en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

曾伟聪(1996-),硕士研究生,主要从事作物生理生态研究,(E-mail)ZengWeicong369@163.com。

通讯作者:

李素丽,博士,副教授,主要从事甘蔗高产栽培研究、体细胞融合育种,(E-mail)lisuli88@163.com。

中图分类号:Q945.79

文献标识码:A

文章编号:1000-3142(2023)02-0357-11

DOI:10.11931/guihaia.gxzw202112031

参考文献
BAI C, 2021. Strengthen scientific and technological support and promote the high-quality green development of sugar industry [J]. Sugar Crop Chin, 43(1): 62-66. [白晨, 2021. 强化科技支撑, 推进糖料产业高质量绿色发展 [J]. 中国糖料, 43(1): 62-66. ]
参考文献
CAI HG, MA W, ZHANG XZ, et al. , 2014. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize [J]. Crop J, 2(5): 297-307.
参考文献
CHEN GF, TANG QZ, HUANG YY, et al. , 2012. Primary research on causes and mechanism of young shoot etiolation in ratoon sugarcane crop [J]. J S Agric, 43(1): 50-52. [陈桂芬, 唐其展, 黄玉溢, 等, 2012. 宿根甘蔗幼苗黄化的原因初探 [J]. 南方农业学报, 43(1): 50-52. ]
参考文献
CHEN SL, HU JM, HUANG ZH, et al. , 2020. Effects of smash ridging on soil organic carbon mineralization and structure of sugarcane field in flat and slope farmland [J]. Chin J Agrometeorol, 41(5): 299-307. [陈仕林, 胡钧铭, 黄忠华, 等, 2020. 粉垄耕作对平地和坡耕地蔗田土壤有机碳矿化和结构的影响 [J]. 中国农业气象, 41(5): 299-307. ]
参考文献
CHENG DJ, ZHANG YL, 2012. Guidance for soil physics experiment [M]. Beijing: China Water Resources and Hydropower Press: 17. [程东娟, 张亚丽, 2012. 土壤物理实验指导 [M]. 北京: 中国水利水电出版社: 17. ]
参考文献
DAO JM, FAN X, LI FQ, et al. , 2018. Sugarcane nutrition management and detection technology [M]. Beijing: China Agricultural Press: 150-153, 166-167. [刀静梅, 樊仙, 李复琴, 等, 2018. 甘蔗营养管理与检测技术 [M]. 北京: 中国农业出版社: 150-153, 166-167. ]
参考文献
GUAN DH, AL-KAISI MM, ZHANG YS, et al. , 2014. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize [J]. Field Crop Res, 157: 89-97.
参考文献
HUANG JF, KHAN MT, PERECIN D, et al. , 2020. Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective [J]. Renew Sustain Energy Rev, 133: 110296.
参考文献
LAMPTEY S, LI LL, XIE JH, et al. , 2020. Tillage system affects soil water and photosynthesis of plastic-mulched maize on the semiarid Loess Plateau of China [J]. Soil Till Res, 196: 104479.
参考文献
LI H, HUANG JL, LI ZG, et al. , 2021a. Fenlong tillage increase soil nutrient availability, and benefit vascular tissue structure and nutrient absorption of sugarcane [J]. Acta Plant Nutr Fert, 27(2): 204-214. [李浩, 黄金玲, 李志刚, 等, 2021a. 粉垄耕作提高土壤养分有效性并促进甘蔗维管组织发育和养分吸收 [J]. 植物营养与肥料学报, 27(2): 204-214. ]
参考文献
LI H, WEI BH, HUANG JL, et al. , 2021b. Effects of Fenlong cultivation on root cell structure and enzyme of respiratory metabolic of sugarcane [J]. Sci Agric Sin, 54(3): 522-532. [李浩, 韦本辉, 黄金玲, 等, 2021b. 粉垄对甘蔗根系结构发育及呼吸代谢相关酶活性的影响 [J]. 中国农业科学, 54(3): 522-532. ]
参考文献
LI SL, HUANG JL, WEI BH, et al. , 2021. Effects of Fenlong tillage on photosynthetic and physiological characteristics, yield and quality of sugarcane (Saccharum officinarum) [J]. Chin J Trop Crop, 42(3): 726-731. [李素丽, 黄金玲, 韦本辉, 等, 2021. 粉垄耕作对甘蔗光合生理特性及产量品质的影响 [J]. 热带作物学报, 42(3): 726-731. ]
参考文献
LI YB, YUN HC, YANG X, et al. , 2013. Effects of deep vertically rotary tillage on soil water and water use efficiency in northern China’s Huang-huai-hai region [J]. Acta Ecol Sin, 33(23): 7478-7486. [李轶冰, 逄焕成, 杨雪, 等, 2013. 粉垄耕作对黄淮海北部土壤水分及其利用效率的影响 [J]. 生态学报, 33(23): 7478-7486. ]
参考文献
LI ZS, JIANG DH, WEI BH, 2020. Effects of Fenlong on rhizosphere microorganisms and enzyme activities in perennial sugarcane field [J]. New Agric, (7): 45-47. [黎佐生, 蒋代华, 韦本辉, 2020. 粉垄耕作对宿根蔗地根际微生物及酶活性的影响 [J]. 新农业, (7): 45-47. ]
参考文献
LIU JH, 2019. Effects of Smash-ridging tillage on soil properties and potato growth [D]. Yinchuan: Ningxia University: 32-33. [刘江汉, 2019. 粉垄耕作对土壤性质及马铃薯生长的影响 [D]. 银川: 宁夏大学: 32-33. ]
参考文献
LIU ZP, 2018. Quality characteristics and regulation technique of sugarcane cultivated-layer in red soil slope farmland [D]. Chongqing: Southwest University: 23. [刘志鹏, 2018. 红壤坡耕地甘蔗耕层质量特征及调控技术研究 [D]. 重庆: 西南大学: 23. ]
参考文献
LUO T, WU JM, DENG YC, et al. , 2021. The status and etiology analysis of chlorosis disease of ratoon sugarcane in Guangxi [J]. Sugarcane Canesugar, 50(1): 68-73. [罗霆, 吴建明, 邓宇驰, 等, 2021. 广西宿根甘蔗黄化病现状及病因分析 [J]. 甘蔗糖业, 50(1): 68-73. ]
参考文献
NIE SW, ZHANG YT, ZHANG QP, et al. , 2017. Effect of smashing ridge tillage on grain yields of winter wheat and summer maize and contents of soil nutrients [J]. Chin J Soil Sci, 48(4): 930-936. [聂胜委, 张玉亭, 张巧萍, 等, 2017. 粉垄耕作对小麦玉米产量及耕层土壤养分的影响 [J]. 土壤通报, 48(4): 930-936. ]
参考文献
REN BZ, LI X, DONG ST, et al. , 2018. Soil physical properties and maize root growth under different tillage systems in the North China Plain [J]. Crop J, 6(6): 669-676.
参考文献
WANG B, HE WS, GENG SJ, 2020. Effects of Fenlong on soil water use efficiency and potato yield [J]. Jiangsu Agric Sci, 48(21): 93-96. [王斌, 何文寿, 耿世杰, 2020. 粉垄耕作对土壤水分利用效率和马铃薯产量的影响 [J]. 江苏农业科学, 48(21): 93-96. ]
参考文献
WANG HG, GUO ZJ, SHI Y, et al. , 2015. Impact of tillage practices on nitrogen accumulation and translocation in wheat and soil nitrate-nitrogen leaching in drylands [J]. Soil Till Res, 153: 20-27.
参考文献
WANG Q, CHEN PS, ZHOU J, et al. , 2019. Effects of Fenlong on agronomic characters and yield of sugarcane [J]. Jiangsu Agric Sci, 47(4): 65-68. [王奇, 陈培赛, 周佳, 等, 2019. 粉垄耕作对甘蔗农艺性状及产量的影响 [J]. 江苏农业科学, 47(4): 65-68. ]
参考文献
WANG Q, ZHU YC, SHEN ZY, et al. , 2020. Regulation of smashing ridging tillage on sugarcane root growth and nitrogen absorption and utilization [J]. J S Agric, 51(11): 2674-2681. [王奇, 朱艳春, 申章佑, 等, 2020. 粉垄耕作对甘蔗根系生长及氮素吸收利用的调控作用 [J]. 南方农业学报, 51(11): 2674-2681. ]
参考文献
WANG SJ, JIANG DH, ZHU WG, et al. , 2020. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil [J]. Acta Pedol Sin, 57(2): 326-335. [王世佳, 蒋代华, 朱文国, 等, 2020. 粉垄耕作对农田赤红壤团聚体结构的影响 [J]. 土壤学报, 57(2): 326-335. ]
参考文献
WEI BH, 2010. Brief report on cultivation techniques of dry land crops with Fenlong [J]. Sci Agric Sin, 43(20): 4330. [韦本辉, 2010. 旱地作物粉垄栽培技术研究简报 [J]. 中国农业科学, 43(20): 4330. ]
参考文献
WEI BH, 2021. The study on the construction and application of sugarcane Fenlong “145” technology system [J]. Sugarcane Canesugar, 50(3): 1-4. [韦本辉, 2021. 甘蔗粉垄“145”技术体系的构建与应用探讨 [J]. 甘蔗糖业, 50(3): 1-4. ]
参考文献
WEI BH, GAN XQ, LI YY, et al. , 2017. Effects of once fenlong cultivation on soil properties and rice yield and quality for 7 consecutive years [J]. Agric Sci Technol, 18(12): 2365-2371.
参考文献
WEI BH, GAN XQ, SHEN ZY, et al. , 2011. Yield increase of smash-ridging cultivation of sugarcane [J]. Sci Agric Sin, 44(21): 4544-4550. [韦本辉, 甘秀芹, 申章佑, 等, 2011. 粉垄栽培甘蔗试验增产效果 [J]. 中国农业科学, 44(21): 4544-4550. ]
参考文献
WEI ZL, ZHANG LM, LU GP, et al. , 2018. The effect of powder ridge cultivation on sugarcane yield and sugar [J]. Sugarcane Canesugar, 47(6): 37-40. [韦增林, 张亮曼, 卢国培, 等, 2018. 粉垄栽培对甘蔗产量及糖分影响初报 [J]. 甘蔗糖业, 47(6): 37-40. ]
参考文献
XIE HY, CHEN SY, ZHANG Y, et al. , 2021. Research progress on causes of soil acidification & acid soil improvement technology in south China [J]. Hunan Agric Sci, 425(2): 104-107. [谢会雅, 陈舜尧, 张阳, 等, 2021. 中国南方土壤酸化原因及土壤酸性改良技术研究进展 [J]. 湖南农业科学, 425(2): 104-107. ]
参考文献
YIN B, HU Z, WANG Y, et al. , 2021. Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L. ) yield in the North China Plain [J]. Agr Water Manage, 247: 106732.
参考文献
ZHAI LC, WANG ZB, SONG SJ, et al. , 2021. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity [J]. Agr Water Manage, 245: 106600.
参考文献
ZHAI LC, XU P, ZHANG ZB, et al. , 2017. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China [J]. Soil Till Res, 170: 167-174.
参考文献
ZHAI LC, XU P, ZHANG ZB, et al. , 2019. Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate [J]. Agron J, 111(2): 1-11.
参考文献
ZHAO QG, HUANG GQ, MA YQ, 2013. The problems in red soil ecosystem in southern of China and its countermeasures [J]. Acta Ecol Sin, 33(24): 7615-7622. [赵其国, 黄国勤, 马艳芹, 2013. 中国南方红壤生态系统面临的问题及对策 [J]. 生态学报, 33(24): 7615-7622. ]
参考文献
ZHAO SL, LI FM, ZHANG DY, et al. , 1997. Crop production is a population process [J]. Acta Ecol Sin, 17(1): 102-106. [赵松岭, 李凤民, 张大勇, 等, 1997. 作物生产是一个种群过程 [J]. 生态学报, 17(1): 102-106. ]
参考文献
ZHOU J, ZHOU LZ, LAO CY, et al. , 2020. Effects of short-term different tillage methods on the diversity of bacterial community in rice rhizosphere soils [J]. J S Agric, 51(10): 2401-2411. [周佳, 周灵芝, 劳承英, 等, 2020. 短期不同耕作方式对水稻根际土壤细菌群落结构多样性的影响 [J]. 南方农业学报, 51(10): 2401-2411. ]
参考文献
ZHOU LZ, WEI BH, GAN XQ, et al. , 2017. Effects of smash-ridging cultivation on the growth and yield of sugarcane [J]. Anhui Agric Sci, 45(9): 29-31. [周灵芝, 韦本辉, 甘秀芹, 等, 2017. 粉垄栽培对甘蔗生长和产量的影响 [J]. 安徽农业科学, 45(9): 29-31. ]
目录contents

    摘要

    为了解粉垄“145”模式在新植蔗上的应用效果,解析其生理生态基础,该研究以桂柳05136为材料,设置常规耕作(CK)和粉垄“145”模式(FL145)2个处理,通过大田试验研究粉垄“145”模式对土壤性质以及新植蔗农艺性状、光合特性和产量品质的影响,并分析其经济效益。结果表明:(1)与CK相比,FL145的0~20 cm、20~40 cm根区,土壤容重显著降低1.25%~5.98%,土壤孔隙度显著提高1.08%~4.77%,土壤含水量显著提高1.78%~8.23%。(2)FL145促进新植蔗根系生长,出苗效果和农艺性状表现良好,株高显著增加2.20%~7.86%。(3)FL145的新植蔗单株叶面积显著增大15.88%,叶绿素含量、净光合速率、气孔导度、胞间CO2浓度分别显著提高1.41%、6.84%、18.67%、10.06%,光合能力增强,单株干物质积累量显著增加9.26%。(4)收获时,FL145的新植蔗有效茎数、茎长、茎径显著增加,理论产量和实际产量分别显著提高5.07%和5.11%,蔗汁蔗糖分和锤度分别显著提高1.61%和1.50%,还原糖分显著下降12.50%。(5)FL145新植蔗生产总成本比CK的降低378 yuan·hm-2,总产值增加1934.4 yuan·hm-2,利润增加2312.4 yuan·hm-2。综上表明,粉垄“145”模式通过“一亩只耕三分地”和减少化学除草环节的投入来实现降本增效;同时创造了良好的土壤条件,使新植蔗根系发达,进而增强光合能力,促进植株的生长发育,有利于干物质和糖分的积累,是新植蔗提质增产的原因。

    Abstract

    To explore the application effects of the model of Fenlong “145” on newly planted sugarcane and to analyze its physiological and ecological bases, Guiliu 05136 was used as the experimental material. Conventional tillage (CK) and the model of Fenlong “145” (FL145) were set in this study. Soil properties, and agronomic characters, photosynthetic characteristics, yield and quality of newly planted sugarcane were measured under field conditions, and economic benefits were analyzed. The results were as follows: (1) Compared with CK, at 0-20 and 20-40 cm depth, the soil bulk density in FL145 were significantly decreased by 1.25%-5.98%, while the soil porosity and the content of soil water were significantly increased by 1.08%-4.77% and 1.78%-8.23%, respectively. (2) FL145 could promote the growth of roots and seedling emergence of newly planted sugarcane. The agronomic characters in FL145 showed well, and the plant height were significantly increased by 2.20%-7.86%. (3) The leaf area per plant, the chlorophyll content, the net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration were significantly increased by 15.88%, 1.41%, 6.84%, 18.67%, 10.06%, respectively, photosynthetic capacity was enhanced, and the dry matter accumulation per plant in FL145 was significantly increased by 9.26%. (4) At harvest, the number of millable canes, stem length and stem diameter of newly planted sugarcane in FL145 were significantly increased. The theoretical yield and actual yield in FL145 significantly were increased by 5.07% and 5.11%, respectively, while the sucrose content in cane juice and the Brix were significantly increased by 1.61% and 1.50%, respectively, and the content of reducing sugar was significantly decreased by 12.50%. (5) Compared with CK, the total production cost of newly planted sugarcane in FL145 was reduced by 378 yuan·hm-2, while the total output value and the profit were increased by 1934.4 and 2312.4 yuan·hm-2, respectively. Therefore, FL145 has the effect of reducing cost and increasing efficiency in the production of newly planted sugarcane by reducing the investment in soil preparation and ditching and chemical weeding. Meanwhile, FL145 creates better soil conditions, and has a positive effect on the root growth, thereby promoting photosynthetic capacity and the growth and development of plant, and has a positive effect on the accumulation of dry matter and sugar, resulting in the increase of the quality and yield of newly planted sugarcane.

    关键词

    粉垄“145”模式新植蔗生理生态产量品质

  • 甘蔗(Saccharum officinarum)是我国主要的糖料作物。广西是全国甘蔗的主产区,种植面积和产量均占同期全国的60%以上。长期以来,广西甘蔗生产实行传统旋耕,使得耕层浅薄,通透性、疏松度差,养分供给不协调,而且形成犁底层,不利于根系深扎,对作物生长发育不利(Wang et al.,2015; Zhai et al.,2019)。采用密行种植,不仅造成甘蔗群体通风透光条件差,无效分蘖增多,抗倒伏能力下降,而且行间缺乏空间道路,不利于田间除草、施肥、中耕培土和砍收等环节的机械作业,机械采收时轮子易碾压伤及宿根蔗蔗蔸,同时造成土壤板结,严重影响宿根蔗的出苗和产量(韦本辉,2021)。此外,长期连作导致了土壤酸化、地力疲劳和黄化病等病虫害加重(陈桂芬等,2012; 谢会雅等,2021; 罗霆等,2021)。因此,浅耕、密行种植和连作必将严重制约甘蔗单产和品质的再提高。

  • 粉垄是近年来研发的新型农田耕作技术,可以显著提高水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)、甘蔗等近50种作物的产量和品质(Wei et al.,2017; 聂胜委等,2017; 周灵芝等,2017)。粉垄可打破坚硬的犁底层,改善蔗地土壤结构(王世佳等,2020; 陈仕林等,2020),增加孔隙度,增强土壤水分入渗能力和蓄水能力(李轶冰等,2013; 王斌等,2020),有利于提高脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶等土壤酶的活性和微生物多样性(黎佐生等,2020; 周佳等,2020),活化土壤氮磷,改善甘蔗根毛组织细胞结构,使得根系及其维管组织发达,提高甘蔗根系活力和硝酸还原酶、谷氨酰胺合成酶等氮代谢相关酶的活性,促进甘蔗对氮磷的吸收和转运,增强叶片光合能力,提高甘蔗出苗率、分蘖率、茎径、有效茎数,从而显著提高甘蔗的产量和品质(李浩等,2021a,2021b; 李素丽等,2021)。

  • 粉垄在改良土壤生态和甘蔗提质增产方面取得了重大成果。但是在前期的研究中,对整块蔗地进行粉垄耕作,成本较高,作业时间较长,效率较低; 而且粉垄耕作后采用传统的密行种植,不利于机械种管收全程机械化,没能从根本上解决甘蔗宿根施肥以及从可持续发展上解决种地养地的问题。因此,韦本辉(2021)在前期粉垄研究的基础上进一步提出了甘蔗粉垄“145”生产模式,即粉垄新植蔗一年、四年宿根、五年每亩累增原料蔗5 t,其核心是将原来一亩的肥水只用于三分地,其他七分地用于休养生息、恢复地力,每年原料蔗亩产增1 t。第一年,在甘蔗种植窄行粉垄出深度达50 cm的“U”型槽状结构,以充分利用土、水、气、热、光等自然资源; 宿根四年辅以粉垄底耕技术配合施肥,使降雨储存在土壤中,提高化肥利用效率; 第二个五年,在原未耕作的宽行实施“145”模式,窄行休耕。如此循环往复,宽窄行耕作交替结合,以期实现广西甘蔗年均亩增1 t和土地资源可持续利用的目标。

  • 目前,粉垄耕作技术的相关研究较多,而以其为核心构建的甘蔗粉垄“145”生产模式的相关研究较少。粉垄“145”模式甘蔗提质增产和降本增效的效果如何,其生理生态基础是什么,有何理论依据,这些都有待研究。因此,本研究以甘蔗高产高糖品种桂柳05136为试验材料,通过设置常规耕作和粉垄“145”模式2个耕作水平,研究粉垄“145”模式对土壤性质以及新植蔗农艺性状、光合特性和产量品质的影响,并分析其经济效益,拟探讨以下问题:(1)粉垄“145”模式是否能改善土壤物理性状,促进新植蔗根系的生长;(2)粉垄“145”模式是否能促进新植蔗地上部分的生长,提高光合能力;(3)粉垄“145”模式是否能在粉垄增产的基础上进一步降本增效,保持提质增产效应。本研究可为粉垄“145”模式在甘蔗生产上的应用提供理论依据,为完善粉垄产业体系提供基础资料,为甘蔗产业降本增效和提质增产提供新的思路。

  • 1 材料与方法

  • 1.1 试验材料

  • 供试品种:桂柳05136(株型紧凑适中,中到大茎)。

  • 1.2 试验地概况

  • 本试验于2020年6月至2021年3月在广西大学甘蔗研究所试验基地(108°17′ E、22°50′ N)进行。试验地属亚热带季风气候,夏热冬温,雨热同期。在甘蔗整个生育期内的降雨量为631.4 mm,月平均气温为21.92℃(图1)。前茬作物为甘蔗,在0~20 cm和20~40 cm土层下,土壤含水量分别为13.53%和13.87%,pH值分别为4.82和4.87。

  • 1.3 试验设计

  • 试验设置常规耕作(旋耕耕作整个小区25 cm深度土层,CK)、粉垄“145”模式(粉垄耕作甘蔗种植窄行50 cm深度土层,宽行休耕,FL145)2个耕作水平,采用完全随机设计,每个处理设3次重复(图2)。每个小区面积为31.2 m2(长6 m,宽5.2 m),宽窄行种植4行,宽行1.8 m,窄行0.8 m,种植密度为每公顷105 000芽。甘蔗于2020年6月23日采用双芽段种植,同时施基肥750 kg·hm-2硫酸钾型复合肥(15∶15∶15,雅苒国际有限公司),7月20日结合培土施攻茎肥750 kg·hm-2硫酸钾型复合肥(15∶15∶15,雅苒国际有限公司),其他管理措施同一般蔗田。2021年3月6日收获。

  • 图1 甘蔗生育期内的降雨量及月平均温度

  • Fig.1 Precipitation and monthly mean temperature during the growing period of sugarcane

  • 1.4 测定项目和方法

  • 1.4.1 土壤性质及根系

  • 分别在伸长期(2020年8月15日)、成熟期(2021年1月16日),每小区选取长势一致且有代表性的甘蔗4株,采集其根区0~20 cm、20~40 cm土层的土壤样品,土壤容重采用环刀法测定(刀静梅等,2018); 土壤孔隙度=(1-土壤容重/土壤比重)×100%,土壤比重取2.65 g·cm-3计算(程东娟和张亚丽,2012); 土壤含水量采用烘干法测定(刀静梅等,2018); 土壤pH值用电位法测定(刀静梅等,2018)。在成熟期挖取根系,洗净称量鲜重后,用烘箱在105℃下烘30 min,再用80℃烘干至恒重,称量干重。根系含水量=(鲜重-干重)/鲜重×100%。

  • 1.4.2 农艺性状

  • 在苗期(2020年7月20日)调查苗长、出苗率。在种植后第27、第43、第59、第82、第108、第144、第186天调查株高(从地面到最高可见肥厚带的高度); 在种植后第82、第108、第144、第186天调查茎径、叶龄。

  • 1.4.3 光合特性

  • 在成熟期(2020年12月6日),每小区选取长势一致且有代表性的甘蔗5株,用LI-6400XT光合测定系统(美国LI-COR公司生产)于晴天14:00—16:00测定+1叶(最高可见肥厚带所在叶)的净光合速率、气孔导度、胞间CO2浓度、蒸腾速率; 水分利用效率=净光合速率/蒸腾速率; 用SPAD-502叶绿素仪(日本KONICA MINOLTA公司生产)测定+1叶的叶绿素含量(SPAD值); 测量甘蔗+1叶及以下所有青叶片(已枯黄1/3以上的叶片不计)的叶长(叶片基部到顶端的长度)和叶宽(叶片最宽部位的宽度),单叶面积=叶长×叶宽×0.75,单株叶面积为所有青叶面积之和。

  • 1.4.4 干物质积累量

  • 在成熟期(2021年1月16日),每小区选取长势一致且有代表性的甘蔗3株,分为叶鞘、叶片、茎3部分,用烘箱在105℃下杀青30 min,再于80℃下烘干至恒重,称量干重。

  • 1.4.5 产量和品质

  • 在甘蔗收获时(2021年3月6日),调查有效茎数(茎长达到1 m以上甘蔗茎的数目); 于小区中间两行,每行连续收获10株甘蔗进行考种,内容包括节间数(从甘蔗基部到+1叶叶鞘基部所包裹节间即+1节间的节间数目)、茎长(从甘蔗基部到最高可见肥厚带往下30 cm处的长度)、茎径(取从甘蔗基部往上第3、第8、第12节间中部直径的平均值)、单茎重。每小区选取长势一致且有代表性的甘蔗6株,送往广西农业科学院农业农村部甘蔗品质监督检验测试中心(南宁)测定甘蔗品质,指标包括甘蔗蔗糖分、纤维分、蔗汁蔗糖分、锤度、重力纯度、视纯度、转光度、还原糖分。

  • 1.5 数据处理

  • 采用Microsoft Excel软件进行数据处理及制作图表。采用DPS软件进行统计分析,使用新复极差法在P=0.05水平上进行多重比较。

  • 2 结果与分析

  • 2.1 土壤性质

  • 在伸长期,与CK相比,FL145的根区0~20 cm、20~40 cm土壤容重分别显著下降了1.26%、1.25%,土壤孔隙度分别显著提高了1.16%、1.08%,土壤疏松透气性更好; 土壤含水量比CK的分别显著提高了8.23%、6.36%,供水能力更强(图3)。耕作方式对土壤pH值无显著影响。FL145的根区0~20 cm、20~40 cm土壤pH值虽然比CK的高,但差异不显著。

  • 进入成熟期,FL145可以维持较好的土壤条件,其根区0~20 cm、20~40 cm土壤容重较CK的分别显著下降了4.60%、5.98%; 土壤孔隙度分别显著提高了3.51%、4.77%; 土壤含水量分别显著提高了1.78%、5.02%; 土壤pH值虽然比CK的高,但差异不显著。

  • 2.2 新植蔗根系及农艺性状

  • FL145的新植蔗根系更为发达,新植蔗长势优于CK(图4)。与CK相比,FL145的新植蔗根系鲜重、干重、含水量分别显著提高了68.29%、47.84%、12.04%(表1)。FL145可以促进新植蔗早生快发,出苗率和苗长比CK的分别显著提高了4.48%和5.75%(图5)。在种植后第27、第43、第59、第82、第108、第144、第186天,FL145的新植蔗株高比CK的分别显著提高了6.25%、3.90%、3.59%、2.55%、7.86%、2.71%、2.20%; 在种植后第82、第108、第144、第186天,FL145的新植蔗茎径虽然比CK的分别提高了1.91%、1.74%、1.70%、1.89%,但除了种植后第108天茎径达到差异显著水平外,其他时期差异均未达显著水平; 新植蔗叶龄虽然比CK的分别提高了3.80%、1.89%、2.99%、1.42%,但除了在种植后第144天叶龄达到差异显著水平以外,其他时期差异均未达显著水平(图6)。由此可见,FL145对新植蔗生长具有促进作用。

  • 2.3 新植蔗光合特性及干物质积累

  • 适宜的叶面积和叶绿素含量是具有良好光合特性的基础。在成熟期,FL145的新植蔗单株叶面积、叶绿素含量分别比CK的显著提高了15.88%、1.41%,延长了叶片的持绿期(图7)。净光合速率、气孔导度、胞间CO2浓度和蒸腾速率是光合作用的重要参数。耕作因素对光合参数具有极显著的影响(表2)。与CK相比,FL145的净光合速率显著提高了6.84%,气孔导度显著增大了18.67%,胞间CO2浓度显著增加了10.06%,蒸腾速率显著提高了5.10%。耕作因素对干物质积累的影响达显著水平(表3)。FL145的新植蔗单株干物质积累量、茎干重、叶鞘干重、叶片干重分别比CK的显著增加了9.26%、10.89%、6.07%、4.89%。由此可见,FL145新植蔗叶片在生育后期仍能保持较强的光合能力,促进干物质的积累。此外,FL145叶片水分利用效率较CK的显著提高了2.43%。

  • 2.4 新植蔗产量和品质

  • 耕作因素对新植蔗产量具有显著的影响(表4)。FL145新植蔗理论产量和实际产量比CK的分别显著增加了4.41 t·hm-2和3.72 t·hm-2,增幅分别为5.07%和5.11%,增产效果明显。在产量相关性状方面,FL145新植蔗有效茎数、节间数、茎长、茎径、单茎重比CK的分别提高了2.30%、2.69%、5.16%、4.70%、2.63%,但除了节间数、单茎重差异未达显著水平外,其他差异均达显著水平。

  • FL145的甘蔗蔗糖分、纤维分、蔗汁蔗糖分、重力纯度、视纯度、转光度、锤度比CK的分别提高了1.10%、0.15%、1.61%、1.07%、0.79%、0.71%、1.50%,其中蔗汁蔗糖分含量提高幅度最大(表5)。除了蔗汁蔗糖分、锤度、重力纯度差异达显著水平以外,其他差异均未达显著水平。还原糖分则比CK的显著下降了12.50%。这表明,FL145可以改善新植蔗的品质。

  • 图2 粉垄“145”模式甘蔗种植示意图

  • Fig.2 Schematic diagram of sugarcane planting under the model of Fenlong “145”

  • 2.5 经济效益

  • FL145新植蔗生产总成本比CK的降低了378 yuan·hm-2,总产值增加了1 934.4 yuan·hm-2,利润增加了2 312.4 yuan·hm-2(表6)。降本原因为FL145整地和开行环节费用比CK的节省了450 yuan·hm-2; 仅需进行一次化学除草,除草费用节省了300 yuan·hm-2,减少了人工投入和除草剂的费用。虽然增产使得FL145机收成本增加了372 yuan·hm-2,但同时其总产值的提高抵消了增加的机收成本。

  • 图3 粉垄“145”模式对土壤性质的影响

  • Fig.3 Effects of the model of Fenlong “145” on soil properties

  • 3 讨论与结论

  • 3.1 粉垄“145”模式能改善土壤物理性状,使新植蔗根系发达

  • 我国南方蔗区土壤的主要类型为红壤,其存在酸、黏、瘦等问题(赵其国等,2013)。长期连作、旋耕和机械压实作用导致了蔗区耕层结构变差,削弱了土壤供保水肥的能力,不利于甘蔗生长(刘志鹏,2018)。改进优化耕作模式可以有效改善土壤水、肥、气、热等条件,增强土壤肥力,进而获得甘蔗提质增产的效果。粉垄耕作可以降低土壤紧实度,促进形成土壤大团聚体,优化耕层结构(陈仕林等,2020; 王世佳等,2020)。本研究发现,FL145可以显著降低根区各土层(0~20 cm、20~40 cm)土壤容重,提高土壤孔隙度,有利于增强土壤水分的渗透能力(刘江汉,2019),提高土壤含水量(Yin et al.,2021),特别是在深层(20~40 cm)显著提高了5.02%~6.36%。土壤物理性质改善,疏松透气性良好,有利于根系的生长发育和下扎(Cai et al.,2014; Zhai et al.,2021),使作物的产量更高(Ren et al.,2018)。有研究表明,粉垄耕作条件下甘蔗根系重量显著提高,根毛发达,线粒体数目增多,苹果酸脱氢酶、细胞色素氧化酶和多酚氧化酶等呼吸代谢相关酶的活性提高,根系活力增强,根系中氮素吸收利用相关基因的表达水平上调,从而促进甘蔗对氮素的吸收利用(王奇等,2020; 李浩等,2021b)。本研究也发现,FL145显著提高了新植蔗根系鲜重和干重,使新植蔗根系更为发达,增加根系与土壤的接触面积(王奇等,2020),增强根系吸收水肥的能力(李浩等,2021b),从而保证在产量和品质形成关键的伸长期和成熟期间甘蔗的水肥供给。这说明粉垄“145”模式以粉垄耕作技术为核心的耕作,可通过改善土壤物理性状,使新植蔗根系更为发达。

  • 图4 粉垄“145”模式下新植蔗的生长情况

  • Fig.4 Growth of newly planted sugarcane under the model of Fenlong“145”

  • 表1 粉垄“145”模式对新植蔗根系重量及含水量的影响

  • Table1 Effects of the model of Fenlong “145” on root weight and water content of newly planted sugarcane

  • 注: 同列数据后不同的小写字母表示处理间在0.05水平上差异显著; 表示在0.01水平上差异显著。下同。

  • Note: Different lowercase letters after the same column indicate significant differences between treatments at the level of 0.05; indicates significant differences at the level of 0.01. The same below.

  • 图5 粉垄“145”模式对新植蔗出苗率及苗长的影响

  • Fig.5 Effects of the model of Fenlong “145” on seedling emergence rate and seedling length of newly planted sugarcane

  • 表2 粉垄“145”模式对新植蔗光合参数的影响

  • Table2 Effects of the model of Fenlong “145” on photosynthetic parameters of newly planted sugarcane

  • 表3 粉垄“145”模式对新植蔗干物质积累量的影响

  • Table3 Effects of the model of Fenlong “145” on dry matter accumulation of newly planted sugarcane

  • 注: 表示在0.05水平上差异显著。下同。

  • Note: indicates significant differences at the 0.05 level. The same below.

  • 表4 粉垄“145”模式对新植蔗产量及其相关性状的影响

  • Table4 Effects of the model of Fenlong “145” on yield and its related characters of newly planted sugarcane

  • 注: ns表示差异不显著。下同。

  • Note: ns indicates no significant differences. The same below.

  • 表5 粉垄“145”模式对新植蔗品质的影响

  • Table5 Effects of the model of Fenlong “145” on quality of newly planted sugarcane

  • 表6 粉垄“145”模式下新植蔗生产的经济效益

  • Table6 Economic benefits of newly planted sugarcane production under the model of Fenlong “145”

  • 注: 甘蔗收购价按每吨520元计。

  • Note: Purchase price of sugarcane is 520 yuan·t-1.

  • 3.2 粉垄“145”模式新植蔗光合能力强,有利于新植蔗生长

  • 干物质是甘蔗产量和品质形成的基础,主要通过光合作用合成。叶片是作物进行光合作用的主要场所。粉垄可以增加甘蔗的功能叶片数(韦本辉等,2011),提高PEPC、NADP-MDH和RuBPC等光合作用相关酶的活性(李素丽等,2021)。本研究发现,FL145新植蔗单株叶面积、叶绿素含量、净光合速率较CK分别显著提高了15.88%、1.41%、6.84%,说明FL145可以延长叶片持绿功能期,提高光合能力。Zhai等(2021)报道了类似的结果。耕作方式通过调节土壤物理性质来影响根系的生长和分布,土壤含水量较高和根系生长良好是作物光合能力强和干物质积累多的原因(Guan et al.,2014; Lamptey et al.,2020)。本研究发现,与CK相比,FL145新植蔗出苗率显著提高了4.48%,苗长显著增加,并增强了苗的质量; 新植蔗长势表现良好,株高显著增加了2.20%~7.86%,茎径增粗,干物质积累增加,特别是茎(收获器官)的干重显著提高了10.89%,为甘蔗提质增产打下了坚实的基础。这与Zhai等(2017)研究结果类似。原因可能是FL145通过调节土壤物理性质,促使新植蔗根系更为发达,吸收水分和养分能力增强,有利于光合作用和蔗茎的伸长增粗与干物质的积累(周灵芝等,2017; 李素丽等,2021)。这说明粉垄“145”模式以粉垄耕作技术为核心,可提高新植蔗光合能力和促进新植蔗生长。

  • 3.3 粉垄“145”模式具有提质增产和降本增效的效果

  • 耕作增加土壤含水量和促进根系生长是作物产量提高的主要因素(Lamptey et al.,2020)。优化耕作方式是实现作物增产的有效途径。作物生产是一个群体过程(赵松岭等,1997)。与传统耕作相比,粉垄可以显著提高甘蔗的有效茎数,使节间数增加、茎长增长和茎径增粗,从而提高了甘蔗产量(周灵芝等,2017; 韦增林等,2018; 王奇等,2019)。本研究中,相比于CK,FL145的理论产量和实际产量分别提高了4.41 t·hm-2和3.72 t·hm-2,增幅分别达5.07%和5.11%,增产效果显著。这得益于FL145有效茎数和单茎重的协同提高。原因是FL145可改善土壤疏松透气性,保持土壤水分,提高新植蔗出苗率,从而为获得更多的有效茎数奠定基础。光合能力的增强可提供更多的光合产物,促进新植蔗生长发育,从而为有效茎数和单茎重的形成提供物质保障。前人研究表明,粉垄栽培模式下的蔗糖分、锤度、还原糖分等品质指标均优于传统耕作(韦本辉等,2011; 韦增林等,2018; 李素丽等,2021)。本研究中,与CK相比,FL145可以改善新植蔗的品质,表现在蔗汁蔗糖分、锤度分别显著提高了1.61%、1.50%,同时还原糖分显著下降了12.50%。我国糖料原料生产成本过高是制约产业竞争力提高的主要原因(白晨,2021)。劳动力成本的持续上升,使得甘蔗种植者以及产业的利润都受到了重大影响(Huang et al.,2020)。FL145具有降本增效作用,表现在新植蔗生产中总成本较CK的降低了378 yuan·hm-2,总产值增加了1 934.4 yuan·hm-2,因而利润增加了2 312.4 yuan·hm-2。降本的主要环节是:(1)FL145只对甘蔗种植窄行耕作,宽行休耕,因而整地和开行环节费用比CK的节省了450 yuan·hm-2;(2)粉垄可以减轻杂草危害(韦本辉,2010)。FL145的化学除草次数比CK的减少1次,减少了人工投入和除草剂的使用量,除草费用节省了300 yuan·hm-2,具有良好的经济和生态效益。由此可见,以粉垄耕作技术为核心构建的粉垄“145”模式在新植蔗生产中获得了提质增产和降本增效的效果。但是,粉垄“145”模式对宿根蔗能否继续保持提质增产效应仍需进一步研究。

  • 图6 粉垄“145”模式对新植蔗株高、茎径及叶龄的影响

  • Fig.6 Effects of the model of Fenlong “145” on plant height, stem diameter and leaf age of newly planted sugarcane

  • 图7 粉垄“145”模式对新植蔗单株叶面积、叶绿素含量及水分利用效率的影响

  • Fig.7 Effects of the model of Fenlong “145” on leaf area per plant, chlorophyll content and water use efficiency of newly planted sugarcane

  • 3.4 结论

  • 粉垄“145”模式以粉垄耕作技术为核心创造有利于甘蔗生长的土壤环境,可使新植蔗根系更为发达,增强光合能力,促进地上部分的生长发育,有利于干物质和糖分的积累,最终取得提质增产的效果。其生理生态基础与传统粉垄的一致。同时,使用“一亩只耕三分地”的整地开行方式和减少化学除草环节的投入,节省了成本,达到宽行休耕的目的,是粉垄“145”模式实现降本增效的主要原因。

  • 参考文献

    • BAI C, 2021. Strengthen scientific and technological support and promote the high-quality green development of sugar industry [J]. Sugar Crop Chin, 43(1): 62-66. [白晨, 2021. 强化科技支撑, 推进糖料产业高质量绿色发展 [J]. 中国糖料, 43(1): 62-66. ]

    • CAI HG, MA W, ZHANG XZ, et al. , 2014. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize [J]. Crop J, 2(5): 297-307.

    • CHEN GF, TANG QZ, HUANG YY, et al. , 2012. Primary research on causes and mechanism of young shoot etiolation in ratoon sugarcane crop [J]. J S Agric, 43(1): 50-52. [陈桂芬, 唐其展, 黄玉溢, 等, 2012. 宿根甘蔗幼苗黄化的原因初探 [J]. 南方农业学报, 43(1): 50-52. ]

    • CHEN SL, HU JM, HUANG ZH, et al. , 2020. Effects of smash ridging on soil organic carbon mineralization and structure of sugarcane field in flat and slope farmland [J]. Chin J Agrometeorol, 41(5): 299-307. [陈仕林, 胡钧铭, 黄忠华, 等, 2020. 粉垄耕作对平地和坡耕地蔗田土壤有机碳矿化和结构的影响 [J]. 中国农业气象, 41(5): 299-307. ]

    • CHENG DJ, ZHANG YL, 2012. Guidance for soil physics experiment [M]. Beijing: China Water Resources and Hydropower Press: 17. [程东娟, 张亚丽, 2012. 土壤物理实验指导 [M]. 北京: 中国水利水电出版社: 17. ]

    • DAO JM, FAN X, LI FQ, et al. , 2018. Sugarcane nutrition management and detection technology [M]. Beijing: China Agricultural Press: 150-153, 166-167. [刀静梅, 樊仙, 李复琴, 等, 2018. 甘蔗营养管理与检测技术 [M]. 北京: 中国农业出版社: 150-153, 166-167. ]

    • GUAN DH, AL-KAISI MM, ZHANG YS, et al. , 2014. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize [J]. Field Crop Res, 157: 89-97.

    • HUANG JF, KHAN MT, PERECIN D, et al. , 2020. Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective [J]. Renew Sustain Energy Rev, 133: 110296.

    • LAMPTEY S, LI LL, XIE JH, et al. , 2020. Tillage system affects soil water and photosynthesis of plastic-mulched maize on the semiarid Loess Plateau of China [J]. Soil Till Res, 196: 104479.

    • LI H, HUANG JL, LI ZG, et al. , 2021a. Fenlong tillage increase soil nutrient availability, and benefit vascular tissue structure and nutrient absorption of sugarcane [J]. Acta Plant Nutr Fert, 27(2): 204-214. [李浩, 黄金玲, 李志刚, 等, 2021a. 粉垄耕作提高土壤养分有效性并促进甘蔗维管组织发育和养分吸收 [J]. 植物营养与肥料学报, 27(2): 204-214. ]

    • LI H, WEI BH, HUANG JL, et al. , 2021b. Effects of Fenlong cultivation on root cell structure and enzyme of respiratory metabolic of sugarcane [J]. Sci Agric Sin, 54(3): 522-532. [李浩, 韦本辉, 黄金玲, 等, 2021b. 粉垄对甘蔗根系结构发育及呼吸代谢相关酶活性的影响 [J]. 中国农业科学, 54(3): 522-532. ]

    • LI SL, HUANG JL, WEI BH, et al. , 2021. Effects of Fenlong tillage on photosynthetic and physiological characteristics, yield and quality of sugarcane (Saccharum officinarum) [J]. Chin J Trop Crop, 42(3): 726-731. [李素丽, 黄金玲, 韦本辉, 等, 2021. 粉垄耕作对甘蔗光合生理特性及产量品质的影响 [J]. 热带作物学报, 42(3): 726-731. ]

    • LI YB, YUN HC, YANG X, et al. , 2013. Effects of deep vertically rotary tillage on soil water and water use efficiency in northern China’s Huang-huai-hai region [J]. Acta Ecol Sin, 33(23): 7478-7486. [李轶冰, 逄焕成, 杨雪, 等, 2013. 粉垄耕作对黄淮海北部土壤水分及其利用效率的影响 [J]. 生态学报, 33(23): 7478-7486. ]

    • LI ZS, JIANG DH, WEI BH, 2020. Effects of Fenlong on rhizosphere microorganisms and enzyme activities in perennial sugarcane field [J]. New Agric, (7): 45-47. [黎佐生, 蒋代华, 韦本辉, 2020. 粉垄耕作对宿根蔗地根际微生物及酶活性的影响 [J]. 新农业, (7): 45-47. ]

    • LIU JH, 2019. Effects of Smash-ridging tillage on soil properties and potato growth [D]. Yinchuan: Ningxia University: 32-33. [刘江汉, 2019. 粉垄耕作对土壤性质及马铃薯生长的影响 [D]. 银川: 宁夏大学: 32-33. ]

    • LIU ZP, 2018. Quality characteristics and regulation technique of sugarcane cultivated-layer in red soil slope farmland [D]. Chongqing: Southwest University: 23. [刘志鹏, 2018. 红壤坡耕地甘蔗耕层质量特征及调控技术研究 [D]. 重庆: 西南大学: 23. ]

    • LUO T, WU JM, DENG YC, et al. , 2021. The status and etiology analysis of chlorosis disease of ratoon sugarcane in Guangxi [J]. Sugarcane Canesugar, 50(1): 68-73. [罗霆, 吴建明, 邓宇驰, 等, 2021. 广西宿根甘蔗黄化病现状及病因分析 [J]. 甘蔗糖业, 50(1): 68-73. ]

    • NIE SW, ZHANG YT, ZHANG QP, et al. , 2017. Effect of smashing ridge tillage on grain yields of winter wheat and summer maize and contents of soil nutrients [J]. Chin J Soil Sci, 48(4): 930-936. [聂胜委, 张玉亭, 张巧萍, 等, 2017. 粉垄耕作对小麦玉米产量及耕层土壤养分的影响 [J]. 土壤通报, 48(4): 930-936. ]

    • REN BZ, LI X, DONG ST, et al. , 2018. Soil physical properties and maize root growth under different tillage systems in the North China Plain [J]. Crop J, 6(6): 669-676.

    • WANG B, HE WS, GENG SJ, 2020. Effects of Fenlong on soil water use efficiency and potato yield [J]. Jiangsu Agric Sci, 48(21): 93-96. [王斌, 何文寿, 耿世杰, 2020. 粉垄耕作对土壤水分利用效率和马铃薯产量的影响 [J]. 江苏农业科学, 48(21): 93-96. ]

    • WANG HG, GUO ZJ, SHI Y, et al. , 2015. Impact of tillage practices on nitrogen accumulation and translocation in wheat and soil nitrate-nitrogen leaching in drylands [J]. Soil Till Res, 153: 20-27.

    • WANG Q, CHEN PS, ZHOU J, et al. , 2019. Effects of Fenlong on agronomic characters and yield of sugarcane [J]. Jiangsu Agric Sci, 47(4): 65-68. [王奇, 陈培赛, 周佳, 等, 2019. 粉垄耕作对甘蔗农艺性状及产量的影响 [J]. 江苏农业科学, 47(4): 65-68. ]

    • WANG Q, ZHU YC, SHEN ZY, et al. , 2020. Regulation of smashing ridging tillage on sugarcane root growth and nitrogen absorption and utilization [J]. J S Agric, 51(11): 2674-2681. [王奇, 朱艳春, 申章佑, 等, 2020. 粉垄耕作对甘蔗根系生长及氮素吸收利用的调控作用 [J]. 南方农业学报, 51(11): 2674-2681. ]

    • WANG SJ, JIANG DH, ZHU WG, et al. , 2020. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil [J]. Acta Pedol Sin, 57(2): 326-335. [王世佳, 蒋代华, 朱文国, 等, 2020. 粉垄耕作对农田赤红壤团聚体结构的影响 [J]. 土壤学报, 57(2): 326-335. ]

    • WEI BH, 2010. Brief report on cultivation techniques of dry land crops with Fenlong [J]. Sci Agric Sin, 43(20): 4330. [韦本辉, 2010. 旱地作物粉垄栽培技术研究简报 [J]. 中国农业科学, 43(20): 4330. ]

    • WEI BH, 2021. The study on the construction and application of sugarcane Fenlong “145” technology system [J]. Sugarcane Canesugar, 50(3): 1-4. [韦本辉, 2021. 甘蔗粉垄“145”技术体系的构建与应用探讨 [J]. 甘蔗糖业, 50(3): 1-4. ]

    • WEI BH, GAN XQ, LI YY, et al. , 2017. Effects of once fenlong cultivation on soil properties and rice yield and quality for 7 consecutive years [J]. Agric Sci Technol, 18(12): 2365-2371.

    • WEI BH, GAN XQ, SHEN ZY, et al. , 2011. Yield increase of smash-ridging cultivation of sugarcane [J]. Sci Agric Sin, 44(21): 4544-4550. [韦本辉, 甘秀芹, 申章佑, 等, 2011. 粉垄栽培甘蔗试验增产效果 [J]. 中国农业科学, 44(21): 4544-4550. ]

    • WEI ZL, ZHANG LM, LU GP, et al. , 2018. The effect of powder ridge cultivation on sugarcane yield and sugar [J]. Sugarcane Canesugar, 47(6): 37-40. [韦增林, 张亮曼, 卢国培, 等, 2018. 粉垄栽培对甘蔗产量及糖分影响初报 [J]. 甘蔗糖业, 47(6): 37-40. ]

    • XIE HY, CHEN SY, ZHANG Y, et al. , 2021. Research progress on causes of soil acidification & acid soil improvement technology in south China [J]. Hunan Agric Sci, 425(2): 104-107. [谢会雅, 陈舜尧, 张阳, 等, 2021. 中国南方土壤酸化原因及土壤酸性改良技术研究进展 [J]. 湖南农业科学, 425(2): 104-107. ]

    • YIN B, HU Z, WANG Y, et al. , 2021. Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L. ) yield in the North China Plain [J]. Agr Water Manage, 247: 106732.

    • ZHAI LC, WANG ZB, SONG SJ, et al. , 2021. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity [J]. Agr Water Manage, 245: 106600.

    • ZHAI LC, XU P, ZHANG ZB, et al. , 2017. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China [J]. Soil Till Res, 170: 167-174.

    • ZHAI LC, XU P, ZHANG ZB, et al. , 2019. Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate [J]. Agron J, 111(2): 1-11.

    • ZHAO QG, HUANG GQ, MA YQ, 2013. The problems in red soil ecosystem in southern of China and its countermeasures [J]. Acta Ecol Sin, 33(24): 7615-7622. [赵其国, 黄国勤, 马艳芹, 2013. 中国南方红壤生态系统面临的问题及对策 [J]. 生态学报, 33(24): 7615-7622. ]

    • ZHAO SL, LI FM, ZHANG DY, et al. , 1997. Crop production is a population process [J]. Acta Ecol Sin, 17(1): 102-106. [赵松岭, 李凤民, 张大勇, 等, 1997. 作物生产是一个种群过程 [J]. 生态学报, 17(1): 102-106. ]

    • ZHOU J, ZHOU LZ, LAO CY, et al. , 2020. Effects of short-term different tillage methods on the diversity of bacterial community in rice rhizosphere soils [J]. J S Agric, 51(10): 2401-2411. [周佳, 周灵芝, 劳承英, 等, 2020. 短期不同耕作方式对水稻根际土壤细菌群落结构多样性的影响 [J]. 南方农业学报, 51(10): 2401-2411. ]

    • ZHOU LZ, WEI BH, GAN XQ, et al. , 2017. Effects of smash-ridging cultivation on the growth and yield of sugarcane [J]. Anhui Agric Sci, 45(9): 29-31. [周灵芝, 韦本辉, 甘秀芹, 等, 2017. 粉垄栽培对甘蔗生长和产量的影响 [J]. 安徽农业科学, 45(9): 29-31. ]

  • 参考文献

    • BAI C, 2021. Strengthen scientific and technological support and promote the high-quality green development of sugar industry [J]. Sugar Crop Chin, 43(1): 62-66. [白晨, 2021. 强化科技支撑, 推进糖料产业高质量绿色发展 [J]. 中国糖料, 43(1): 62-66. ]

    • CAI HG, MA W, ZHANG XZ, et al. , 2014. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize [J]. Crop J, 2(5): 297-307.

    • CHEN GF, TANG QZ, HUANG YY, et al. , 2012. Primary research on causes and mechanism of young shoot etiolation in ratoon sugarcane crop [J]. J S Agric, 43(1): 50-52. [陈桂芬, 唐其展, 黄玉溢, 等, 2012. 宿根甘蔗幼苗黄化的原因初探 [J]. 南方农业学报, 43(1): 50-52. ]

    • CHEN SL, HU JM, HUANG ZH, et al. , 2020. Effects of smash ridging on soil organic carbon mineralization and structure of sugarcane field in flat and slope farmland [J]. Chin J Agrometeorol, 41(5): 299-307. [陈仕林, 胡钧铭, 黄忠华, 等, 2020. 粉垄耕作对平地和坡耕地蔗田土壤有机碳矿化和结构的影响 [J]. 中国农业气象, 41(5): 299-307. ]

    • CHENG DJ, ZHANG YL, 2012. Guidance for soil physics experiment [M]. Beijing: China Water Resources and Hydropower Press: 17. [程东娟, 张亚丽, 2012. 土壤物理实验指导 [M]. 北京: 中国水利水电出版社: 17. ]

    • DAO JM, FAN X, LI FQ, et al. , 2018. Sugarcane nutrition management and detection technology [M]. Beijing: China Agricultural Press: 150-153, 166-167. [刀静梅, 樊仙, 李复琴, 等, 2018. 甘蔗营养管理与检测技术 [M]. 北京: 中国农业出版社: 150-153, 166-167. ]

    • GUAN DH, AL-KAISI MM, ZHANG YS, et al. , 2014. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize [J]. Field Crop Res, 157: 89-97.

    • HUANG JF, KHAN MT, PERECIN D, et al. , 2020. Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective [J]. Renew Sustain Energy Rev, 133: 110296.

    • LAMPTEY S, LI LL, XIE JH, et al. , 2020. Tillage system affects soil water and photosynthesis of plastic-mulched maize on the semiarid Loess Plateau of China [J]. Soil Till Res, 196: 104479.

    • LI H, HUANG JL, LI ZG, et al. , 2021a. Fenlong tillage increase soil nutrient availability, and benefit vascular tissue structure and nutrient absorption of sugarcane [J]. Acta Plant Nutr Fert, 27(2): 204-214. [李浩, 黄金玲, 李志刚, 等, 2021a. 粉垄耕作提高土壤养分有效性并促进甘蔗维管组织发育和养分吸收 [J]. 植物营养与肥料学报, 27(2): 204-214. ]

    • LI H, WEI BH, HUANG JL, et al. , 2021b. Effects of Fenlong cultivation on root cell structure and enzyme of respiratory metabolic of sugarcane [J]. Sci Agric Sin, 54(3): 522-532. [李浩, 韦本辉, 黄金玲, 等, 2021b. 粉垄对甘蔗根系结构发育及呼吸代谢相关酶活性的影响 [J]. 中国农业科学, 54(3): 522-532. ]

    • LI SL, HUANG JL, WEI BH, et al. , 2021. Effects of Fenlong tillage on photosynthetic and physiological characteristics, yield and quality of sugarcane (Saccharum officinarum) [J]. Chin J Trop Crop, 42(3): 726-731. [李素丽, 黄金玲, 韦本辉, 等, 2021. 粉垄耕作对甘蔗光合生理特性及产量品质的影响 [J]. 热带作物学报, 42(3): 726-731. ]

    • LI YB, YUN HC, YANG X, et al. , 2013. Effects of deep vertically rotary tillage on soil water and water use efficiency in northern China’s Huang-huai-hai region [J]. Acta Ecol Sin, 33(23): 7478-7486. [李轶冰, 逄焕成, 杨雪, 等, 2013. 粉垄耕作对黄淮海北部土壤水分及其利用效率的影响 [J]. 生态学报, 33(23): 7478-7486. ]

    • LI ZS, JIANG DH, WEI BH, 2020. Effects of Fenlong on rhizosphere microorganisms and enzyme activities in perennial sugarcane field [J]. New Agric, (7): 45-47. [黎佐生, 蒋代华, 韦本辉, 2020. 粉垄耕作对宿根蔗地根际微生物及酶活性的影响 [J]. 新农业, (7): 45-47. ]

    • LIU JH, 2019. Effects of Smash-ridging tillage on soil properties and potato growth [D]. Yinchuan: Ningxia University: 32-33. [刘江汉, 2019. 粉垄耕作对土壤性质及马铃薯生长的影响 [D]. 银川: 宁夏大学: 32-33. ]

    • LIU ZP, 2018. Quality characteristics and regulation technique of sugarcane cultivated-layer in red soil slope farmland [D]. Chongqing: Southwest University: 23. [刘志鹏, 2018. 红壤坡耕地甘蔗耕层质量特征及调控技术研究 [D]. 重庆: 西南大学: 23. ]

    • LUO T, WU JM, DENG YC, et al. , 2021. The status and etiology analysis of chlorosis disease of ratoon sugarcane in Guangxi [J]. Sugarcane Canesugar, 50(1): 68-73. [罗霆, 吴建明, 邓宇驰, 等, 2021. 广西宿根甘蔗黄化病现状及病因分析 [J]. 甘蔗糖业, 50(1): 68-73. ]

    • NIE SW, ZHANG YT, ZHANG QP, et al. , 2017. Effect of smashing ridge tillage on grain yields of winter wheat and summer maize and contents of soil nutrients [J]. Chin J Soil Sci, 48(4): 930-936. [聂胜委, 张玉亭, 张巧萍, 等, 2017. 粉垄耕作对小麦玉米产量及耕层土壤养分的影响 [J]. 土壤通报, 48(4): 930-936. ]

    • REN BZ, LI X, DONG ST, et al. , 2018. Soil physical properties and maize root growth under different tillage systems in the North China Plain [J]. Crop J, 6(6): 669-676.

    • WANG B, HE WS, GENG SJ, 2020. Effects of Fenlong on soil water use efficiency and potato yield [J]. Jiangsu Agric Sci, 48(21): 93-96. [王斌, 何文寿, 耿世杰, 2020. 粉垄耕作对土壤水分利用效率和马铃薯产量的影响 [J]. 江苏农业科学, 48(21): 93-96. ]

    • WANG HG, GUO ZJ, SHI Y, et al. , 2015. Impact of tillage practices on nitrogen accumulation and translocation in wheat and soil nitrate-nitrogen leaching in drylands [J]. Soil Till Res, 153: 20-27.

    • WANG Q, CHEN PS, ZHOU J, et al. , 2019. Effects of Fenlong on agronomic characters and yield of sugarcane [J]. Jiangsu Agric Sci, 47(4): 65-68. [王奇, 陈培赛, 周佳, 等, 2019. 粉垄耕作对甘蔗农艺性状及产量的影响 [J]. 江苏农业科学, 47(4): 65-68. ]

    • WANG Q, ZHU YC, SHEN ZY, et al. , 2020. Regulation of smashing ridging tillage on sugarcane root growth and nitrogen absorption and utilization [J]. J S Agric, 51(11): 2674-2681. [王奇, 朱艳春, 申章佑, 等, 2020. 粉垄耕作对甘蔗根系生长及氮素吸收利用的调控作用 [J]. 南方农业学报, 51(11): 2674-2681. ]

    • WANG SJ, JIANG DH, ZHU WG, et al. , 2020. Effect of deep vertical rotary tillage on aggregate structure in farmland of lateritic red soil [J]. Acta Pedol Sin, 57(2): 326-335. [王世佳, 蒋代华, 朱文国, 等, 2020. 粉垄耕作对农田赤红壤团聚体结构的影响 [J]. 土壤学报, 57(2): 326-335. ]

    • WEI BH, 2010. Brief report on cultivation techniques of dry land crops with Fenlong [J]. Sci Agric Sin, 43(20): 4330. [韦本辉, 2010. 旱地作物粉垄栽培技术研究简报 [J]. 中国农业科学, 43(20): 4330. ]

    • WEI BH, 2021. The study on the construction and application of sugarcane Fenlong “145” technology system [J]. Sugarcane Canesugar, 50(3): 1-4. [韦本辉, 2021. 甘蔗粉垄“145”技术体系的构建与应用探讨 [J]. 甘蔗糖业, 50(3): 1-4. ]

    • WEI BH, GAN XQ, LI YY, et al. , 2017. Effects of once fenlong cultivation on soil properties and rice yield and quality for 7 consecutive years [J]. Agric Sci Technol, 18(12): 2365-2371.

    • WEI BH, GAN XQ, SHEN ZY, et al. , 2011. Yield increase of smash-ridging cultivation of sugarcane [J]. Sci Agric Sin, 44(21): 4544-4550. [韦本辉, 甘秀芹, 申章佑, 等, 2011. 粉垄栽培甘蔗试验增产效果 [J]. 中国农业科学, 44(21): 4544-4550. ]

    • WEI ZL, ZHANG LM, LU GP, et al. , 2018. The effect of powder ridge cultivation on sugarcane yield and sugar [J]. Sugarcane Canesugar, 47(6): 37-40. [韦增林, 张亮曼, 卢国培, 等, 2018. 粉垄栽培对甘蔗产量及糖分影响初报 [J]. 甘蔗糖业, 47(6): 37-40. ]

    • XIE HY, CHEN SY, ZHANG Y, et al. , 2021. Research progress on causes of soil acidification & acid soil improvement technology in south China [J]. Hunan Agric Sci, 425(2): 104-107. [谢会雅, 陈舜尧, 张阳, 等, 2021. 中国南方土壤酸化原因及土壤酸性改良技术研究进展 [J]. 湖南农业科学, 425(2): 104-107. ]

    • YIN B, HU Z, WANG Y, et al. , 2021. Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L. ) yield in the North China Plain [J]. Agr Water Manage, 247: 106732.

    • ZHAI LC, WANG ZB, SONG SJ, et al. , 2021. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity [J]. Agr Water Manage, 245: 106600.

    • ZHAI LC, XU P, ZHANG ZB, et al. , 2017. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China [J]. Soil Till Res, 170: 167-174.

    • ZHAI LC, XU P, ZHANG ZB, et al. , 2019. Improvements in grain yield and nitrogen use efficiency of summer maize by optimizing tillage practice and nitrogen application rate [J]. Agron J, 111(2): 1-11.

    • ZHAO QG, HUANG GQ, MA YQ, 2013. The problems in red soil ecosystem in southern of China and its countermeasures [J]. Acta Ecol Sin, 33(24): 7615-7622. [赵其国, 黄国勤, 马艳芹, 2013. 中国南方红壤生态系统面临的问题及对策 [J]. 生态学报, 33(24): 7615-7622. ]

    • ZHAO SL, LI FM, ZHANG DY, et al. , 1997. Crop production is a population process [J]. Acta Ecol Sin, 17(1): 102-106. [赵松岭, 李凤民, 张大勇, 等, 1997. 作物生产是一个种群过程 [J]. 生态学报, 17(1): 102-106. ]

    • ZHOU J, ZHOU LZ, LAO CY, et al. , 2020. Effects of short-term different tillage methods on the diversity of bacterial community in rice rhizosphere soils [J]. J S Agric, 51(10): 2401-2411. [周佳, 周灵芝, 劳承英, 等, 2020. 短期不同耕作方式对水稻根际土壤细菌群落结构多样性的影响 [J]. 南方农业学报, 51(10): 2401-2411. ]

    • ZHOU LZ, WEI BH, GAN XQ, et al. , 2017. Effects of smash-ridging cultivation on the growth and yield of sugarcane [J]. Anhui Agric Sci, 45(9): 29-31. [周灵芝, 韦本辉, 甘秀芹, 等, 2017. 粉垄栽培对甘蔗生长和产量的影响 [J]. 安徽农业科学, 45(9): 29-31. ]