsc2作为重组DNA的模板,扩增引物为RcMsc2-GFP-Fx|RcMsc2-GFP-Rx。使用KOD Master Mix先将模板序列连接在pKY-35S-GFP载体上,再将产物转化至DH5α感受态细胞,最后筛选出阳性克隆并送至生工生物工程(上海)股份有限公司测序。确认测序结果正确后将pKY-35S-RcMsc2-GFP载体转至农杆菌中,最终在烟草叶片的表皮细胞中瞬时表达以确定RcMsc2基因的亚细胞位置。

  • 2 结果与分析

  • 2.1 RcMsc2基因的克隆

  • 根据前期转录组数据信息,提取蓖麻叶片总RNA,质量符合反转录操作要求(图1:A)。并以cDNA为模板进行目的基因的扩增,得到大约1 300 bp的条带(图1:B),并经过T-A克隆、转化、阳性菌落的克隆和测序,得到1 299 bp的ORF,推导其编码为432个aa(图2),并命名为RcMsc2,本地BLASTp检索发现其定位在第5号染色体长臂。

  • 图1 总RNA的提取和RcMsc2基因的扩增

  • Fig.1 Total RNA extraction and the RcMsc2 gene amplification

  • 2.2 RcMsc2蛋白的生物信息学分析

  • 2.2.1 RcMsc2蛋白的基本理化性质分析

  • Protparam工具预测结果显示,RcMsc2蛋白的分子式为C2186H3426N584O662S28,共计6 886个原子,相对分子质量为49.38 kD,理论等电点为5.26,说明RcMsc2蛋白呈酸性; 该蛋白由20种氨基酸组成,其中谷氨酸(Glu)数量最庞大,占总数的9%,而色氨酸(Trp)数量最少,仅占总数的0.7%,带负电荷的氨基酸(Asp + Glu)有60个,带正电荷的氨基酸(Arg + Lys)有46个(图2); 不稳定系数为45.24(>40阈值),表明该蛋白是不稳定蛋白; 总平均疏水性为-0.353(<0),预测该蛋白是亲水蛋白; 蛋白的脂肪指数为81.69。另外,RcMsc2蛋白拥有一个Cyclin_C(pfam ID: PF02984)结构域和一个Cyclin_N(pfam ID: PF00134),是B型细胞周期蛋白(cyclin)家族的一员(图3)。

  • 2.2.2 RcMsc2蛋白的多序列对比及同源性分析

  • 采用线上BLAST比对发现,麻风树(Jatropha curcas,XP_012065375.1)、巴西橡胶树(Hevea brasiliensis,XP_021645034.1)、柳树(Salix suchowensis,XP_024456907.1)、可可树(Theobroma cacao,EOX90682.1)、榴莲(Durio zibethinus,XP_022740327.1)、棉花(Gossypium mustelinum,TYI88728.1)、大豆(Glycine max,NP_001352035.1)和豇豆(Vigna angularis,XP_014521177.1)与该蛋白的序列一致性依次是87.4%、85.5%、81.1%、79.7%、79.7%、77.5%、72.7%和72.7%,表明细胞周期蛋白在物种间高度保守,特别是N端蛋白的一致性较高,说明不同物种间的蛋白功能可能相似(图4)。另外,位于结构域内部的第283位氨基酸是细胞周期蛋白底物特异性位点,RcMsc2蛋白是E(谷氨酸),而其他植物是K(赖氨酸),这可能导致蓖麻RcMsc2蛋白与其他植物的CYCB2蛋白拥有不同的底物特异性。MEGA 11.0中邻接法构建的进化树结果显示(图5),8种植物的细胞周期蛋白共被聚为3类。同处于Group Ⅰ大豆和豇豆的蛋白在进化中钝化,步长值为100%; Group Ⅱ中蓖麻与麻风树和巴西橡胶树的步长值为99.9%,与多序列比对结果相同; Group Ⅲ中棉花与榴莲和可可树的步长值为100%。Group Ⅰ、Group Ⅱ和Group Ⅲ分别对应豆科、大戟科和锦葵科植物,足以说明此进化树构建结果准确,表明CYCB2蛋白在物种间的进化高度保守。因此,RcMsc2蛋白与麻风树和巴西橡胶树的序列一致性最高,亲缘关系最近。

  • 2.2.3 RcMsc2蛋白的信号肽、跨膜域及生物活性位点预测

  • SignalP 5.0预测RcMsc2蛋白中存在信号肽的可能性是0.001 2,推测该蛋白中无信号肽结构。DeepTMHMM预测结果显示,RcMsc2蛋白的432个氨基酸残基上均无从外到内的跨膜域,因此推测RcMsc2蛋白不具备跨膜能力。Motif Scan预测显示在RcMsc2蛋白内部有6个潜在的N-糖基化位点(分别位于第2~第5位、第189~第192位、第303~第306位、第370~第373位、第378~第381位和第411~第414位氨基酸),4个潜在的酪氨酸蛋白激酶Ⅱ磷酸化位点(分别位于第63~第66位、第142~第145位、第337~第340位和第419~第422位氨基酸),3个潜在的肉豆蔻基N-肉豆蔻酰化位点(分别位于第20~第25位、第48~第53位和第61~第66位氨基酸)和7个潜在的蛋白激酶C磷酸化位点(分别位于第82~第84位、第100~第102位、第280~第282位、第322~第324位、第400~第402位、第412~第414位和第418~第420位氨基酸),共20个生物活性位点。这些位点的预测为解释RcMsc2蛋白在逆境中功能提供理论基础。

  • 2.2.4 RcMsc2蛋白的高级结构预测

  • 分析RcMsc2蛋白质的二级、三级结构,可为蛋白功能研究提供基础支撑。RcMsc2蛋白质的二级结构预测结果(图6)显示,它是由52.55%的α-螺旋、40.51%的无规则卷曲、5.79%的延伸链和1.16%的β-转角共同构成。从RcMsc2蛋白质的三级结构预测图(图7:A)中可以看出,RcMsc2蛋白主要由α-螺旋构成。SAVES v6.0模型检测工具结果(图7:B)显示,编码RcMsc2蛋白的432个氨基酸残基中有91.1%位于core区域(红色区域 > 90%,A、B、L区),8.9%位于次允许区域(a、b、l、p区),表明SWISS-MODEL预测的此蛋白质三级结构模型具有可靠性。

  • 2.3 RcMsc2蛋白的亚细胞定位分析

  • PSORT预测RcMsc2蛋白的亚细胞定位在细胞核的可能性最大。因此,为了验证RcMsc2蛋白亚细胞的具体位置,成功构建了由农杆菌(GV3103)介导的pCAMBIA2300-CaMV 35S-RcMsc2-GFP表达载体,并在烟草表皮细胞中瞬时表达。结果(图8)显示,35S-GFP的绿色荧光蛋白在细胞核、细胞质和细胞膜中均有分布(图8:A-D),而35S-RcMsc2-GFP中荧光蛋白则主要分布在细胞核和细胞膜(图8:E),将结果合并后,叠加场中的35S-RcMsc2-GFP主要在烟草叶片的细胞核和细胞膜处有绿色荧光,但RcMsc2定位在细胞核的可能性较大,与PSORT预测结果一致,可为后续证明RcMsc2蛋白的抗逆功能提供依据。

  • 2.4 RcMsc2基因的表达特征分析

  • 2.4.1 RcMsc2基因的组织表达模式分析

  • 采用qRT-PCR技术分析RcMsc2基因在蓖麻不同组织中的表达水平(图9)。结果发现,RcMsc2基因在种子和幼苗期均有表达,呈显著差异(P<0.05)。其中,RcMsc2基因在根中的表达量显著高于其他组织,表达量分别是子叶、茎、真叶的2.13、14.11、14.94倍。这表明RcMsc2基因拥有明显的组织表达特异性,并且有可能在根和茎中表达以抵御不利环境。

  • 2.4.2 RcMsc2基因的非生物胁迫表达模式分析

  • 采用qRT-PCR方法,研究蓖麻幼苗叶片的RcMsc2基因在低温(4℃)、高盐(150 mmol·L-1 NaCl)、脱落酸(100 μmol·L-1 ABA)和干旱(10% PEG 6000)胁迫下的表达特征。结果显示,RcMsc2基因在不同胁迫下随着时间梯度而差异表达(图10),呈现出不同的表达模式。RcMsc2基因积极应答盐胁迫和干旱胁迫,分别在2 h和4 h开始表达,且均在4 h出现峰值,表达量分别是对照组(0 h)的3.09倍和4.82倍(图10:B,D); RcMsc2基因在低温和ABA处理下呈延迟表达模式,均在12 h出现最大值,而ABA胁迫12 h后RcMsc2的表达量骤降,表明RcMsc2基因在低温条件下的表达可能经ABA激活而持续表达至48 h,说明RcMsc2可能是一个冷诱导基因,并且延迟12 h后才被激活表达。

  • 图2 RcMsc2基因cDNA序列及编码的氨基酸序列

  • Fig.2 cDNA sequence and encoded amino acid sequence of RcMsc2 gene

  • 图3 RcMsc2蛋白的结构域预测结果

  • Fig.3 Domain prediction results of RcMsc2 protein

  • 图4 RcMsc2氨基酸序列及其他植物同源序列间多重比较

  • Fig.4 Multiple homology comparisons of RcMsc2 amino acid sequence with other plants

  • 图5 不同植物的CYCB2蛋白的聚类分析

  • Fig.5 Clustering analysis of CYCB2 proteins from different plants

  • 3 讨论与结论

  • 细胞周期蛋白与CDKs复合以控制CDKs的活性、底物和亚细胞位置,在植物细胞周期的细胞分裂过程中发挥着极其重要的作用(Loyer &Trembley.,2020),而CYCB2蛋白主要在G2期发挥作用(Aydinoglu,2020)。CYCB2基因隶属于多基因家族,在大豆(Fonseca-García et al.,2021)、苜蓿(Meng et al.,2020)和拟南芥(Sterken et al.,2012)的基因组中分别有13、12和11个CYCB2基因,并且都含有相同的结构域,即Cyclin_C和Cyclin_N,且已有相关功能方面的研究,而关于蓖麻的Msc2蛋白功能研究较少。因此,本研究根据蓖麻低温转录组数据克隆出RcMsc2基因,发现其推导出432个氨基酸,虽然蛋白长度短于拟南芥CYCB2; 3(van Leene et al.,2010),但明显长于苜蓿的MedtrCycB1; 2、MedtrCycB2; 1和MedtrCycB2; 2蛋白(Meng et al.,2020)。RcMsc2蛋白的理化性质与大豆(Fonseca-García et al.,2021)、苜蓿(Meng et al.,2020)、番茄(Anwar et al.,2019)和高粱(Roy et al.,2016)等的细胞周期蛋白存在一定差异,这可能是导致不同物种的细胞周期蛋白参与不同逆境的直接原因。RcMsc2蛋白的序列特征分析表明,该蛋白主要由α-螺旋组成且是一个亲水蛋白,无信号肽结构,这与前人研究结果一致(Lara-Núñez et al.,2015; Sui et al.,2016)。

  • 图6 RcMsc2蛋白质的二级结构预测

  • Fig.6 Secondary structure prediction of RcMsc2 protein

  • 图7 RcMsc2蛋白质的三级结构预测和检测

  • Fig.7 Prediction and detection of tertiary structure of RcMsc2 protein

  • 图8 RcMsc2蛋白在本氏烟草叶片中的亚细胞定位

  • Fig.8 Subcellular localization of RcMsc2 protein in leaf epidermal cells of Nicotiana benthamiana

  • 图9 RcMsc2基因的组织表达分析

  • Fig.9 Tissue expression analysis of RcMsc2 gene

  • 研究发现,高等植物的蛋白肉豆蔻酰化修饰可以帮助其应对多种不利环境(Ishitani et al.,2000; Podell &Gribskov,2004)。然而,受环境诱导表达的蛋白并非单独起作用,而是多个蛋白共同协作,从而提高植株在逆境中的活力(豆玉娟等,2014)。RcMsc2蛋白存在3个N-肉豆蔻酰化作用位点,极有可能在低温下诱导与低温相关的蛋白来共同合作来抵御低温环境,进而提高蓖麻植株在低温环境下的存活能力。研究显示,CYCB2蛋白在细胞核(Sabelli et al.,2014)、纺锤体(Bulankova et al.,2013)、内质网、细胞质和细胞膜(Boruc et al.,2010a)中均有分布,而CYCB2型蛋白则主要定位在细胞核(Lara-Núñez et al.,2021; Chun et al.,2021),并会根据环境的不同来调整位置以适应逆境(Boruc et al.,2010b),RcMsc2蛋白的亚细胞定位结果表明,该蛋白明显定位在细胞核,并且作为一个核蛋白,极可能在冷胁迫过程中发挥着重要作用。

  • 图10 RcMsc2基因在不同胁迫下的表达模式

  • Fig.10 Expression patterns of RcMsc2 gene under different stresses

  • 研究显示,植物的CYCB2基因家族成员在应对多逆境胁迫时可以激发各种防御机制来提高植株的存活率(Huang et al.,2020; Zhang et al.,2021)。同时,该家族成员还拥有明显的胁迫表达时空特异性,高粱的CYCB2基因的表达与Cd浓度呈显著正相关,即在100 μmol·L-1 Cd处理下的表达量显著低于150 μmol·L-1(Roy et al.,2016); 甘蓝的4个CYCB2基因(CYCB2; 1~CYCB2; 4)在冷处理2~7 d基因表达量相似,均在第2天表达出现峰值(Ćosić et al.,2019)。RcMsc2基因在ABA、PEG、4℃和NaCl胁迫下的叶片中均有表达,而该基因在高盐和干旱胁迫下的表达模式相仿,均在处理的前4 h就已经表达并出现峰值,RcMsc2基因在脱落酸和低温处理下呈延迟表达模式,其中该基因在低温环境下持续表达至48 h,表明该基因是一个冷调控基因,并且极有可能被ABA激活,说明该基因响应多环境压力的诱导,但其对低温的响应时间更持久。另外,细胞周期蛋白家族基因成员还有明显的组织表达特异性,拟南芥(Arabidopsis thaliana)突变株(gig1和uvi4)内的CYCB2; 2和CYCB1; 1在子叶和下胚轴中拥有明显的组织表达特异性,并且可能在地塞米松(dexamethasone)的诱导下在下胚轴中起作用(Iwata et al.,2012)。本研究表明,蓖麻RcMsc2基因在种子期与幼苗期均有表达,并且拥有明显的组织表达特异性,该基因极大可能在低温环境下在蓖麻的茎和叶中发挥作用,但在不同组织中调控机制还需深入探索。因此,本研究为蓖麻RcMsc2基因在应答冷胁迫方面的分子机制提供了参考。

  • 参考文献

    • ANWAR R, FATIMA S, MATTOO AK, et al. , 2019. Fruit architecture in polyamine-rich tomato germplasm is determined via a medley of cell cycle, cell expansion, and fruit shape genes [J]. Plants, 8(10): 387.

    • AYDINOGLU F, 2020. Elucidating the regulatory roles of microRNAs in maize (Zea mays L. ) leaf growth response to chilling stress [J]. Planta, 251(2): 1-15.

    • BAI X, CAO S, XIANG DJ, et al. , 2019. Transcriptome analysis of castor seeds at germination stage under low temperature [J]. Mol Plant Breed, 17(12): 3834-3844. [白雪, 曹帅, 向殿军, 等, 2019. 低温条件下蓖麻种子萌发期转录组分析 [J]. 分子植物育种, 17(12): 3834-3844. ]

    • BORUC J, MYLLE E, DUDA M, et al. , 2010a. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes [J]. Plant Physiol, 152(2): 553-565.

    • BORUC J, VAN DEN DAELE H, HOLLUNDER J, et al. , 2010b. Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network [J]. Plant Cell, 22(4): 1264-1280.

    • BULANKOVA P, AKIMCHEVA S, FELLNER N, et al. , 2013. Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes [J]. PLoS Genet, 9(5): e1003508.

    • CANAUD G, BROOKS CR, KISHI S, et al. , 2019. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair [J]. Sci Transl Med, 11(476): eaav4754.

    • CHUN JI, KIM SM, KIM H, et al. , 2021. SlHair2 regulates the initiation and elongation of type I trichomes on tomato leaves and stems [J]. Plant Cell Physiol, 62(9): 1446-1459.

    • ĆOSIĆ T, RASPOR M, SAVI J, et al. , 2019. Expression profiles of organogenesis-related genes over the time course of one-step de novo shoot organogenesis from intact seedlings of kohlrabi [J]. J Plant Physiol, 232: 257-269.

    • DOU YJ, CAO F, MA Y, et al. , 2014. Cloning of bHLH78 gene expressed specifically in fruits of cultivated strawberry and construction of overexpression vector [J]. Mol Plant Breed, 12(3): 456-465. [豆玉娟, 曹飞, 马跃, 等, 2014. 栽培草莓果实中特异表达的bHLH78基因的克隆及过量表达载体构建 [J]. 分子植物育种, 12(3): 456-465]

    • FAN W, XIA ZQ, LIU CY, et al. , 2022. Ionomics, transcriptomics and untargeted metabolomics analyses provide new insights into the Cd response and accumulation mechanisms of mulberry [J]. Environ Exp Bot, 196: 104821.

    • FONSECA-GARCĺA C, NAVA N, LARA M, et al. , 2021. An NADPH oxidase regulates carbon metabolism and the cell cycle during root nodule symbiosis in common bean (Phaseolus vulgaris) [J]. BMC Plant Biol, 21(1): 1-16.

    • HÉGARAT N, CRNCEC A, SUAREZ PEREDO RODRIGUEZ MF, et al. 2020. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B [J]. EMBO J, 39(11): e104419.

    • HU X, CHENG X, JIANG H, et al. , 2010. Genome-wide analysis of cyclins in maize (Zea mays) [J]. Genet Mol Res, 9(3): 1490-1503.

    • HUANG CZ, XU L, SUN JJ, et al. , 2020. Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L. ) [J]. J Integ Agric, 19(2): 518-527.

    • HUANG Y, SRAMKOSKI RM, JACOBBERGER JW, et al. , 2013. The kinetics of G2 and M transitions regulated by B cyclins [J]. PLoS ONE, 8(12): e80861.

    • ISHITANI M, LIU JP, HALFTER U, et al. , 2000. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding [J]. Plant Cell, 12(9): 1667-1678.

    • IWATA E, IKEDA S, ABE N, et al. , 2012. Roles of GIG1 and UVI4 in genome duplication in Arabidopsis thaliana [J]. Plant Signal Behav, 7(9): 1079-1081.

    • KÕIVOMÄGI M, VALK E, VENTA R, et al. , 2011. Dynamics of Cdk1 substrate specificity during the cell cycle [J]. Mol Cell, 42(5): 610-623.

    • LARA-NÚÑEZ A, ROMERO-SÁNCHEZ DI, AXOSCO-MARÍN J, et al. , 2021. Two cyclin Bs are differentially modulated by glucose and sucrose during maize germination [J]. Biochimie, 182: 108-119.

    • LARA-NÚÑEZ A, VENTURA-GALLEGOS JL, ANAYA AL, et al. , 2015. Phytotoxicity of Sicyos deppei during tomato germination and its effects on the role of ABA and cell wall enzymes [J]. Bot Sci, 93(4): 771-781.

    • LOYER P, TREMBLEY JH, 2020. Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: Cyclins L and CDK11 at the cross-roads of cell cycle and regulation of gene expression [J]. Seminars Cell Dev Biol, 107: 36-45.

    • MAGHULY F, VOLLMANN J, LAIMER M, 2015. Biotechnology of euphorbiaceae (Jatropha curcas, Manihot esculenta, Ricinus communis) [J]. Appl Plant Genom Biotechnol: 87-114.

    • MENG J, PENG MD, YANG J, et al. , 2020. Genome-wide analysis of the cyclin gene family and their expression profile in Medicago truncatula [J]. Int J Mol Sci, 21(24): 9430.

    • PODELL S, GRIBSKOV M, 2004. Predicting N-terminal myristoylation sites in plant proteins [J]. BMC Genom, 5(1): 37.

    • ROY SK, CHO SW, KWON SJ, et al. , 2016. Morpho-physiological and proteome level responses to cadmium stress in sorghum [J]. PLoS ONE, 11(2): e0150431.

    • SABELLI PA, DANTE RA, NGUYEN HN, et al. , 2014. Expression, regulation and activity of a B2-type cyclin in mitotic and endoreduplicating maize endosperm [J]. Front Plant Sci, 5: 561.

    • SEVERINO LS, AULD DL, BALDANZI M, et al. , 2012. A review on the challenges for increased production of castor [J]. Agron J, 104(4): 853-880.

    • STERKEN R, KIEKENS R, BORUC J, et al. , 2012. Combined linkage and association mapping reveals CYCD5; 1 as a quantitative trait gene for endoreduplication in Arabidopsis [J]. Proc Natl Acad Sci, 109(12): 4678-4683.

    • SUI ZP, WANG TY, LI HJ, et al. , 2016. Overexpression of peptide-encoding OsCEP6. 1 results in pleiotropic effects on growth in rice (O. sativa) [J]. Front Plant Sci, 7: 228.

    • SURYADINATA R, SADOWSKI M, SARCEVIC B, 2010. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates [J]. Biosci Rep, 30(4): 243-255.

    • TAO ZX, HUANG WJ, WANG HJ, 2020. Soil moisture outweighs temperature for triggering the green-up date in temperate grasslands [J]. Theor Appl Climatol, 140(3): 1093-1105.

    • TRABELSI ABH, ZAAFOURI K, BAGHDADI W, et al. , 2018. Second generation biofuels production from waste cooking oil via pyrolysis process [J]. Renew Energy, 126: 888-896.

    • VAN LEENE J, HOLLUNDER J, EECKHOUT D, et al. , 2010. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana [J]. Mol Syst Biol, 6(1): 397.

    • WANG XY, WU Y, SUN MD, et al. , 2022. Dynamic transcriptome profiling revealed key genes and pathways associated with cold stress in castor (Ricinus communis L. ) [J]. Ind Crops Products, 178: 114610.

    • XU J, GAO GL, DU JJ, et al. , 2010. Cell cycle modulation in response of the primary root of Arabidopsis to ABA [J]. Pak J Bot, 42(4): 2703-2710.

    • YAN XX, GUAN YY, LIU XY, et al. , 2021. NtCycB2 gene knockout enhances resistance to high salinity stress in Nicotiana tabacum [J]. Ind Crops Products, 171: 113886.

    • ZHANG HY, LU XY, WANG ZJ, et al. , 2021. Excretion from long glandular trichomes contributes to alleviation of cadmium toxicity in Nicotiana tabacum [J]. Environ Poll, 285: 117184.

  • 参考文献

    • ANWAR R, FATIMA S, MATTOO AK, et al. , 2019. Fruit architecture in polyamine-rich tomato germplasm is determined via a medley of cell cycle, cell expansion, and fruit shape genes [J]. Plants, 8(10): 387.

    • AYDINOGLU F, 2020. Elucidating the regulatory roles of microRNAs in maize (Zea mays L. ) leaf growth response to chilling stress [J]. Planta, 251(2): 1-15.

    • BAI X, CAO S, XIANG DJ, et al. , 2019. Transcriptome analysis of castor seeds at germination stage under low temperature [J]. Mol Plant Breed, 17(12): 3834-3844. [白雪, 曹帅, 向殿军, 等, 2019. 低温条件下蓖麻种子萌发期转录组分析 [J]. 分子植物育种, 17(12): 3834-3844. ]

    • BORUC J, MYLLE E, DUDA M, et al. , 2010a. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes [J]. Plant Physiol, 152(2): 553-565.

    • BORUC J, VAN DEN DAELE H, HOLLUNDER J, et al. , 2010b. Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network [J]. Plant Cell, 22(4): 1264-1280.

    • BULANKOVA P, AKIMCHEVA S, FELLNER N, et al. , 2013. Identification of Arabidopsis meiotic cyclins reveals functional diversification among plant cyclin genes [J]. PLoS Genet, 9(5): e1003508.

    • CANAUD G, BROOKS CR, KISHI S, et al. , 2019. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair [J]. Sci Transl Med, 11(476): eaav4754.

    • CHUN JI, KIM SM, KIM H, et al. , 2021. SlHair2 regulates the initiation and elongation of type I trichomes on tomato leaves and stems [J]. Plant Cell Physiol, 62(9): 1446-1459.

    • ĆOSIĆ T, RASPOR M, SAVI J, et al. , 2019. Expression profiles of organogenesis-related genes over the time course of one-step de novo shoot organogenesis from intact seedlings of kohlrabi [J]. J Plant Physiol, 232: 257-269.

    • DOU YJ, CAO F, MA Y, et al. , 2014. Cloning of bHLH78 gene expressed specifically in fruits of cultivated strawberry and construction of overexpression vector [J]. Mol Plant Breed, 12(3): 456-465. [豆玉娟, 曹飞, 马跃, 等, 2014. 栽培草莓果实中特异表达的bHLH78基因的克隆及过量表达载体构建 [J]. 分子植物育种, 12(3): 456-465]

    • FAN W, XIA ZQ, LIU CY, et al. , 2022. Ionomics, transcriptomics and untargeted metabolomics analyses provide new insights into the Cd response and accumulation mechanisms of mulberry [J]. Environ Exp Bot, 196: 104821.

    • FONSECA-GARCĺA C, NAVA N, LARA M, et al. , 2021. An NADPH oxidase regulates carbon metabolism and the cell cycle during root nodule symbiosis in common bean (Phaseolus vulgaris) [J]. BMC Plant Biol, 21(1): 1-16.

    • HÉGARAT N, CRNCEC A, SUAREZ PEREDO RODRIGUEZ MF, et al. 2020. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B [J]. EMBO J, 39(11): e104419.

    • HU X, CHENG X, JIANG H, et al. , 2010. Genome-wide analysis of cyclins in maize (Zea mays) [J]. Genet Mol Res, 9(3): 1490-1503.

    • HUANG CZ, XU L, SUN JJ, et al. , 2020. Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L. ) [J]. J Integ Agric, 19(2): 518-527.

    • HUANG Y, SRAMKOSKI RM, JACOBBERGER JW, et al. , 2013. The kinetics of G2 and M transitions regulated by B cyclins [J]. PLoS ONE, 8(12): e80861.

    • ISHITANI M, LIU JP, HALFTER U, et al. , 2000. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding [J]. Plant Cell, 12(9): 1667-1678.

    • IWATA E, IKEDA S, ABE N, et al. , 2012. Roles of GIG1 and UVI4 in genome duplication in Arabidopsis thaliana [J]. Plant Signal Behav, 7(9): 1079-1081.

    • KÕIVOMÄGI M, VALK E, VENTA R, et al. , 2011. Dynamics of Cdk1 substrate specificity during the cell cycle [J]. Mol Cell, 42(5): 610-623.

    • LARA-NÚÑEZ A, ROMERO-SÁNCHEZ DI, AXOSCO-MARÍN J, et al. , 2021. Two cyclin Bs are differentially modulated by glucose and sucrose during maize germination [J]. Biochimie, 182: 108-119.

    • LARA-NÚÑEZ A, VENTURA-GALLEGOS JL, ANAYA AL, et al. , 2015. Phytotoxicity of Sicyos deppei during tomato germination and its effects on the role of ABA and cell wall enzymes [J]. Bot Sci, 93(4): 771-781.

    • LOYER P, TREMBLEY JH, 2020. Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: Cyclins L and CDK11 at the cross-roads of cell cycle and regulation of gene expression [J]. Seminars Cell Dev Biol, 107: 36-45.

    • MAGHULY F, VOLLMANN J, LAIMER M, 2015. Biotechnology of euphorbiaceae (Jatropha curcas, Manihot esculenta, Ricinus communis) [J]. Appl Plant Genom Biotechnol: 87-114.

    • MENG J, PENG MD, YANG J, et al. , 2020. Genome-wide analysis of the cyclin gene family and their expression profile in Medicago truncatula [J]. Int J Mol Sci, 21(24): 9430.

    • PODELL S, GRIBSKOV M, 2004. Predicting N-terminal myristoylation sites in plant proteins [J]. BMC Genom, 5(1): 37.

    • ROY SK, CHO SW, KWON SJ, et al. , 2016. Morpho-physiological and proteome level responses to cadmium stress in sorghum [J]. PLoS ONE, 11(2): e0150431.

    • SABELLI PA, DANTE RA, NGUYEN HN, et al. , 2014. Expression, regulation and activity of a B2-type cyclin in mitotic and endoreduplicating maize endosperm [J]. Front Plant Sci, 5: 561.

    • SEVERINO LS, AULD DL, BALDANZI M, et al. , 2012. A review on the challenges for increased production of castor [J]. Agron J, 104(4): 853-880.

    • STERKEN R, KIEKENS R, BORUC J, et al. , 2012. Combined linkage and association mapping reveals CYCD5; 1 as a quantitative trait gene for endoreduplication in Arabidopsis [J]. Proc Natl Acad Sci, 109(12): 4678-4683.

    • SUI ZP, WANG TY, LI HJ, et al. , 2016. Overexpression of peptide-encoding OsCEP6. 1 results in pleiotropic effects on growth in rice (O. sativa) [J]. Front Plant Sci, 7: 228.

    • SURYADINATA R, SADOWSKI M, SARCEVIC B, 2010. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates [J]. Biosci Rep, 30(4): 243-255.

    • TAO ZX, HUANG WJ, WANG HJ, 2020. Soil moisture outweighs temperature for triggering the green-up date in temperate grasslands [J]. Theor Appl Climatol, 140(3): 1093-1105.

    • TRABELSI ABH, ZAAFOURI K, BAGHDADI W, et al. , 2018. Second generation biofuels production from waste cooking oil via pyrolysis process [J]. Renew Energy, 126: 888-896.

    • VAN LEENE J, HOLLUNDER J, EECKHOUT D, et al. , 2010. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana [J]. Mol Syst Biol, 6(1): 397.

    • WANG XY, WU Y, SUN MD, et al. , 2022. Dynamic transcriptome profiling revealed key genes and pathways associated with cold stress in castor (Ricinus communis L. ) [J]. Ind Crops Products, 178: 114610.

    • XU J, GAO GL, DU JJ, et al. , 2010. Cell cycle modulation in response of the primary root of Arabidopsis to ABA [J]. Pak J Bot, 42(4): 2703-2710.

    • YAN XX, GUAN YY, LIU XY, et al. , 2021. NtCycB2 gene knockout enhances resistance to high salinity stress in Nicotiana tabacum [J]. Ind Crops Products, 171: 113886.

    • ZHANG HY, LU XY, WANG ZJ, et al. , 2021. Excretion from long glandular trichomes contributes to alleviation of cadmium toxicity in Nicotiana tabacum [J]. Environ Poll, 285: 117184.