en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙浩然(1996-),硕士研究生,主要从事传粉生物学研究,(E-mail)17854203053@163.com。

通讯作者:

任明迅,博士,教授,主要从事植物生态与进化研究与教学工作,(E-mail)renmx@hainanu.edu.cn。

中图分类号:Q944

文献标识码:A

文章编号:1000-3142(2023)05-0817-10

DOI:10.11931/guihaia.gxzw202112007

参考文献
ARMBRUSTER WS, SHI XQ, HUANG SQ, 2014. Do specialized flowers promote reproductive isolation?realized pollination accuracy of three sympatric Pedicularis species [J]. Ann Bot, 113(2): 331-340.
参考文献
BARRETT SCH, COLE WW, ARROYO J, et al. , 1997. Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous? [J]. Heredity, 78: 135-145.
参考文献
BARRETT SCH, JSEEON LK, BAKER AM, 2000. The evolution and function of stylar polymorphisms in flowering plants [J]. Ann Bot, 85(Suppl. A): 253-265.
参考文献
CRUDEN RW, 1977. Pollen-Ovule ratios: A conservative indicator of breeding systems in flowering plants [J]. Evolution, 35: 964-974.
参考文献
DAFNI A, 1992. Pollination ecology: a practical approach [M]. Oxford: Oxford University Press.
参考文献
DU W, QIN KZ, WANG XF, 2012. The mechanism of stamen movement in Chimonanthus praecox (Calycanthaceae): differential cell growth rates on the adaxial and abaxial surfaces of filaments after flower opening [J]. Plant Syst Evol, 298(3): 561-567.
参考文献
DUAN YA, LI QJ, 2008. The pollination biology of Phrynium oliganthum (Marantaceae) [J]. J Syst Evol, 46(4): 545-553. [段友爱, 李庆军, 2008. 少花柊叶传粉生物学的研究 [J]. 植物分类学报, 46(4): 545-553.
参考文献
FENSTER CB, ARMBRUSTER WS, WILSON P, et al. , 2004. Pollination syndromes and floral specialization [J]. Ann Rev Ecol Syst, 35(1): 375-403.
参考文献
FETSCHER AE, 2001. Resolution of male-female conflict in an hermaphroditic flower [J]. Biol Sci, 268(1466): 525-529.
参考文献
GAO JY, REN PY, YANG ZH, et al. , 2006. The pollination ecology of Paraboea rufescens (Gesneriaceae), a buzz-pollinated tropical herb with mirror-image flowers [J]. Ann Bot, 97(3): 371-376.
参考文献
GONG YB, HUANG SQ, 2007. On methodology of foraging behavior of pollinating insects [J]. Biodivers Sci, 15(6): 576-583. [龚燕兵, 黄双全, 2007. 传粉昆虫行为的研究方法探讨 [J]. 生物多样性, 15(6): 576-583. ]
参考文献
HUANG SQ, 2007. Studies on plant-pollinator interaction and its significances [J]. Biodivers Sci, 15(6): 569-575. [黄双全, 2007. 植物与传粉者相互作用的研究及其意义 [J]. 生物多样性, 15(6): 569-575. ]
参考文献
HUANG SQ, SHI XQ, 2013. Floral isolation in Pedicularis: how do congeners with shared pollinators minimize reproductive interference [J]. New Phytol, 199(3): 858-865.
参考文献
JESSON LK, BARRETT SCH, 2002a. Solving the puzzle of mirror-image flowers [J]. Nature, 417(6890): 707.
参考文献
JESSON LK, BARRETT SCH, 2002b. The genetics of mirror-image flowers [J]. Proc Biol Sci, 269(1502): 1835-1839.
参考文献
JESSON LK, BARRETT SCH, 2002c. Enantiostyly in Wachendorfia (Haemodoraceae): the influence of reproductive systems on the maintenance of the polymorphism [J]. Am J Bot, 89(2): 253-262.
参考文献
JESSON LK, BARRETT SCH, 2003. The comparative biology of mirror-image flowers [J]. Int J Plant Sci, 164(S5): S237-S249.
参考文献
LI QJ, XU ZF, KRESS WJ, et al. , 2001. Flexible style that encourages outcrossing [J]. Nature, 410: 432.
参考文献
LI ZY, WANG YZ, 2005. Plants of Gesneriaceae in China [M]. Zhengzhou: Henan Science and Technology Publishing House. [李振宇, 王印政, 2005. 中国苦苣苔科植物 [M]. 郑州: 河南科学技术出版社. ]
参考文献
LLOYD DG, SCHOEN DJ, 1992. Self and cross fertilization in plants: The selection of self-fertilization [J]. Intern J Plant Sci, 153: 370-380.
参考文献
MAYFIELD MM, WASER NM, PRICE MV, 2001. Exploring the ‘Most Effective Pollinator Principle’ with complex flowers: bumblebees and Ipomopsis aggregate [J]. Ann Bot, 88(4): 591-596.
参考文献
QU RM, LI XJ, LUO YB, et al. , 2007. Wind-Dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination [J]. Ann Bot, 100(6): 1155-1164.
参考文献
REN MX, 2009. Floral syndrome and breeding system of Lobelia chinensis, a perennial herb with stamen fusion [J]. Chin J Plant Ecol, 33(2): 130-137. [任明迅, 2009. 雄蕊合生植物半边莲的花部综合征与繁育系统 [J]. 植物生态学报, 33(2): 130-137. ]
参考文献
REN MX, ZHONG YF, SONG XQ, et al. , 2013. Mirror-image flowers without buzz pollination in the Asian endemic Hiptage benghalensis (Malpighiaceae) [J]. Bot J Linn Soc, 173(4): 764-774.
参考文献
ROALSON EH, ROBERTS WR, 2016. Distinct processes drive diversification in different clades of Gesneriaceae [J]. Syst Biol, 65(4): 662-684.
参考文献
SCHOEN DJ, BROWN AHD, 1991. Whole-and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy [J]. Evolution, 45(7): 1651-1665.
参考文献
WEI YG, 2010. Gesneriaceae of South China [M]. Nanning: Guangxi Science and Technology Press. [韦毅刚, 2010. 华南苦苣苔科植物 [M]. 南宁: 广西科学技术出版社. ]
参考文献
YANG SX, YANG CF, ZHANG T, et al. , 2004. A mechanism facilitates pollination due to stigma behavior in Campsis radicans (Bignoniaceae) [J]. Acta Bot Sin, 46(9): 1071-1074.
参考文献
YU Q, HUANG SQ, 2004. Flexible stigma presentation assists context-dependent pollination in a wild columbine [J]. New Phytol, 169(2): 237-241.
参考文献
ZHANG DY, 2004. Plant life-history evolution and reproductive ecology [M]. Beijing: Science Press. [张大勇, 2004. 植物生活史进化与繁殖生态学 [M]. 北京: 科学出版社. ]
目录contents

    摘要

    圆唇苣苔属(Gyrocheilos)是苦苣苔科的中国特有属,有5种,全部狭域分布在我国西南及广东的高海拔山区。圆唇苣苔属所有物种的花柱侧偏且花柱顶端呈90°弯折,使得柱头位于花开口的中央位置。这种独特的侧偏弯折花柱结构,说明圆唇苣苔属可能有着特殊的演化历史和适应机制。为揭示这种特殊的花柱侧偏弯折现象的发生范围、发育过程及其传粉适应机制,该研究在圆唇苣苔(Gyrocheilos chorisepalus)、折毛圆唇苣苔(G. retrotrichus)和微毛圆唇苣苔(G. microtrichus)3个物种中开展了花部综合征观察,并研究了广东大雾岭保护区内的折毛圆唇苣苔花发育过程、花部特征和繁育系统以及传粉过程。结果表明:(1)微毛圆唇苣苔只有花柱左偏弯折现象,而圆唇苣苔和折毛圆唇苣苔虽然大部分花是花柱左偏弯折,但在部分个体中出现了少量的花柱右偏弯折现象(占种群总花数的2%~3%)。(2)传粉观察发现,折毛圆唇苣苔在花蕾期即出现了花柱弯折现象,2个可育雄蕊的花药合生、位于花冠筒喉部中央位置,与侧偏花柱不存在左右镜像对称关系。(3)折毛圆唇苣苔的花粉胚珠比(P/O)为456.98±15.55,属于兼性异交繁育系统。折毛圆唇苣苔存在一定的传粉限制,自交授粉可以结实,但异交种子萌发率更高,可能存在近交衰退。(4)折毛圆唇苣苔的访花昆虫较少,访花频率较低,主要访花昆虫有隧蜂、熊蜂、食蚜蝇等;熊蜂体型较大,访花时降落在弯折花柱和花瓣下唇,胸部侧面及下部能有效接触到柱头。(5)反射率结果显示,折毛圆唇苣苔花瓣反射波长范围集中在紫光和蓝紫光区域,花冠的反射波长范围与蜂类视觉范围一致且花冠筒外侧和花瓣下唇的反射强度最大,更容易吸引蜂类落置在花冠宽大的下唇;圆唇苣苔属的花柱侧偏弯折现象可能来自近缘的长蒴苣苔属(Didymocarpus)的花柱下弯现象或镜像花(mirror-image flowers)。综上认为,这种侧偏弯折的花柱,可能通过提供昆虫降落平台,使得柱头位于花开口中央和花瓣下唇的上方位置,提高了柱头接触访花昆虫的概率,是适应高海拔地区低频率访花者的一种机制。

    Abstract

    Gyrocheilos is a small genus of Gesneriaceae endemic to hight altitude mountains in Southwest China and Guangdong Province, with only five species. This genus is characterized by laterally bending style, which curves 90° at the top of the style and the stigma right at the mouth of floral tube. This unusual floral trait may have special evolutionary and adaptive mechanisms . In this paper, three Gyrocheilos species, i.e. G. chorisepalus, G. retrotrichus, G. microtrichus were examined to figure out the developmental patterns of floral lateral bending. Breeding systems, floral syndrome and pollination processes were also studied in G. retrotrichus at Dawuling Mountain, Guangdong Province, to explore its pollination adaptations. The results were as follows: (1) G. microtrichus had only left-bending style, while right-bending style were observed in several flowers (2%-3% of the total flowers) of G. chorisepalus and G. retrotrichus, although the individuals and populations were dominated by left-bending style. (2) Pollination observation found that style lateral bending occurred at the early stage of floral bud in G. retrotrichus, with two fertile stamens were anther-united and hidden at the middle of the floral throat, and there was no left and right mirror symmetry relationship with the lateral style. (3) The pollen-ovule ratio (P/O) was ( 456.98±15.55), belonging to facultative outcross breeding system. G. retrotrichus had a certain pollen limitation and self-pollination, but the germination rate of outcross seeds was higher, and there might be inbreeding decline. (4) There were few floral visitors and the frequency was low of G. retrotrichus. The main floral visitors were Halictidae, Bombus and Syrphidae. Bombus were large, and they landed on the bent style and the lower lip of the petals when visiting flowers. The side and lower part of the chest could effectively contact the stigma. (5) The detected reflected lights of flowers were composed of purple and blue-purple lights and the lower lips and outer floral tube with the highest reflection intensity, more likely to attract bees to land on the corolla's lower lip. Molecular phylogeny indicated that the closest genus of Gyrocheilos was Didymorcarpus, which was characterized by style downward bending and mirror-image flowers, suggesting the style lateral bending in Gyrocheilos probably evolved from either of these conditions. In conclusion, the lateral bending style might provide landing platform for pollinators and the stigma above the lower lips increase contact probability the floral visitors, which is an adaptation to the very low insect visitation due to fragmented and foggy habitats in high altitude areas.

  • 被子植物花柱的形态与空间位置是决定柱头落置花粉、胚珠授粉成功的一个关键因素,往往是由访问最频繁、最有效的传粉者塑造的(Mayfield et al.,2001; Fenster et al.,2004)。在适应不同传粉者类型与访花行为以最大化柱头接受同种花粉概率的选择压力下,花柱出现了极大的多态性(Barrett et al.,2000),如花柱运动(Li et al.,2001; Yu &Huang,2004; 段友爱和李庆军,2008)、柱头裂片开合(Fetscher,2001; Yang et al.,2004)、异长花柱(Barrett et al.,2000)、镜像花的侧偏花柱(Jesson &Barrett,2002a,b; Gao et al.,2006; Ren et al.,2013)等,成为研究花部综合征(floral syndrome)、花-传粉者协同进化的关键性状之一(黄双全,2007)。

  • 苦苣苔科(Gesneriaceae)圆唇苣苔属(Gyrocheilos)的花柱形态非常特别:花柱不仅偏转在花冠筒的一侧,而且花柱顶端呈90°弯折,使得花柱顶端2~3 mm的部分横在花冠筒开口、柱头处于花开口处的中央位置(韦毅刚,2010)。这种花柱侧偏弯折现象不同于目前已知的花柱类型,可能存在不一样的发育过程和传粉适应机制,对认识苦苣苔科传粉系统演化和物种形成机制具有积极意义。

  • 圆唇苣苔属是中国特有属,仅5种2变种(王文采等,1990),狭域分布于广西与广东等地的高海拔山区的郁闭林下或溪谷山涧(韦毅刚,2010),生境呈典型的斑块状分布。本研究广泛调查了圆唇苣苔属3个物种的花柱侧偏弯折现象及其主要花部特征,并以折毛圆唇苣苔(Gyrocheilosretrotrichus)为例,研究了花部综合征及其发育过程、传粉机制和繁育系统。本文主要回答2个科学问题:(1)圆唇苣苔属花柱侧偏弯折现象的发育过程和主要特征;(2)圆唇苣苔属花柱侧偏弯折现象的传粉适应机制。

  • 1 材料与方法

  • 1.1 圆唇苣苔属花柱侧偏弯折现象的系统分布

  • 2021年4—5月调查了正处于盛花期的广西南宁大明山保护区天坪站附近石壁的圆唇苣苔(Gyrocheiloschorisepalus)、广东大雾岭大田顶林下山坡的折毛圆唇苣苔、广东大雾岭长坑林区山涧边的微毛圆唇苣苔(G. microtrichus)3个物种的花柱弯折现象。选择这3个种分布较集中的大种群,记录开花个体数。随机挑选不少于种群规模一半的个体,不少于200朵花,统计花柱侧偏弯折的现象。

  • 1.2 折毛圆唇苣苔花柱侧偏弯折的发生过程

  • 在折毛圆唇苣苔居群内,随机选取不同植株的25朵花蕾进行标记,记录雌雄蕊的变化。折毛圆唇苣苔的花蕾发育阶段分为5个时期: 花蕾期I、花蕾期Ⅱ、花蕾期Ⅲ、花蕾期Ⅳ、花蕾期Ⅴ(花瓣裂片顶端部分松散,即将打开)、花开放期(花瓣上下唇裂片打开)。每个时期取5朵花进行解剖,拍照并记录花内各部位尤其是雌蕊与雄蕊结构的变化。

  • 1.3 访花昆虫及访花行为

  • 参照龚燕兵和黄双全(2007)的方法,在折毛圆唇苣苔种群内开花个体集中的斑块中,以50株个体为观察对象,使用数码相机对访花昆虫进行拍摄观察。记录访花者形态种类、访花行为和总访问次数。通过访花昆虫是否接触到柱头、是否从花开口进入花冠筒等,判断访花昆虫是不是可能的有效传粉者。

  • 1.4 繁育系统

  • 1.4.1 异交指数与花粉胚珠比(P/O)

  • 依据Dafni(1992)的标准,测量折毛圆唇苣苔30朵花的单花直径、雌雄蕊成熟顺序和柱头与花药的相对位置并计算异交指数(OCI)。异交指数越大,植物异交水平越大,越需要传粉者。

  • 随机选取10朵花药尚未开裂的花,放入FAA固定液中,带回计算花粉和胚珠数量。取下花药,制成1 000 μL的花粉悬浮液,用移液枪吸取少量花粉液在光学显微镜(上海普丹XTL-10)下统计花粉数量,每朵花重复计数3次。在体式显微镜(尼康SMZ745T)下剥离出胚珠,统计胚珠数量。

  • 1.4.2 花粉与柱头活性

  • 参照Dafni(1992)的方法,随机选取30个处于花蕾期V的花蕾,标记为0状态。随后每隔1 d取3朵花,检测花粉活性和柱头可授性。方法如下:取部分新鲜花粉撒在滴有15%蔗糖溶液(含硼酸)的凹面载玻片上,置于培养皿中恒温培养10 h,然后在光学显微镜下统计花粉萌发率(花粉数>40为有效样本)来判断花粉活性的水平。柱头浸泡在3%的双氧水中,根据气泡产生的速率与数量判断柱头活性。

  • 1.4.3 花瓣反射率实验

  • 取刚开放的花,用便携式光谱仪(赛曼S3000-UV-NIR)和光纤反射探针(Fiber Y 400 μm)测量花冠筒外侧、花冠筒内侧、花瓣下唇、花瓣上唇4个部位的花瓣反射率。光源采用脉冲氙灯(Xe-02),参考光使用标准反射白板(WB-02)。使用花下第一片叶作为背景光参照物。测量时将探针倾斜45°并置于距离花瓣表面5 mm处。用SpectraPro V3.3(杭州塞曼科技有限公司)整理反射率数据。

  • 1.4.4 人工授粉套袋实验

  • 在花冠裂片未完全展开前,随机选取10个植株上的花做人工处理(Dafni,1992)。设置的5个处理如下。(1)自然对照:不做任何处理,作自然情况下的对照。(2)无处理套袋:不进行任何处理直接套袋。(3)去雄套袋:在即将开花之前,去掉花药后套袋。(4)自交授粉:在开花前去雄套袋,花开后用同株的花粉涂在柱头上,套袋。(5)异交授粉:花开前去雄套袋,花开后用其他植株的花粉涂在柱头上,套袋。每组10朵,1个月后统计各处理的坐果率和结实率。

  • 1.4.5 种子萌发实验

  • 取上述5组不同处理得到的膨大果实,每个果实各选取100粒种子,使用蒸馏水清洗3次,将种子置于铺有灭菌滤纸且用蒸馏水浸润的培养皿中,恒温培养。以胚根长度超过种子长度作为种子萌发成功的标志,30 d后统计不同处理下的种子萌发率。通过自交和异交种子的萌发率差异,判断是否存在近交衰退。

  • 1.5 数据分析

  • 采用SPSS 13.0 for Windows 统计软件的one-way ANOVA分析套袋实验中不同处理间的结实率、每果平均种子数的差异。数据间的两两比较采用Student-Newman-Keuls检验法(S-N-K法)(任明迅,2009)。

  • 2 结果与分析

  • 2.1 圆唇苣苔属花柱弯折现象

  • 广西南宁大明山的圆唇苣苔种群个体数超过200株。对种群中351朵花的花柱弯折情况进行了调查,花柱左偏花与右偏花可以出现在同一个体上,其中花柱左偏花341朵、花柱右偏花10朵,花柱右偏花占2.85%(图1)。

  • 广东大雾岭大田顶的折毛圆唇苣苔种群约有2 000个开花个体。统计了种群中541朵花的花柱弯折情况,花柱左偏花与右偏花可以出现在同一个体上,其中花柱左偏花、右偏花分别有532、9朵,花柱右偏花占1.66%(图1)。

  • 广东大雾岭长坑林区的微毛圆唇苣苔有花个体数量约200株。一共调查了230朵花,全部都是左偏弯折花,没有发现花柱右偏弯折现象(图1)。

  • 2.2 花部综合征与花柱侧偏弯折过程

  • 折毛圆唇苣苔花紫红色,花序大而繁茂,花冠平均长约12 mm。每个植株有1~3条花序,每个花序有5~20朵花,为双花聚伞花序。折毛圆唇苣苔花大多在凌晨开放,开花时,首先是下唇左右裂片先展开,2~3 h后下唇中裂片展开,上下唇瓣分离,即花开放。花开放后上唇边缘逐渐向后翻折、下唇继续向下展开,花柱向花筒外伸长。花蕾期花冠呈深紫红色,在花开放时逐渐变为淡紫红色(图2)。单花寿命通常为6~7 d。

  • 折毛圆唇苣苔花柱基部的花盘明显,可能分泌有花蜜(图2)。折毛圆唇苣苔的花柱在距基部约1 mm位置侧偏,使整个花柱水平偏向花左侧;除了花柱基部的侧偏,在花柱顶端靠近柱头3~5 mm处柱头还向花中央弯折。折毛圆唇苣苔的雌雄蕊长度近似,花柱位于中央花药的正上方(图2:花蕾期I)。随后,花柱逐渐伸长,柱头开始向下钩弯(图2:花蕾期Ⅱ),并随着花柱的伸长逐渐离开花药位置向侧面偏移(图2:花蕾期Ⅲ)。随着花柱的伸长,雌雄异位程度和花柱侧偏更加明显、花柱上端弯折程度逐渐增大至90°(图2:花蕾期IV)。在花即将开放时(图2:花蕾期V),花柱完全侧偏在花冠筒侧壁,弯折的柱头位于雄蕊花药正前方。花完全打开时,花柱远远伸出花冠口,弯折的花柱上端呈镰刀状横在花开口处(图2)。

  • 2.3 传粉过程

  • 折毛圆唇苣苔主要访花昆虫为熊蜂,偶见有隧蜂或食蚜蝇访问(图3)。其中,熊蜂的访问频率最高,常见于11:00—13:00访花。熊蜂访花时常降落在花的下唇(图3),用脚钩住下唇或弯折花柱以固定身体。访花时熊蜂胸部侧面和下部能明显接触到位于花开口中央位置的柱头,有时在收集完花粉后也会在花筒口将花粉梳理进花粉篮。熊蜂停留时间较短,平均访花时间4 s左右,在飞离时,能明显观察到由熊蜂振翅引起的花粉散出。

  • 2.4 花瓣反射率

  • 折毛圆唇苣苔花瓣各部位的反射波长集中在384 nm(紫光)、406 nm(紫光)、426~437 nm(紫光)处,在462 nm(蓝光)处也有较高的反射强度。花冠的反射波长在蜂类视觉范围内,说明折毛圆唇苣苔主要靠吸引蜂类传粉,与传粉观察结果一致。折毛圆唇苣苔的花冠筒外侧和花瓣下唇的反射强度最大,高于花冠筒内和上唇的反射率(图4),花冠下唇更高的反射率使得蜂类传粉时更容易落置在下唇,从而控制其访花行为。

  • 2.5 繁育系统

  • 2.5.1 异交指数与花粉胚珠比(P/O)

  • 折毛圆唇苣苔的花较大,柱头与花药间存在明显的雌雄异位,雄蕊先熟。根据Dafin(1992)对异交指数的计算标准,折毛圆唇苣苔的异交指数为3,繁育系统为兼性异交,自交亲和,可能需要传粉者。

  • 折毛圆唇苣苔单花的花粉数为(7.33±0.34)×105粒,胚珠数为(1 604±93)个;花粉胚珠比(P/O)为456.98±15.55。依据Cruden(1977)的标准,折毛圆唇苣苔的繁育系统为兼性异交。

  • 2.5.2 花粉与柱头活性

  • 虽然折毛圆唇苣苔的花粉在花瓣裂片打开时就有一定活性,但其活性较低 (25%)(图5),花粉活性在花开后第3天达到最大值(80%),之后逐渐降低,第8天完全为0。柱头在开花前没有活性,在花开放后第3天活性达到最高值,并持续3~4 d(图5)。

  • 图1 圆唇苣苔属3个物种的花柱侧偏弯折现象

  • Fig.1 Style lateral bending in three Gyrocheilos species

  • 图2 花柱侧偏弯折的发育过程

  • Fig.2 Development of style lateral bending

  • 2.5.3 人工套袋

  • 自然条件下,折毛圆唇苣苔的坐果率为36%、种子数为(406±126.03)粒(表1)。去雄套袋结实率为0,不存在无融合生殖。无处理套袋有1朵花成功坐果、种子数为240粒,可能存在一定程度自交。人工授粉的折毛圆唇苣苔显著高于自然对照的坐果率,显示折毛圆唇苣苔自然繁殖存在一定的传粉限制。异交授粉的坐果率略高于自交授粉坐果率,但不存在显著差异(表1)。

  • 2.5.4 种子萌发率

  • 自然结实的种子萌发率可达(52 ± 11.01)%,无处理套袋的种子萌发率为(24±1.21)%,表明自交的种子也具有一定的活性,人工自交授粉种子的萌发率略高于无处理套袋的萌发率,可能是由无处理套袋果实样本量极少导致的数据偏差。人工异交授粉的种子萌发率(61±9.86)%显著高于自交种子的萌发率和自花授粉种子的萌发率(36±9.36)%,说明折毛圆唇苣苔可能存在近交衰退(图6)。

  • 图3 折毛圆唇苣苔的主要访花昆虫有隧蜂(A、B)、熊蜂(C)、食蚜蝇(D)

  • Fig.3 Main floral visitors of Gyrocheilosretrotrichus are Halictidae (A, B) , Bombus (C) andSyrphidae (D)

  • 图4 折毛圆唇苣苔花部主要部位的反射光强度

  • Fig.4 Reflected light intensity of different floral parts of Gyrocheilosretrotrichus

  • 图5 折毛圆唇苣苔花粉与柱头的活性变化

  • Fig.5 Pollen viability and stigma receptivity during floral developments of Gyrocheilosretrotrichus

  • 3 讨论

  • 3.1 圆唇苣苔属花柱侧偏弯折现象的特征与演化

  • 圆唇苣苔属的花柱侧偏弯折现象,在形态上类似于镜像花(mirror-image flowers)。镜像花是一种特化的昆虫传粉机制,通过花柱偏左或偏右,形成镜像对称的2种花型促进异交传粉(Barrett et al.,2000; Jesson &Barrett,2002c; Ren et al.,2013)。但是,在本研究中,圆唇苣苔属的花柱侧偏弯折现象在2个方面不同于镜像花:(1)镜像花通常都有1个对应侧偏在另一侧的可育雄蕊(Barrett et al.,2000; 张大勇,2004; Ren et al.,2013),而圆唇苣苔属的可育雄蕊位于花冠筒内上方的中央位置,不侧偏;(2)镜像花的花柱通常仅侧偏、不弯折,柱头位于花的侧面,而圆唇苣苔属的花柱上端显著呈90°弯折,使得柱头位于花开口的中央位置。因此,圆唇苣苔属花柱侧偏弯折现象可能有着特殊的演化历史和传粉适应机制。

  • 表1 折毛圆唇苣苔人工授粉套袋实验结实情况

  • Table1 Fruit-setting and seed-setting results after bagging experiment of Gyrocheilosretrotrichus

  • 注:同列不同字母表示差异显著(P < 0.05)。

  • Note: Different letters in the same column indicate significant differences (P<0.05) .

  • 不同字母表示差异显著(P<0.05)。

  • Different letters indicate significant differences (P<0.05) .

  • 图6 折毛圆唇苣苔不同处理花的种子萌发率

  • Fig.6 Seed germination rate after different treatments of Gyrocheilosretrotrichusflowers

  • 与圆唇苣苔属亲缘关系最近的长蒴苣苔属(Didymocarpus)的温州长蒴苣苔(D. cortusifolius)、沅陵长蒴苣苔(D. yuenlingensis)等植物的花柱也存在弯折现象(韦毅刚,2010;Roalson &Roberts,2016),但本研究花柱位于花冠筒正上方,花柱顶端朝下弯折。这种下弯花柱有利于接触到访花者背部携带的花粉(Armbruster et al.,2003; Huang &Shi,2013)。我们根据Roalson和Roberts(2016)的分子系统关系,推测圆唇苣苔属的祖先状态可能是这种处于花冠筒中央位置的下弯花柱。但是,在后期的演化中,控制花柱细胞分裂的基因发生突变,花丝基部内外侧细胞分裂速率与方向存在差异导致花柱侧偏,逐渐形成了侧偏的弯折花柱(Du et al.,2012)。这种侧偏弯折花柱可以利用访花者胸部或腹部侧面进行传粉,降低了其与其他植物竞争传粉者背部传粉导致的传粉干扰(Huang &Shi,2013);同时,侧偏弯折的花柱避免了大型访花昆虫快速粗暴访花行为对雌蕊造成的物理伤害,具有保护雌蕊的作用(Barrett et al.,2000)。随后,在提高柱头花粉落置成功率的选择压力下,花柱顶端弯折程度逐渐增大到90°,形成了圆唇苣苔属特有的花柱侧偏弯折现象。

  • 系统树改自Roalson和Roberts(2016)。

  • Phylogeny tree is redrawn from Roalson and Roberts (2016) .

  • 图7 圆唇苣苔属与亲缘属的主要花部特征

  • Fig.7 Main floral traits of Gyrocheilos and its closest relatives

  • 在本研究中,圆唇苣苔属的近缘属长蒴苣苔属出现了镜像花,而苦苣苔科蛛毛苣苔属(Paraboea)镜像花中也存在着花柱顶端的弯折现象(Gao et al.,2006; 韦毅刚,2010);此外,本研究的圆唇苣苔属也出现了少量的花柱右偏弯折的花型,与占据绝对优势的花柱左偏弯折花型呈现出镜像对称。这暗示着圆唇苣苔的花柱侧偏弯折现象可能与镜像花有着密切的联系。但是,镜像花的异交传粉机制在传粉者访花频率极低的生境中难以实现与维持(Jesson &Barrett,2002c)。镜像花由1个位点的2个等位基因控制,其中右偏花柱是显性,左偏花柱是隐性(Jesson &Barrett,2002a,b)。圆唇苣苔属的生境郁闭度高、浓雾较大,可能导致祖先类群的镜像花异交机制受限,在经历了遗传瓶颈和较高频率的自交繁殖保障之后,导致只有隐性纯合的花柱左偏这一种花型占据绝对优势(Jesson &Barrett,2002b),并在后期逐渐增大花柱顶端的弯折程度。镜像花崩溃成单一或单优花型的现象,在百合科(Liliaceae)和血草科(Haemodoraceae)折扇草属折扇草(Wachendorfiathyrsiflora)等植物中也有报道(Jesson &Barrett,2002b,2003)。今后,需要开展深入的分子系统学和遗传发育机制的研究,确定圆唇苣苔属花柱弯折和花柱侧偏2个性状的演化顺序,才能更好地确定圆唇苣苔属花柱侧偏弯折现象的起源与演化历史。

  • 3.2 花柱侧偏弯折现象的传粉适应机制

  • 花部综合征和人工授粉实验都表明:折毛圆唇苣苔属于以异交为主的繁育系统,但传粉限制明显;自交亲和,但存在一定的自交衰退,可能是由胁迫生境造成的传粉条件与传粉质量的下降导致的高自交亲和度(Schoen &Brown,1991)。圆唇苣苔属主要的有效传粉者熊蜂体型较大,在访花时只能降落在宽大的花瓣下唇,不能进入花冠筒内部。熊蜂访花时,经常用前足抓住花瓣上唇和弯折花柱维持身体平衡。在这个过程中,柱头得以接触到熊蜂胸部的侧面和下部,实现了传粉。同时,花柱弯折使得柱头位于花中央、反射率最高的下唇瓣的上方位置,这里是熊蜂等访花者降落频率最高的部位,可以最大化提高柱头接触传粉者的概率。因此,弯折的花柱既给熊蜂增加了降落平台,也提高了柱头接触传粉者的概率和花粉落置成功率,极大促进了传粉成功率。这可能是圆唇苣苔属植物对高海拔、浓雾山地传粉者访花频率极低环境的一种适应。

  • 在本研究中,与苦苣苔科其他植物相比,圆唇苣苔属还有着明显扁平的花冠筒开口。扁平的花冠筒限制了访花昆虫的访花位置,提高了位于花冠筒开口处的弯折花柱接触访花者身体部位的精确性。此外,我们在野外观察到,折毛圆唇苣苔花在第6天左右开始凋谢,脱落的花冠筒会在风的作用下顺着花柱滑落,弯折花柱的柱头能够接触到自花的花药,此时柱头有较高的活性,花粉活性较低但仍然具有一定活性,可能在一定程度上促进了自交繁殖保障。这种现象在唇形目紫葳科(Bignoniaceae)等植物也有发现(Lloyd &Schoen,1992; Qu et al.,2007),被证实是在异交失败或受限情况下的一种延迟自交机制(Qu et al.,2007)。

  • 因此,圆唇苣苔属花柱侧偏弯折现象是特化适应熊蜂等大型昆虫胸部侧面及下部传粉的一种机制,具有延迟自交的作用,提高了圆唇苣苔属在郁闭度高、浓雾、传粉服务较低等生境的适应能力,对于认识苦苣苔科物种适应分化具有积极意义。这种特殊的花部特征,既有可能是从复杂的特化传粉系统镜像花崩溃而来,又有可能是从位于花中央的下弯花柱逐渐偏转演化而来。在今后的研究中,可以结合圆唇苣苔属及其近缘属开展分子系统发育的研究,明确花柱侧偏和花柱弯折2个性状的演化顺序,才能更好地确定圆唇苣苔属花柱侧偏弯折现象的起源与适应历史。

  • 参考文献

    • ARMBRUSTER WS, SHI XQ, HUANG SQ, 2014. Do specialized flowers promote reproductive isolation?realized pollination accuracy of three sympatric Pedicularis species [J]. Ann Bot, 113(2): 331-340.

    • BARRETT SCH, COLE WW, ARROYO J, et al. , 1997. Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous? [J]. Heredity, 78: 135-145.

    • BARRETT SCH, JSEEON LK, BAKER AM, 2000. The evolution and function of stylar polymorphisms in flowering plants [J]. Ann Bot, 85(Suppl. A): 253-265.

    • CRUDEN RW, 1977. Pollen-Ovule ratios: A conservative indicator of breeding systems in flowering plants [J]. Evolution, 35: 964-974.

    • DAFNI A, 1992. Pollination ecology: a practical approach [M]. Oxford: Oxford University Press.

    • DU W, QIN KZ, WANG XF, 2012. The mechanism of stamen movement in Chimonanthus praecox (Calycanthaceae): differential cell growth rates on the adaxial and abaxial surfaces of filaments after flower opening [J]. Plant Syst Evol, 298(3): 561-567.

    • DUAN YA, LI QJ, 2008. The pollination biology of Phrynium oliganthum (Marantaceae) [J]. J Syst Evol, 46(4): 545-553. [段友爱, 李庆军, 2008. 少花柊叶传粉生物学的研究 [J]. 植物分类学报, 46(4): 545-553.

    • FENSTER CB, ARMBRUSTER WS, WILSON P, et al. , 2004. Pollination syndromes and floral specialization [J]. Ann Rev Ecol Syst, 35(1): 375-403.

    • FETSCHER AE, 2001. Resolution of male-female conflict in an hermaphroditic flower [J]. Biol Sci, 268(1466): 525-529.

    • GAO JY, REN PY, YANG ZH, et al. , 2006. The pollination ecology of Paraboea rufescens (Gesneriaceae), a buzz-pollinated tropical herb with mirror-image flowers [J]. Ann Bot, 97(3): 371-376.

    • GONG YB, HUANG SQ, 2007. On methodology of foraging behavior of pollinating insects [J]. Biodivers Sci, 15(6): 576-583. [龚燕兵, 黄双全, 2007. 传粉昆虫行为的研究方法探讨 [J]. 生物多样性, 15(6): 576-583. ]

    • HUANG SQ, 2007. Studies on plant-pollinator interaction and its significances [J]. Biodivers Sci, 15(6): 569-575. [黄双全, 2007. 植物与传粉者相互作用的研究及其意义 [J]. 生物多样性, 15(6): 569-575. ]

    • HUANG SQ, SHI XQ, 2013. Floral isolation in Pedicularis: how do congeners with shared pollinators minimize reproductive interference [J]. New Phytol, 199(3): 858-865.

    • JESSON LK, BARRETT SCH, 2002a. Solving the puzzle of mirror-image flowers [J]. Nature, 417(6890): 707.

    • JESSON LK, BARRETT SCH, 2002b. The genetics of mirror-image flowers [J]. Proc Biol Sci, 269(1502): 1835-1839.

    • JESSON LK, BARRETT SCH, 2002c. Enantiostyly in Wachendorfia (Haemodoraceae): the influence of reproductive systems on the maintenance of the polymorphism [J]. Am J Bot, 89(2): 253-262.

    • JESSON LK, BARRETT SCH, 2003. The comparative biology of mirror-image flowers [J]. Int J Plant Sci, 164(S5): S237-S249.

    • LI QJ, XU ZF, KRESS WJ, et al. , 2001. Flexible style that encourages outcrossing [J]. Nature, 410: 432.

    • LI ZY, WANG YZ, 2005. Plants of Gesneriaceae in China [M]. Zhengzhou: Henan Science and Technology Publishing House. [李振宇, 王印政, 2005. 中国苦苣苔科植物 [M]. 郑州: 河南科学技术出版社. ]

    • LLOYD DG, SCHOEN DJ, 1992. Self and cross fertilization in plants: The selection of self-fertilization [J]. Intern J Plant Sci, 153: 370-380.

    • MAYFIELD MM, WASER NM, PRICE MV, 2001. Exploring the ‘Most Effective Pollinator Principle’ with complex flowers: bumblebees and Ipomopsis aggregate [J]. Ann Bot, 88(4): 591-596.

    • QU RM, LI XJ, LUO YB, et al. , 2007. Wind-Dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination [J]. Ann Bot, 100(6): 1155-1164.

    • REN MX, 2009. Floral syndrome and breeding system of Lobelia chinensis, a perennial herb with stamen fusion [J]. Chin J Plant Ecol, 33(2): 130-137. [任明迅, 2009. 雄蕊合生植物半边莲的花部综合征与繁育系统 [J]. 植物生态学报, 33(2): 130-137. ]

    • REN MX, ZHONG YF, SONG XQ, et al. , 2013. Mirror-image flowers without buzz pollination in the Asian endemic Hiptage benghalensis (Malpighiaceae) [J]. Bot J Linn Soc, 173(4): 764-774.

    • ROALSON EH, ROBERTS WR, 2016. Distinct processes drive diversification in different clades of Gesneriaceae [J]. Syst Biol, 65(4): 662-684.

    • SCHOEN DJ, BROWN AHD, 1991. Whole-and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy [J]. Evolution, 45(7): 1651-1665.

    • WEI YG, 2010. Gesneriaceae of South China [M]. Nanning: Guangxi Science and Technology Press. [韦毅刚, 2010. 华南苦苣苔科植物 [M]. 南宁: 广西科学技术出版社. ]

    • YANG SX, YANG CF, ZHANG T, et al. , 2004. A mechanism facilitates pollination due to stigma behavior in Campsis radicans (Bignoniaceae) [J]. Acta Bot Sin, 46(9): 1071-1074.

    • YU Q, HUANG SQ, 2004. Flexible stigma presentation assists context-dependent pollination in a wild columbine [J]. New Phytol, 169(2): 237-241.

    • ZHANG DY, 2004. Plant life-history evolution and reproductive ecology [M]. Beijing: Science Press. [张大勇, 2004. 植物生活史进化与繁殖生态学 [M]. 北京: 科学出版社. ]

  • 参考文献

    • ARMBRUSTER WS, SHI XQ, HUANG SQ, 2014. Do specialized flowers promote reproductive isolation?realized pollination accuracy of three sympatric Pedicularis species [J]. Ann Bot, 113(2): 331-340.

    • BARRETT SCH, COLE WW, ARROYO J, et al. , 1997. Sexual polymorphisms in Narcissus triandrus (Amaryllidaceae): is this species tristylous? [J]. Heredity, 78: 135-145.

    • BARRETT SCH, JSEEON LK, BAKER AM, 2000. The evolution and function of stylar polymorphisms in flowering plants [J]. Ann Bot, 85(Suppl. A): 253-265.

    • CRUDEN RW, 1977. Pollen-Ovule ratios: A conservative indicator of breeding systems in flowering plants [J]. Evolution, 35: 964-974.

    • DAFNI A, 1992. Pollination ecology: a practical approach [M]. Oxford: Oxford University Press.

    • DU W, QIN KZ, WANG XF, 2012. The mechanism of stamen movement in Chimonanthus praecox (Calycanthaceae): differential cell growth rates on the adaxial and abaxial surfaces of filaments after flower opening [J]. Plant Syst Evol, 298(3): 561-567.

    • DUAN YA, LI QJ, 2008. The pollination biology of Phrynium oliganthum (Marantaceae) [J]. J Syst Evol, 46(4): 545-553. [段友爱, 李庆军, 2008. 少花柊叶传粉生物学的研究 [J]. 植物分类学报, 46(4): 545-553.

    • FENSTER CB, ARMBRUSTER WS, WILSON P, et al. , 2004. Pollination syndromes and floral specialization [J]. Ann Rev Ecol Syst, 35(1): 375-403.

    • FETSCHER AE, 2001. Resolution of male-female conflict in an hermaphroditic flower [J]. Biol Sci, 268(1466): 525-529.

    • GAO JY, REN PY, YANG ZH, et al. , 2006. The pollination ecology of Paraboea rufescens (Gesneriaceae), a buzz-pollinated tropical herb with mirror-image flowers [J]. Ann Bot, 97(3): 371-376.

    • GONG YB, HUANG SQ, 2007. On methodology of foraging behavior of pollinating insects [J]. Biodivers Sci, 15(6): 576-583. [龚燕兵, 黄双全, 2007. 传粉昆虫行为的研究方法探讨 [J]. 生物多样性, 15(6): 576-583. ]

    • HUANG SQ, 2007. Studies on plant-pollinator interaction and its significances [J]. Biodivers Sci, 15(6): 569-575. [黄双全, 2007. 植物与传粉者相互作用的研究及其意义 [J]. 生物多样性, 15(6): 569-575. ]

    • HUANG SQ, SHI XQ, 2013. Floral isolation in Pedicularis: how do congeners with shared pollinators minimize reproductive interference [J]. New Phytol, 199(3): 858-865.

    • JESSON LK, BARRETT SCH, 2002a. Solving the puzzle of mirror-image flowers [J]. Nature, 417(6890): 707.

    • JESSON LK, BARRETT SCH, 2002b. The genetics of mirror-image flowers [J]. Proc Biol Sci, 269(1502): 1835-1839.

    • JESSON LK, BARRETT SCH, 2002c. Enantiostyly in Wachendorfia (Haemodoraceae): the influence of reproductive systems on the maintenance of the polymorphism [J]. Am J Bot, 89(2): 253-262.

    • JESSON LK, BARRETT SCH, 2003. The comparative biology of mirror-image flowers [J]. Int J Plant Sci, 164(S5): S237-S249.

    • LI QJ, XU ZF, KRESS WJ, et al. , 2001. Flexible style that encourages outcrossing [J]. Nature, 410: 432.

    • LI ZY, WANG YZ, 2005. Plants of Gesneriaceae in China [M]. Zhengzhou: Henan Science and Technology Publishing House. [李振宇, 王印政, 2005. 中国苦苣苔科植物 [M]. 郑州: 河南科学技术出版社. ]

    • LLOYD DG, SCHOEN DJ, 1992. Self and cross fertilization in plants: The selection of self-fertilization [J]. Intern J Plant Sci, 153: 370-380.

    • MAYFIELD MM, WASER NM, PRICE MV, 2001. Exploring the ‘Most Effective Pollinator Principle’ with complex flowers: bumblebees and Ipomopsis aggregate [J]. Ann Bot, 88(4): 591-596.

    • QU RM, LI XJ, LUO YB, et al. , 2007. Wind-Dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination [J]. Ann Bot, 100(6): 1155-1164.

    • REN MX, 2009. Floral syndrome and breeding system of Lobelia chinensis, a perennial herb with stamen fusion [J]. Chin J Plant Ecol, 33(2): 130-137. [任明迅, 2009. 雄蕊合生植物半边莲的花部综合征与繁育系统 [J]. 植物生态学报, 33(2): 130-137. ]

    • REN MX, ZHONG YF, SONG XQ, et al. , 2013. Mirror-image flowers without buzz pollination in the Asian endemic Hiptage benghalensis (Malpighiaceae) [J]. Bot J Linn Soc, 173(4): 764-774.

    • ROALSON EH, ROBERTS WR, 2016. Distinct processes drive diversification in different clades of Gesneriaceae [J]. Syst Biol, 65(4): 662-684.

    • SCHOEN DJ, BROWN AHD, 1991. Whole-and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy [J]. Evolution, 45(7): 1651-1665.

    • WEI YG, 2010. Gesneriaceae of South China [M]. Nanning: Guangxi Science and Technology Press. [韦毅刚, 2010. 华南苦苣苔科植物 [M]. 南宁: 广西科学技术出版社. ]

    • YANG SX, YANG CF, ZHANG T, et al. , 2004. A mechanism facilitates pollination due to stigma behavior in Campsis radicans (Bignoniaceae) [J]. Acta Bot Sin, 46(9): 1071-1074.

    • YU Q, HUANG SQ, 2004. Flexible stigma presentation assists context-dependent pollination in a wild columbine [J]. New Phytol, 169(2): 237-241.

    • ZHANG DY, 2004. Plant life-history evolution and reproductive ecology [M]. Beijing: Science Press. [张大勇, 2004. 植物生活史进化与繁殖生态学 [M]. 北京: 科学出版社. ]