en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

任雨敏(1996-),硕士研究生,主要从事细胞生物学研究,(E-mail)3115199432@qq.com。

通讯作者:

马丹炜,博士,教授,研究方向为植物化感作用,(E-mail)danmwei10ma@163.com。

中图分类号:Q942

文献标识码:A

文章编号:1000-3142(2023)05-0947-13

DOI:10.11931/guihaia.gxzw202207029

参考文献
AGURLA S, SUNITHA V, RAGHAVENDRA AS, 2020. Methyl salicylate is the most effective natural salicylic acid ester to close stomata while raising reactive oxygen species and nitric oxide in Arabidopsis guard cells [J]. Plant Physiol Biochem, 57: 276-283.
参考文献
ARAGAO FB, PALMIERI MJ, FERREIRA A, et al. , 2015. Phytotoxic and cytotoxic effects of Eucalyptus essential oil on lettuce (Lactuca sativa L. ) [J]. Allelopathy J, 35(2): 259-272.
参考文献
BAYLE GK, 2019. Ecological and social impacts of Eucalyptus tree plantation on the environment [J]. J Biodivers Conserv Bioresour Manage, 5(1): 93-104.
参考文献
DRIOUICH A, GAUDRY A, PAWLAK B, et al. , 2021. Root cap-derived cells and mucilage: a protective network at the root tip [J]. Protoplasma, 258(6): 1179-1185.
参考文献
ELANSARY HO, SALEM MZM, ASHMAWY NA, et al. , 2017. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition [J]. Nat Prod Res, 31(24): 2927-2930.
参考文献
FICHMAN Y, MITTLER R, 2020. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? [J]. Plant J, 102(5): 887-896.
参考文献
HASANUZZAMAN M, OKU H, NAHAR K, et al. , 2018. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions [J]. Plant Biotechnol Rep, 12(2): 77-92.
参考文献
HAWES M, ALLEN C, TURGEON BG, et al. , 2016. Root border cells and their role in plant defense [J]. Annu Rev Phytopathol, 54(1): 143-161.
参考文献
HE SL, GU CJ, MA DW, et al. , 2022. Regulation of signaling molecules reactive oxygen species and NO in the allelopathic stress-induced cell death of Vicia faba root margin cells in Dysphania ambrosioides [J]. Acta Ecol Sin, 42(2): 818-827. [何胜利, 谷从璟, 马丹炜, 等, 2022. 信号分子活性氧和NO在土荆芥化感胁迫诱导蚕豆根边缘细胞死亡中的调控 [J]. 生态学报, 42(2): 818-827. ]
参考文献
HU ZY, REN JJ, YU Q, et al. , 2017. The role and mechanism of microfilament skeleton and reactive oxygen species in regulating stomatal movement [J]. Chin J Cell Biol, 39(4): 510-514. [ 胡子英, 任静静, 余琴, 等, 2017. 微丝骨架和活性氧在调节气孔运动中的作用及机制 [J]. 中国细胞生物学学报, 39(4): 510-514. ]
参考文献
HUANG S, LI J, MA DW, et al. , 2019. Caspase-dependent apoptosis and signal regulation of Zea mays guard cells induced by volatile oil of Dysphania ambrosioides [J]. SW Chin J Agric Sci, 32(5): 1023-1027. [ 黄素, 李洁, 马丹炜, 等, 2019. 土荆芥挥发油诱导玉米保卫细胞Caspase依赖性凋亡及信号调节 [J]. 西南农业学报, 32(5): 1023-1027. ]
参考文献
JAMIL MA, AHMAD A, NAEEM S, et al. , 2021. Role of allelopathy for suppression of Parthenium hysterophorus: a review [J]. Int J Food Sci Agric, 5(3): 376-380.
参考文献
JIAN KL, ZHANG C, SHANG ZC, et al. , 2017. Eucalrobusone C suppresses cell proliferation and induces ROS-dependent mitochondrial apoptosis via the p38 MAPK pathway in hepatocellular carcinoma cells [J]. Phytomedicine, 25: 71-82.
参考文献
LAN HW , ZHOU ZZ, ZOU ML, et al. , 2020. Effects of Eucalyptus robusta globulin decoction combined with shortwave ultraviolet irradiation on residual wound healing and serum IL-1β, TNF-α and IL-6 expression in deep burn [J]. Chin J Aesthetic Med, 29(8): 88-92. [兰宏伟, 周忠志, 邹梅林, 等, 2020. 大叶桉煎剂浸浴联合短波紫外线照射对深度烧伤残余创面愈合及血清IL-1β、TNF-α、IL-6表达的影响 [J]. 中国美容医学, 29(8): 88-92. ]
参考文献
LI AX, WU HW, FENG YJ, et al. , 2020. A strategy of rapidly screening out herbicidal chemicals from Eucalyptus essential oils [J]. Pest Manage Sci, 76(3): 917-927.
参考文献
LI J, HE YQ, MA DW, et al. , 2018. Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca2+-dependent and caspase-dependent apoptosis signaling pathways in receptor plant cells [J]. Plant Soil, 425(1/2): 297-308.
参考文献
LIU HF, DI SZ, 2018. Analysis of bioactivity and active components of ethanol extract of Eucalyptus robusta against stemoma mustard downy mildew [J]. Bull Agric Sci Technol, (2): 141-144. [刘红芳, 邸仕忠, 2018. 大叶桉乙醇提取物对茎瘤芥霜霉病的生物活性及其活性成分分析 [J]. 农业科技通讯, (2): 141-144. ]
参考文献
LIU QL, WU ZX, LI HH, et al. , 2021. Effects of water extract from Liriodendron chinense leaves on seed germination and seedling growth of Salvia miltiorrhiza [J]. Jiangxi Sci, 39(5): 820-825. [刘巧丽, 吴照祥, 李辉虎, 等, 2021. 杂交鹅掌楸叶水提液对丹参种子萌发及幼苗生长的影响 [J]. 江西科学, 39(5): 820-825. ]
参考文献
LU WY, FANG K, BIAN HW, et al. , 2016. Research progress on stomatal development and its regulatory factors [J]. Plant Physiol J, 52(6): 782-788. [陆雯芸, 房克, 边红武, 等, 2016. 气孔发育及其调控因素的研究进展 [J]. 植物生理学报, 52(6): 782-788. ]
参考文献
MA GZ, XU GF, YANG SS, et al. , 2022. Allelopathic effects of Dioscorea esculenta extracts on seed germination and seedling growth of three weeds [J]. SW Chin J Agric Sci, 35(6): 1295-1302. [马光宗, 徐高峰, 杨韶松, 等, 2022. 甘薯提取物对3种杂草种子萌发和幼苗生长的化感作用 [J]. 西南农业学报, 35(6): 1295-1302. ]
参考文献
MA JH, FENG XX, YANG XH, et al. , 2020. The leaf extract of crofton weed (Eupatorium adenophorum) inhibits primary root growth by inducing cell death in maize root border cells [J]. Plant Divers, 42(3): 174-180.
参考文献
MA X, BAI L, 2021. Elevated CO2 and reactive oxygen species in stomatal closure [J]. Plants, 10(2): 410.
参考文献
MENG QQ, YUE HY, ZHANG YQ, et al. , 2020. Preliminary study on the constituents of volatile oils from three Eucalyptus leaves in Chengdu and their antitumor activity in vitro [J]. SW Chin J Agric Sci, 33(3): 540-546. [ 孟巧巧, 岳海燕, 张玉琴, 等, 2020. 成都地区3种桉树叶挥发油成分与体外抗肿瘤活性的初步研究 [J]. 西南农业学报, 33(3): 540-546. ]
参考文献
MITTLER R, ZANDALINAS SI, FICHMAN Y, et al. , 2022. Reactive oxygen species signalling in plant stress responses [J]. Nat Rev Mol Cell Biol, 23(10): 1-17.
参考文献
OLN K, KOCE JD, 2021. Allelopathic root inhibition and its mechanisms [J]. Allelopathy J, 52(2): 181-198.
参考文献
PEI ZM, MURATA Y, BENNING G, et al. , 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells [J]. Nature, 406(6797): 731-734.
参考文献
PETROV V, HILLE J, MUELLER-ROEBER B, et al. , 2015. ROS-mediated abiotic stress-induced programmed cell death in plants [J]. Front In Plant Sci, 6: 69.
参考文献
QI J, SONG CP, WANG B, et al. , 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack [J]. J Integr Plant Biol, 60(9): 805-826.
参考文献
RIDAOUI K, GUENAOU I, TAOUAM I, et al. , 2022. Comparative study of the antioxidant activity of the essential oils of five plants against the H2O2 induced stress in Saccharomyces cerevisiae [J]. Saudi J Biol Sci, 29(3): 1842-1852.
参考文献
ROPITAUX M, BERNARD S, SCHAPMAN D, et al. , 2020. Root border cells and mucilage secretions of soybean, Glycine max (Merr) L. : characterization and role in interactions with the oomycete Phytophthora parasitica [J]. Cells, 9(10): 2215.
参考文献
SAID ZBOS, HADDADI-GUEMGHAR H, BOULEKBACHE-MAKHLOUF L, et al. , 2016. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits [J]. Ind Crops Prod, 89: 167-175.
参考文献
SHAN TJ, FENG H, XIE YY, et al. , 2019. Isolation of endophytic fungi from Eucalyptus citriodora the antibacterial activity of their extracts [J]. Acta Phytophy Sin, 45(6): 149-155. [单体江, 冯皓, 谢银燕, 等, 2019. 柠檬桉内生真菌的分离及其提取物的抗细菌活性 [J]. 植物保护, 45(6): 149-155. ]
参考文献
SINGH R, CHAURASIA S, GUPTA AD, et al. , 2014. Comparative study of transpiration rate in Mangifera indica and Psidium guajawa affect by Lantana camara aqueous extract [J]. J Environ Sci Comput Sci Eng Technol, 3(3): 1228-1234.
参考文献
STANLEY A, THOMPSON K, HYNES A, et al. , 2014. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration [J]. Antioxid Redox Signal, 20(13): 2026-2042.
参考文献
TIAN XC, CHEN XX, 2014. Allelopathic effects of Eucalyptus robusta macrophylla on several crops and weeds [J]. J Zhejiang Agric Sci, (4): 530-532. [田雪晨, 陈贤兴, 2014. 大叶桉树对几种农作物和杂草的化感作用 [J]. 浙江农业科学, (4): 530-532. ]
参考文献
VASCONCELOS LC, DE SOUZA SANTOS E, DE OLIVEIRA BERNARDES C, et al. , 2019. Phytochemical analysis and effect of the essential oil of Psidium L. species on the initial development and mitotic activity of plants [J]. Environ Sci Pollut Res Int, 26(25): 26216-26228.
参考文献
VIVES-PERIS V, DE OLLAS C, GMEZ-CADENAS A, et al. , 2020. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Rep, 39(1): 3-17.
参考文献
WANG YN, HU ZL, HAO JM, et al. , 2019. Allelopathic effects of volatile oil and its two main components from Chenopodium ambrosioides L. on maize (Zea mays) root border cells [J]. Allelopathy J, 46(2): 215-228.
参考文献
WENG KJ, ER G, SHAMA MWN, et al. , 2018. Effects of Dysphania ambrosioides solution on photosynthetic characteristics and guard cell activity of Vicia faba [J]. J S Agric, 49(3): 530-535. [翁可佳, 尔格, 沙马五牛, 等, 2018. 土荆芥腐解液对蚕豆幼苗光合特性和保卫细胞活性的影响 [J]. 南方农业学报, 49(3): 530-535. ]
参考文献
YY, YAO LX, WEI S , et al. , 2021. Allelopathic effects of weed spp on the root border cells of Fagopyrum tataricum (L. ) Gaertn [J]. Allelopathy J, 52(1): 83-100.
参考文献
ZHAO HM, WANG HY, 2017. Research on the effect of Allium fistulosum L. extract on root tip cells of Vicia faba [J]. Bull Biol, 52(4): 53-55. [赵红梅, 王慧阳, 2017. 大葱提取液对蚕豆根尖细胞的致突作用研究 [J]. 生物学通报, 52(4): 53-55. ]
参考文献
ZHOU J, LUAN W , HUANG XT, et al. , 2016. Effects of aueous etract of Galinsoga parviflora Cav. on leaf guard cells of Vicia faba [J]. SW Chin J Agric Sci, 29(4): 800-804. [周健, 栾威, 黄雪婷, 等, 2016. 辣子草水浸提液对蚕豆叶保卫细胞的影响 [J]. 西南农业学报, 29(4): 800-804. ]
参考文献
ZHOU J, WANG YN, MA DW, et al. , 2017. Volatile allelochemicals from Dysphania ambrosioides L. induce guard cell death and signal regulation in Vicia faba [J]. Acta Ecol Sin, 37(17): 5713-5721. [周健, 王亚男, 马丹炜, 等, 2017. 土荆芥挥发性化感物质诱导蚕豆保卫细胞死亡及信号调节 [J]. 生态学报, 37(17): 5713-5721. ]
目录contents

    摘要

    为探讨大叶桉(Eucalyptus robusta)化感作用的细胞学机制,该研究以大叶桉挥发油及其主要成分α-蒎烯和桉油精为供体,以蚕豆(Vicia faba )的根细胞和叶保卫细胞为靶标,运用显微技术、细胞化学技术和qRT-PCR技术,研究了大叶桉挥发物的毒性效应。结果表明:(1)在大叶桉挥发物作用下,蚕豆幼根生长受抑制并表现为时间-浓度依赖效应,其化感效应强弱由大到小依次为挥发油、α-蒎烯和桉油精。(2)蚕豆根边缘细胞活性降低,分生区细胞微核率升高,有丝分裂指数下降且大部分细胞的细胞周期被阻滞在分裂前期。(3)蚕豆叶保卫细胞内NADPH氧化酶活性升高,活性氧(reactive oxygen species, ROS)爆发,微丝聚合,气孔开度下降;叶保卫细胞的核畸变率升高,细胞活性降低甚至发生caspase依赖性细胞凋亡,而Ca2+通道阻断剂(LaCl3)、活性氧清除剂(AsA)和硝酸还原酶抑制剂(NaN3)均可显著提高保卫细胞存活率,说明大叶桉挥发物改变了信号分子Ca2+、ROS和NO的信号调节。综上表明,大叶桉挥发物的细胞毒性和遗传毒性改变了受体细胞的信号转导途径,诱发了细胞遗传畸变,导致受体根边缘细胞保护功能障碍和气孔运动障碍,从而影响受体根系生长和光合作用,最终导致受体生长受阻。该研究结果为大叶桉种植区的科学种植和管理提供了理论依据。

    Abstract

    To understand the cytological mechanism of allelopathy of Eucalyptus robusta, the toxic effects of volatiles from E. robusta were studied by microscopic, cytochemical and qRT-PCR techniques, taking volatile oil from E. robusta and its main components α-pinene and eucalyptol as donors, and using root cells and leaf guard cells of Vicia faba as targets. The results were as follows: (1) The growth of radicle of V. faba were exhibited and showed a time-concentration dependent effects under the treatments of the volatiles of Eucalyptus robusta. The allelopathic effects were volatile oil, α-pinene and eucalyptol in descending order. (2) When Vicia faba roots were exposed to Eucalyptus robusta volatiles, the activity of root border cells decreased, the micronucleus rate of cells in the meristematic zone increased, mitotic index decreased, and the cell cycle of most cells was arrested in the prophase of division. (3) Under the action of the volatiles of E. robusta, the activity of NADPH oxidase increased, reactive oxygen species (ROS) burst in leaf guard cells of Vicia faba, microfilament polymerization, and stomatal aperture decreased. At the same time, the leaf epidermis strip of V. faba was treated with Eucalyptus robusta volatiles, the nuclear distortion rate of leaf guard cells increased. Moreover, the treatment of E. robusta volatiles led to the decrease of guard cell activity and caspase-dependent apoptosis in Vicia faba. However, the guard cell survival rates increased when the leaf epidermis strips of V. faba were exposed to volatiles from Eucalyptus robusta combined with different concentrations of Ca2+channel blocker (LaCl3), ROS scavenger ascorbic acid (AsA), and nitrate reductase inhibitors (NaN3), which indicated that the volatiles of E. robusta changed the signal regulation of Ca2+, ROS and NO. These results suggested that the cytotoxicity and genotoxicity of the volatiles of E. robusta altered the signal transduction pathway of the receptor cells, induced the genetic aberration of the root tip cells, then led to the dysfunction of protective function and stomatal movement of the receptor root border cells, which affected the root growth and photosynthesis of the receptor, and ultimately hindered the growth of receptor. The results provide a theoretical basis for scientific planting and management of E. robusta planting area.

  • 大叶桉(Eucalyptus robusta)为桃金娘科(Myrtaceae)桉属(Eucalyptus)乔木植物,原产于澳大利亚,因其适应性强、生长快而被称为世界三大速生树种之一(单体江等,2019)。大叶桉属于药源性植物,其叶和果实都有抗菌(Said et al.,2016)、抗氧化(Elansary et al.,2017)和抗肿瘤(Jian et al.,2017)等药理活性,具有极其重要的社会价值、生态价值和经济价值。近年来,因种植桉树而引起的生物多样性下降、生态系统功能和效益丧失、土壤肥力下降等问题受到了学术界和社会的高度关注(Bayle,2019)。桉叶挥发油及其主要成分α-蒎烯、桉油精等具有明显的化感毒性作用,可以通过诱导氧化损伤抑制受体种子萌发和幼苗生长 (Jamil et al.,2021;Ridaoui et al.,2022)。本项目组前期研究发现,大叶桉叶挥发油含α-蒎烯、β-蒎烯、桉油精、柠檬烯、松香芹醇和β-松油醇等化学成分,其中α-蒎烯和桉油精是含量较高的成分(孟巧巧等,2020)。

  • 气孔是CO2、水分和其他物质进出叶片的通道,保卫细胞通过膨压变化控制气孔开度,平衡光合作用所需的CO2和水分,从而影响植物的蒸腾和光合作用(陆雯芸等,2016)。保卫细胞与表皮细胞形态差异较大且对化感胁迫反应灵敏,在鹅掌楸(Liriodendron chinense)(刘巧丽等,2021)、土荆芥(Dysphania ambrosioides)(翁可佳等,2018)和马缨丹(Lantana camara)(Singh et al.,2014)、辣子草(Galinsoga parviflora)(周健等,2016)的化感胁迫下,受体的保卫细胞活性降低,并发生caspase 依赖性的细胞凋亡,信号分子ROS、NO和 Ca2+调节了细胞凋亡过程(周健等,2017)。此外,植物释放的化感物质还能干扰受体根尖分生区细胞DNA复制、染色体分离以及纺锤体的功能(赵红梅和王慧阳,2017;Li et al.,2018);根边缘细胞(root border cells,RBCs)是从根冠表皮游离出来且聚集在根尖周围的一群特殊细胞,与其胞外黏胶层在根际共同构筑了抵御外界胁迫的第一道防线(Driouich et al.,2021)。光合作用固定的碳部分通过根系分泌物的形式释放到土壤中(Vives-Peris et al.,2020),其中 98%的根系分泌物为根边缘细胞及其胞外物质(Hawes et al.,2016),在根与土壤微生物的相互作用中起主要作用(Ropitaux et al.,2020)。当植物受到生物或非生物胁迫时,根边缘细胞基因表达改变,黏胶层厚度进一步增大,以吸附和排斥病原体或通过螯合有毒物质,以缓解胁迫对根的伤害,从而保护根尖分生组织(Driouich et al.,2021;何胜利等,2022)。因此,进入土壤的化感物质只有突破根边缘细胞及其黏胶层构筑的防御屏障,才会伤害到根尖细胞,危及植物根系的健康生长。当挥发性化感物质释放到环境后,大部分挥发到空气中作用于植物的地上部分,小部分会通过土壤吸附、淋溶、根系分泌等途径进入土壤。保卫细胞构成了物质进出植物体的门户——气孔,而根边缘细胞则是根系和土壤之间的屏障,二者无疑是挥发性化感物质作用的首要靶标。受体如何响应化感物质是一个十分复杂的问题,高等植物机体由多细胞构成,每一种细胞的生命活动均会受机体其他细胞制约。显然,以单细胞模式系统作为研究化感作用的对象,可以排除其他细胞生命活动的干扰。近年来,学者们逐渐关注到根边缘细胞(Latif et al.,2017;Ma et al.,2020;Xie et al.,2021)和保卫细胞(周健等,2017)对化感胁迫的响应及其机制。与以整个植株作为受试靶标相比,保卫细胞和根边缘细胞不仅具有反应灵敏、取材方便、易于控制试验条件、耗费少、周期短等优势(周健等,2017;Wang et al.,2019),而且能够直观地洞察到化感作用这一自然现象的本质。然而,保卫细胞和根边缘细胞如何响应大叶桉挥发物的化感效应却鲜有报道。

  • 大叶桉功能多样化可应用于医药(兰宏伟等,2020)、生态(田雪晨和陈贤兴,2014)、农业(刘红芳和邸仕忠,2018)等领域,而现有研究偏重于大叶桉挥发性成分的药理作用,极少关注其种植对生境内其他植物的毒害作用。为进一步挖掘大叶桉挥发性成分的化感作用,本研究以其挥发油及主要成分α-蒎烯和桉油精为供体,以中国大叶桉种植区广泛分布的农作物蚕豆(Vicia faba)为受体,以叶保卫细胞、根边缘细胞和根尖细胞为靶标,运用蚕豆根尖微核技术、光学显微镜技术、细胞化学技术和qRT-PCR技术,在评估大叶桉挥发物化感效应及其对根尖有丝分裂行为影响的基础上,进一步分析蚕豆叶保卫细胞和根边缘细胞对大叶桉挥发物的响应及其信号机制,以期从细胞学角度揭示大叶桉化感作用机制,为大叶桉种植区的科学种植和管理提供理论依据。

  • 1 材料与方法

  • 1.1 试验材料

  • 所用材料大叶桉的叶采自四川师范大学校区及其附近街道;蚕豆的种子(成胡14#)购自成都市龙泉驿区大面镇街道种子市场;标准品α-蒎烯(≥99%)和桉油精(≥99%)购自科赛斯特(成都)科技有限公司。

  • 1.2 试验方法

  • A组:参照周健等(2017)的方法培养蚕豆幼苗,待幼苗生长3~4周时,取顶端第1~2对完全展开的叶片,用蒸馏水冲洗干净,选取非叶脉部位用镊子撕取1 cm × 0.5 cm的叶下表皮条,浸泡于盛有MES缓冲液的EP管中。

  • B组:选取大小均匀且饱满的健康蚕豆种子(赵红梅和王慧阳,2017),在0.5% KMnO4溶液中浸泡15 min,冲洗干净后置于(25±1)℃培养箱中,黑暗条件下浸种24 h后均匀置于垫有湿润纱布的瓷盘中,覆盖一层浸湿的纱布,继续培养至种子露白。选取长势一致的露白种子,均匀置于垫有2层滤纸的培养瓶(直径6.8 cm、高度9.2 cm)中,每瓶3颗。

  • 处理母液的制备:参照孟巧巧等(2020)的水蒸气蒸馏法提取大叶桉挥发油,得率为0.43%,质量浓度为836.667 mg·mL-1,采用GC-MS法确定挥发油主要成分α-蒎烯(≥99%)和桉油精(≥99%)的含量。用二甲基亚砜(DMSO)作助溶剂配制浓度为0.1 μL·μL-1的大叶桉叶挥发油母液;根据α-蒎烯和桉油精在挥发油中的含量,其处理母液浓度分别设置为0.419 1、0.076 8 μL·μL-1

  • 1.3 试验处理及指标测定

  • 1.3.1 遗传毒性试验

  • 分别取处理母液1、2、3、4、5 μL,均匀涂抹在B组培养瓶盖中部并旋紧瓶盖,置于(25 ± 1)℃的培养箱中避光培养24、48、72 h,以未涂抹挥发物的处理作为对照,每处理重复5次,处理结束后测定参数。

  • 根长测定:将根尖用蒸馏水洗净,用滤纸吸干水分,用直尺测量根长,每个处理作15个平行测定。

  • 有丝分裂指数和微核率测定:待处理结束后更换干净的培养瓶盖,继续恢复培养24 h后,截取长约0.5 cm的根尖,用卡诺固定液固定24 h、1 mol·L-1 HCl60℃ 解离8 min、改良苯酚品红染液染色,压片,用Nikon E200摄影显微镜镜检且拍照。每个根尖计数1 000个细胞,每个处理5个根尖。计算微核率(micronucleus frequency,MCN)和有丝分裂指数(mitotic index,MI)。计算公式如下:

  • MCN=(微核数/观测细胞数 ×1000%;

  • MI=M 期细胞数 / 观测细胞数 ×100%

  • 1.3.2 叶表皮条试验

  • 将A组表皮条随机分为3组:第1组,分别取2、4、6、8、10 μL处理母液,用DMSO补足体积为10 μL后,加入装有表皮条的EP管中,以10 μL MES缓冲液为对照;第2组,分别加入10 μL泛caspase抑制剂Z-VAD-FMK(10、40 μmol·L-1)、Ca2+通道阻断剂(0.1 mmol·L-1LaCl3)、活性氧清除剂抗坏血酸(0.1 mmol·L-1AsA)和硝酸还原酶抑制剂(0.1 mmol·L-1NaN3)处理5 min后,加入8 μL处理母液和2 μL DMSO,设置阴性对照(CK为MES缓冲液)和阳性对照(处理母液8 μL);第3组,置于25℃、4 000 lx的光照培养箱2 h后,用10 μL的微丝聚合抑制剂细胞松弛素B(CB,10、20 μmol·L-1)、NADPH氧化酶抑制剂二联苯碘(DPI,1、2 μmol·L-1)和活性氧清除剂抗坏血酸(0.1 mmol·L-1)分别处理5 min后,加入8 μL处理母液和2 μL DMSO。以不加CB、DPI和AsA的MES缓冲液为CK阴性对照,以8 μL处理液单独处理为阳性对照。3组处理混匀后均置于25℃、4 000 lx光照培养箱处理30 min,待处理结束后测定气孔开度、细胞核形态、保卫细胞活性、胞内ROS、NO和Ca2+水平以及TUNEL(黄素等,2019)等指标。

  • qRT-PCR分析:取第1组叶表皮条,用液氮充分研磨,按照武汉塞维尔生物科技有限公司的植物总RNA提取试剂盒操作说明提取蚕豆叶表皮条的总RNA;用Primer Premier 5.0引物设计软件,设计蚕豆NADPH氧化酶基因(Rboh)和内参基因(EF-1-alpha)特异性引物,序列如下:

  • Rboh F:5′-GGGTATTTGCTCTGTGGATTGG-3′;

  • Rboh R:5′-CCTGAGCCAAGTAATGGTGTTTC-3′;

  • EF-1-alpha F:5′-ACGAGGCTCTCACTGAGGC TCTTCC-3′;

  • EF-1-alpha R:5′-CCTTGGCAGGGTCATCCTTG GAGTTG-3′。

  • 引物均由武汉塞维尔生物科技有限公司合成。使用荧光定量PCR仪(Stepone plus,ABI)进行qRT-PCR分析。反应体系为25 μL,含qPCR Mix 12.5 μL、7.5 μmol·L-1基因引物2.0 μL、反转录产物2.5 μL、ddH2O 8.0 μL。PCR扩增程序:95℃ 10 min,95℃ 15 s,60℃ 60 s,40个循环;每处理重复3次,以MES缓冲液为CK对照;使用StepOne Software v2.3软件分析PCR过程的CT(threshold cycle)值。

  • 1.3.3 根边缘细胞活性测定

  • 将B组根培养至长约2 cm时,随机截取 5个根尖,置于EP管中,向其中加入100 μL ddH2O,涡旋振荡30 s,取出根尖用ddH2O冲洗2次,每次50 μL,移液枪吹打使细胞分散,得到根边缘细胞悬液;分别取处理母液1、2、3、4、5 μL,用DMSO补足体积为5 μL后,分别加入200 μL细胞悬液,以DMSO为溶剂对照组、ddH2O为阴性对照组,置于(25±1)℃的培养箱中避光培养30 min,每处理重复3次;处理结束后,分别取10 μL细胞悬液,加入4 μL AO/EB染料,暗处染色2~3 s,荧光显微镜镜检,统计死细胞和活细胞的数量,并计算根边缘细胞死亡率。计算公式如下:

  • 死亡率 =(死细胞 /总细胞计数 ×100%

  • 1.4 数据统计分析

  • 使用Microsoft Excel2019软件进行数据统计和作图,用SPSS 20.0软件对数据进行ANOVA单因素方差分析和Tukey法进行多重比较分析。

  • 2 结果与分析

  • 2.1 大叶桉挥发物的化感效应及其遗传毒性

  • 2.1.1 大叶桉挥发物对蚕豆的化感效应

  • 由图1可知,大叶桉挥发油、α-蒎烯和桉油精对蚕豆幼根伸长具有显著抑制效应(P<0.05),并表现为时间-浓度依赖效应。用最大浓度处理72 h后,大叶桉挥发油、α-蒎烯和桉油精处理组的蚕豆根长比对照组分别减少了80.62%、76.74%和75.19%。

  • 2.1.2 大叶桉挥发物的遗传毒性

  • 在大叶桉挥发油、α-蒎烯和桉油精的作用下,蚕豆根尖分生区细胞的有丝分裂指数下降(图2)。在1 μL处理母液作用下,有丝分裂指数升高,其中24 h处理组的变化最为显著。当处理母液大于1 μL时,与对照组相比,随着处理母液浓度增加和处理时间延长,有丝分裂指数显著下降(P<0.05)。在各处理组M期(有丝分裂期)的各时相(前、中、后、末)细胞数目中大部分细胞的细胞周期被阻滞在分裂前期;当挥发油处理母液高于4 μL时,有丝分裂指数趋于平稳,表明该浓度下蚕豆根尖已严重受损。

  • 各处理组的微核率均显著高于对照组(P<0.05),呈先升高后降低的趋势(图3),在处理母液为3 μL时微核率达到最大值,以48 h处理组的变化最显著,其挥发油、α-蒎烯和桉油精微核率分别为12.24%、10.89%和7.48%。大叶桉挥发物诱导蚕豆根尖发生染色体畸变,如染色体断片、粘连和出现染色桥、微核等现象(图4)。

  • A.24 h; B.48 h; C.72 h。不同字母表示在0.05水平上的差异显著性。下同。

  • A.24 h; B.48 h; C.72 h. Different letters indicate significant differences at 0.05 level. The same below.

  • 图1 大叶桉挥发油、α-蒎烯和桉油精作用下蚕豆根长的变化

  • Fig.1 Change of root length of Vicia faba exposed to the Eucalyptus robusta volatile oil, α-pinene and eucalyptol

  • 2.2 大叶桉挥发物对蚕豆叶保卫细胞活性的影响

  • 由图5可知,在大叶桉挥发油、α-蒎烯和桉油精作用下,蚕豆叶保卫细胞活性降低,细胞核畸变率升高,并表现为浓度依赖效应。其化感效应强弱由大到小依次为挥发油、α-蒎烯和桉油精。在最大处理浓度下,挥发油、α-蒎烯、桉油精3个处理组的保卫细胞活性为对照组的7.01%、29.48%、59.56%,细胞核形态异常率分别为96.96%、68.78%、24.74%。

  • T1. 0 μL母液处理组; T2.1 μL母液处理组; T3.2 μL母液处理组; T4.3 μL母液处理组; T5.4 μL母液处理组; T6.5 μL母液处理组; V. 挥发油; P. α-蒎烯; E. 桉油精。

  • T1. 0 μL mother liquor treatment group; T2.1 μL mother liquor treatment group; T3.2 μL mother liquor treatment group; T4.3 μL mother liquor treatment group; T5.4 μL mother liquor treatment group; T6.5 μL mother liquor treatment group; V. Volatile oil; P. α-pinene; E. Eucalyptol.

  • 图2 大叶桉挥发油、α-蒎烯和桉油精作用下蚕豆根尖细胞有丝分裂指数的变化

  • Fig.2 Change of mitotic index of Vicia faba root tip cells exposed to the Eucalyptus robusta volatile oil, α-pinene and eucalyptol

  • 图3 大叶桉叶挥发油、α-蒎烯、桉油精作用下蚕豆根尖细胞微核率的变化

  • Fig.3 Change of root tip cell micronucleus rates of Vicia faba exposed to the Eucalyptus robustavolatile oil, α-pinene and eucalyptol

  • 半胱氨酸蛋白酶(caspase)是一组与细胞凋亡密切相关的蛋白水解酶,当用泛caspase抑制剂Z-VAD-FMK与大叶桉挥发物共处理后,各处理组保卫细胞活性均较挥发物处理组升高且与Z-VAD-FMK浓度呈正相关(图6:B),表明大叶桉挥发物处理导致保卫细胞发生凋亡。TUNEL法检测结果发现,挥发物处理组叶保卫细胞的绿色荧光强度大于caspase抑制剂+挥发物共处理组(图6:A),表明大叶桉挥发物诱导蚕豆叶保卫细胞发生了caspase依赖性细胞凋亡。

  • 应用ROS、NO和Ca2+荧光定位试验和三者抑制剂+挥发物共处理试验,验证了大叶桉挥发物作用下蚕豆叶保卫细胞的ROS、NO和Ca2+水平的变化。由图7可知,对照组保卫细胞具有较弱的绿色荧光,即胞内ROS、NO和Ca2+水平均较低;处理组保卫细胞内3种荧光信号均明显高于对照组,说明大叶桉挥发物诱导保卫细胞内ROS、NO和Ca2+水平升高。NaN3+处理液、AsA+处理液2个共处理组中,ROS、Ca2+和NO水平低于挥发物处理组,而LaCl3+处理液共处理组保卫细胞内的Ca2+水平低于挥发物处理组(图8),说明在大叶桉挥发物诱导的细胞死亡过程中,ROS和NO能调节胞内Ca2+水平。

  • 由图9可知,与挥发物处理组相比,用Ca2+通道阻断剂(LaCl3)、活性氧清除剂抗坏血酸(AsA)和硝酸还原酶抑制剂(NaN3)分别与处理母液共同作用时,保卫细胞存活率显著升高(P<0.05)。这进一步证明大叶桉挥发油、α-蒎烯和桉油精诱导的细胞死亡与细胞内ROS、NO和Ca2+有关。

  • 2.3 大叶桉挥发物对蚕豆气孔运动的影响

  • 大叶桉挥发物导致蚕豆叶气孔开度呈浓度依赖性逐渐下降(图10),在最大浓度处理下,挥发油、α-蒎烯和桉油精3个处理组的气孔开度分别较对照组下降了86.65%、78.31%和75.38%;当NADPH氧化酶抑制剂二联苯碘(DPI)、活性氧清除剂抗坏血酸(AsA)和微丝聚合抑制剂细胞松弛素B(CB)分别与大叶桉挥发物共处理时,保卫细胞气孔关闭现象显著降低(P<0.05)(图11),表明大叶桉挥发物诱导的ROS水平和NADPH氧化酶活性的升高以及微丝聚合是导致气孔关闭的原因。qRT-PCR结果(图12)显示,在大叶桉挥发物作用下,蚕豆叶片内NADPH氧化酶基因Rboh表达显著上调。

  • 2.4 大叶桉挥发物对根边缘细胞活性的影响

  • 由图13可知,蚕豆根边缘细胞活性随大叶桉挥发物处理浓度升高而降低,死亡率显著增加(P<0.05)。与阴性对照组(0 μL)相比,溶剂对照组(DMSO)的根边缘细胞活性差异不显著(P>0.05),表明助溶剂DMSO对根边缘细胞活性没有显著影响。当处理浓度达到5 μL时,挥发油、α-蒎烯、桉油精处理组根边缘细胞死亡率分别比对照组(0 μL)增加了5.65、4.13、2.12倍。

  • A. 间期单微核; B. 间期双微核; C. 后期染色体断片; D. 末期染色体粘连; E. 末期染色体桥; F. 纺锤体多极分裂。比例尺为20 μm。下同。

  • A. Single micronucleus in interphase; B. Double micronucleus in interphase; C. Chromosome fragment in anaphase; D. Chromosome adhesion in telophase; E. Chromosome bridge in telophase; F. Spindle multipolar division. The scale is 20 μm. The same below.

  • 图4 大叶桉树叶挥发油、α-蒎烯和桉油精作用下蚕豆根尖细胞的染色体畸变图

  • Fig.4 Chromosomal aberration images of Vicia faba root tip cells exposed to the Eucalyptus robustavolatile oil, α-pinene and eucalyptol

  • 图5 大叶桉挥发油、α-蒎烯和桉油精作用下蚕豆叶保卫细胞活性和核形态的变化

  • Fig.5 Change of guard cell activity and nuclear aberration rate of Vicia fabaleaves exposed to Eucalyptus robusta volatile oil, α-pinene and eucalyptol

  • A. TUNEL原位标记荧光图; B. 细胞存活率。t1. CK; t2. 处理液; t3. 处理液+10 μmol·L-1 Z-VAD-FMK; t4. 处理液+40 μmol·L-1 Z-VAD-FMK。比例尺为20 μm。

  • A. TUNEL in situ labeling fluorescence image; B. Cell survival rate. t1. CK; t2. Treatment liquid; t3. Treatment liquid+10 μmol·L-1 Z-VAD-FMK; t4. Treatment liquid+40 μmol·L-1 Z-VAD-FMK. The scale is 20 μm.

  • 图6 大叶桉挥发油、α-蒎烯和桉油精作用下caspase抑制剂对蚕豆叶保卫细胞活性的影响

  • Fig.6 Effect of caspase inhibitor on the activity of guard cells in Vicia fabaleaves exposed to the Eucalyptus robusta volatile oil, α-pinene and eucalyptol

  • 图7 NaN3、AsA和LaCl3与大叶桉挥发物共处理下蚕豆叶保卫细胞内ROS、NO和Ca2+荧光定位图

  • Fig.7 Fluorescence localization images of ROS,NO and Ca2+ in Vicia faba leaf guard cells co-treated with NaN3, AsA, LaCl3 and Eucalyptus robusta volatiles

  • 图8 LaCl3、AsA和NaN3与大叶桉挥发物共处理下蚕豆叶保卫细胞ROS、NO和Ca2+水平的变化

  • Fig.8 Changes of ROS, NO and Ca2+ levels in Vicia faba leaf guard cells co-treated with LaCl3, AsA, NaN3 and Eucalyptus robusta volatiles

  • 图9 大叶桉挥发物与ROS、NO和Ca2+抑制剂共处理下蚕豆叶保卫细胞存活率的变化

  • Fig.9 Change of guard cell survival rates of Vicia faba leaves co-treated with ROS, NO and Ca2+ inhibitors and Eucalyptus robustavolatiles

  • 图10 大叶桉树挥发油、α-蒎烯和桉油精对蚕豆叶片气孔开度的影响

  • Fig.10 Effect of Eucalyptus robustavolatile oil, α-pinene and eucalyptol on stomatal aperture of Vicia fabaleaves

  • 3 讨论

  • 植物释放到环境中的化感物质会影响其他植物的生长和生态功能(Oln &Koce,2021),如降低植物吸收水分、无机盐、有机质等养分的能力,降低对资源的利用率,从而影响该植物的生长发育(马光宗等,2022)。桉叶中含有对植物有化感作用的挥发性成分,如α-松果醇,可以抑制种子萌发和植物生长(Li et al.,2020)。本研究结果表明,在大叶桉挥发物作用下,蚕豆幼根生长受抑制且表现为时间-浓度依赖效应,其中大叶桉叶挥发油的化感效应最强,α-蒎烯次之,桉油精最弱。植物根的生长与根尖细胞的分裂和伸长密切相关,当蚕豆幼根受到大叶桉挥发物作用时分生区细胞有丝分裂指数下降,表现出与根长相似的变化规律,表明大叶桉挥发性化感物质作为非生物胁迫对蚕豆根的抑制效应与其干扰根尖细胞有丝分裂行为有关。处理浓度较低时,绝大多数根尖细胞有丝分裂被阻滞在前期,但随着处理浓度增大前期细胞比例逐渐减少,推测大叶桉挥发性化感物质可能抑制了细胞DNA的复制和蛋白质的合成,阻碍了细胞周期的进程,使细胞不能进入下一次的分裂期,从而导致分生区有丝分裂指数下降,根生长受到抑制(Vasconcelos et al.,2019)。同时,蚕豆根尖细胞内微核率上升并出现染色体断片、纺锤体多极分裂、染色体粘连等多种染色体畸变现象,表明大叶桉树挥发油、α-蒎烯和桉油精抑制了蚕豆根尖细胞纺锤体的形成并干扰了某些染色体运动而导致染色体断裂和损伤,断裂的染色体在机体免疫保护作用下形成染色体桥,无着丝粒的形成会引起微核的出现,造成不可逆的遗传毒性效应。本研究结果与Aragao等(2015)研究发现大叶桉挥发油及其单萜烃类能够导致莴苣(Lactuca sativa)根尖分生区细胞死亡,染色体变异这一结果相似。根边缘细胞及其胞外黏胶层是植物根和土壤之间的保护屏障(Ropitaux et al.,2020;Driouich et al.,2021),在抵抗生物和非生物胁迫中对根尖起到一定的保护作用。何胜利等(2022)研究发现,土荆芥挥发油及其主要化感物质下根边缘细胞活性下降,黏胶层厚度增加,在一定程度上抵御了挥发物化感胁迫对根尖的伤害。在大叶桉挥发物作用下,蚕豆根边缘细胞活性呈浓度依赖性下降,由此降低且削弱其保护功能,进而干扰根尖细胞的有丝分裂,抑制根的伸长生长。

  • 图11 大叶桉挥发油、α-蒎烯和桉油精作用下 DPI、AsA和CB对蚕豆气孔开度的影响

  • Fig.11 Effect of DPI, AsA and CB on stomatal aperture of Vicia fabaunder the action of Eucalyptus robustavolatile oil, α-pinene and eucalyptol

  • 图12 大叶桉挥发油、α-蒎烯和桉油精作用下 NADPH氧化酶基因Rboh相对表达量的变化

  • Fig.12 Change in the relative expression of NADPH oxidase Rboh exposed to the Eucalyptus robustavolatile oil, α-pinene and eucalyptol

  • 图13 大叶桉叶挥发油、α-蒎烯、桉油精作用下蚕豆根边缘细胞死亡率的变化

  • Fig.13 Change of mortality rates of root border cells of Vicia faba exposed to the Eucalyptus robusta volatile oil, α-pinene and eucalyptol

  • 气孔是植物气体交换、水分蒸腾和病菌入侵的主要门户(Qi et al.,2018;Ma &Bai,2021),气孔开度的调节通过保卫细胞的运动来实现。细胞骨架、Ca2+、ROS和NO等因子通过不同的方式、信号途径调控气孔运动,使气孔能灵活地响应各种环境(胡子英等,2017)。ROS在植物感知胁迫、整合各种环境信号、激活胁迫响应网络中起着关键作用(Mittler et al.,2022),细胞内ROS的产生与NADPH氧化酶和微丝动态调控密切相关(Agurla et al.,2020)。微丝动态的变化会引起胞内NADPH氧化酶发生改变(Stanley et al.,2014)。本研究结果表明,在大叶桉挥发油及其主要成分作用下,蚕豆叶保卫细胞内NADPH氧化酶基因Rboh表达上调,酶活性增加,ROS爆发,保卫细胞核畸变率升高,保卫细胞发生caspase依赖性凋亡,气孔开度下降,上述现象具有浓度依赖效应。这与黄素等(2019)对土荆芥挥发油作用于玉米保卫细胞的研究结果相似。当用微丝聚合抑制剂细胞松弛素B(CB)处理后,大叶桉挥发油及其主要成分诱导的气孔关闭现象明显阻滞,表明微丝可能通过调节NADPH氧化酶在保卫细胞质膜不同部位的分布,控制ROS在细胞壁上的产生部位,从而精确调控不同位置细胞壁的松弛而参与气孔运动(胡子英等,2017)。当植物受到逆境胁迫时,通过NO、ROS、Ca2+等信号分子相互协调,调控不同的信号途径使保卫细胞的膨压变化来响应所受的逆境胁迫(Fichman &Mittler,2020)。在逆境胁迫下,ROS和NO之间的平衡对调控细胞凋亡至关重要(Petrov et al.,2015)。NO能够作为一种抗氧化剂直接淬灭ROS,减少膜脂过氧化,而高浓度的NO可以导致ROS爆发,引起细胞产生氧化损伤而凋亡(Hasanuzzaman et al.,2018;何胜利等,2022)。Ca2+通道能够被ROS激活,引起胞外Ca2+内流,胞内Ca2+水平升高,从而导致DNA 在核小体的连接点被激活了的Ca2+依赖性核酸内切酶切割,继而引发细胞凋亡(Pei et al.,2000)。本研究结果发现,在大叶桉挥发油及其主要成分α-蒎烯和桉油精诱导的保卫细胞死亡过程中,保卫细胞内ROS、NO和Ca2+水平明显升高,加入AsA、NaN3和LaCl3时,保卫细胞存活率显著上升,表明在大叶桉挥发油、α-蒎烯和桉油精处理下保卫细胞内ROS的爆发引起胞内Ca2+水平升高,诱发了蚕豆保卫细胞的死亡。此外,NO 参与了大叶桉挥发油、α-蒎烯和桉油精诱导蚕豆保卫细胞的死亡。ROS、NO和Ca2+信号系统调控程序性细胞死亡是植物抵御逆境胁迫的一种基本机制(周健等,2017)。以上结果表明,大叶桉挥发油、α-蒎烯和桉油精诱导的保卫细胞死亡,可能是通过ROS 和 NO 调控保卫细胞内 Ca2+水平的变化而引起的。

  • 4 结论

  • 综上所述,大叶桉挥发性化感物质具有细胞毒性和遗传毒性。一方面,通过降低蚕豆根边缘细胞活性削弱受体保护屏障,干扰分生区细胞有丝分裂行为并引起遗传畸变,从而抑制根的生长;另一方面,诱导蚕豆叶保卫细胞ROS爆发,干扰细胞骨架功能而改变气孔运动,引起保卫细胞核畸变并发生caspase依赖性凋亡,在此过程中,胞内ROS和NO的水平上调引起胞内Ca2+水平增加。

  • 参考文献

    • AGURLA S, SUNITHA V, RAGHAVENDRA AS, 2020. Methyl salicylate is the most effective natural salicylic acid ester to close stomata while raising reactive oxygen species and nitric oxide in Arabidopsis guard cells [J]. Plant Physiol Biochem, 57: 276-283.

    • ARAGAO FB, PALMIERI MJ, FERREIRA A, et al. , 2015. Phytotoxic and cytotoxic effects of Eucalyptus essential oil on lettuce (Lactuca sativa L. ) [J]. Allelopathy J, 35(2): 259-272.

    • BAYLE GK, 2019. Ecological and social impacts of Eucalyptus tree plantation on the environment [J]. J Biodivers Conserv Bioresour Manage, 5(1): 93-104.

    • DRIOUICH A, GAUDRY A, PAWLAK B, et al. , 2021. Root cap-derived cells and mucilage: a protective network at the root tip [J]. Protoplasma, 258(6): 1179-1185.

    • ELANSARY HO, SALEM MZM, ASHMAWY NA, et al. , 2017. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition [J]. Nat Prod Res, 31(24): 2927-2930.

    • FICHMAN Y, MITTLER R, 2020. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? [J]. Plant J, 102(5): 887-896.

    • HASANUZZAMAN M, OKU H, NAHAR K, et al. , 2018. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions [J]. Plant Biotechnol Rep, 12(2): 77-92.

    • HAWES M, ALLEN C, TURGEON BG, et al. , 2016. Root border cells and their role in plant defense [J]. Annu Rev Phytopathol, 54(1): 143-161.

    • HE SL, GU CJ, MA DW, et al. , 2022. Regulation of signaling molecules reactive oxygen species and NO in the allelopathic stress-induced cell death of Vicia faba root margin cells in Dysphania ambrosioides [J]. Acta Ecol Sin, 42(2): 818-827. [何胜利, 谷从璟, 马丹炜, 等, 2022. 信号分子活性氧和NO在土荆芥化感胁迫诱导蚕豆根边缘细胞死亡中的调控 [J]. 生态学报, 42(2): 818-827. ]

    • HU ZY, REN JJ, YU Q, et al. , 2017. The role and mechanism of microfilament skeleton and reactive oxygen species in regulating stomatal movement [J]. Chin J Cell Biol, 39(4): 510-514. [ 胡子英, 任静静, 余琴, 等, 2017. 微丝骨架和活性氧在调节气孔运动中的作用及机制 [J]. 中国细胞生物学学报, 39(4): 510-514. ]

    • HUANG S, LI J, MA DW, et al. , 2019. Caspase-dependent apoptosis and signal regulation of Zea mays guard cells induced by volatile oil of Dysphania ambrosioides [J]. SW Chin J Agric Sci, 32(5): 1023-1027. [ 黄素, 李洁, 马丹炜, 等, 2019. 土荆芥挥发油诱导玉米保卫细胞Caspase依赖性凋亡及信号调节 [J]. 西南农业学报, 32(5): 1023-1027. ]

    • JAMIL MA, AHMAD A, NAEEM S, et al. , 2021. Role of allelopathy for suppression of Parthenium hysterophorus: a review [J]. Int J Food Sci Agric, 5(3): 376-380.

    • JIAN KL, ZHANG C, SHANG ZC, et al. , 2017. Eucalrobusone C suppresses cell proliferation and induces ROS-dependent mitochondrial apoptosis via the p38 MAPK pathway in hepatocellular carcinoma cells [J]. Phytomedicine, 25: 71-82.

    • LAN HW , ZHOU ZZ, ZOU ML, et al. , 2020. Effects of Eucalyptus robusta globulin decoction combined with shortwave ultraviolet irradiation on residual wound healing and serum IL-1β, TNF-α and IL-6 expression in deep burn [J]. Chin J Aesthetic Med, 29(8): 88-92. [兰宏伟, 周忠志, 邹梅林, 等, 2020. 大叶桉煎剂浸浴联合短波紫外线照射对深度烧伤残余创面愈合及血清IL-1β、TNF-α、IL-6表达的影响 [J]. 中国美容医学, 29(8): 88-92. ]

    • LI AX, WU HW, FENG YJ, et al. , 2020. A strategy of rapidly screening out herbicidal chemicals from Eucalyptus essential oils [J]. Pest Manage Sci, 76(3): 917-927.

    • LI J, HE YQ, MA DW, et al. , 2018. Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca2+-dependent and caspase-dependent apoptosis signaling pathways in receptor plant cells [J]. Plant Soil, 425(1/2): 297-308.

    • LIU HF, DI SZ, 2018. Analysis of bioactivity and active components of ethanol extract of Eucalyptus robusta against stemoma mustard downy mildew [J]. Bull Agric Sci Technol, (2): 141-144. [刘红芳, 邸仕忠, 2018. 大叶桉乙醇提取物对茎瘤芥霜霉病的生物活性及其活性成分分析 [J]. 农业科技通讯, (2): 141-144. ]

    • LIU QL, WU ZX, LI HH, et al. , 2021. Effects of water extract from Liriodendron chinense leaves on seed germination and seedling growth of Salvia miltiorrhiza [J]. Jiangxi Sci, 39(5): 820-825. [刘巧丽, 吴照祥, 李辉虎, 等, 2021. 杂交鹅掌楸叶水提液对丹参种子萌发及幼苗生长的影响 [J]. 江西科学, 39(5): 820-825. ]

    • LU WY, FANG K, BIAN HW, et al. , 2016. Research progress on stomatal development and its regulatory factors [J]. Plant Physiol J, 52(6): 782-788. [陆雯芸, 房克, 边红武, 等, 2016. 气孔发育及其调控因素的研究进展 [J]. 植物生理学报, 52(6): 782-788. ]

    • MA GZ, XU GF, YANG SS, et al. , 2022. Allelopathic effects of Dioscorea esculenta extracts on seed germination and seedling growth of three weeds [J]. SW Chin J Agric Sci, 35(6): 1295-1302. [马光宗, 徐高峰, 杨韶松, 等, 2022. 甘薯提取物对3种杂草种子萌发和幼苗生长的化感作用 [J]. 西南农业学报, 35(6): 1295-1302. ]

    • MA JH, FENG XX, YANG XH, et al. , 2020. The leaf extract of crofton weed (Eupatorium adenophorum) inhibits primary root growth by inducing cell death in maize root border cells [J]. Plant Divers, 42(3): 174-180.

    • MA X, BAI L, 2021. Elevated CO2 and reactive oxygen species in stomatal closure [J]. Plants, 10(2): 410.

    • MENG QQ, YUE HY, ZHANG YQ, et al. , 2020. Preliminary study on the constituents of volatile oils from three Eucalyptus leaves in Chengdu and their antitumor activity in vitro [J]. SW Chin J Agric Sci, 33(3): 540-546. [ 孟巧巧, 岳海燕, 张玉琴, 等, 2020. 成都地区3种桉树叶挥发油成分与体外抗肿瘤活性的初步研究 [J]. 西南农业学报, 33(3): 540-546. ]

    • MITTLER R, ZANDALINAS SI, FICHMAN Y, et al. , 2022. Reactive oxygen species signalling in plant stress responses [J]. Nat Rev Mol Cell Biol, 23(10): 1-17.

    • OLN K, KOCE JD, 2021. Allelopathic root inhibition and its mechanisms [J]. Allelopathy J, 52(2): 181-198.

    • PEI ZM, MURATA Y, BENNING G, et al. , 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells [J]. Nature, 406(6797): 731-734.

    • PETROV V, HILLE J, MUELLER-ROEBER B, et al. , 2015. ROS-mediated abiotic stress-induced programmed cell death in plants [J]. Front In Plant Sci, 6: 69.

    • QI J, SONG CP, WANG B, et al. , 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack [J]. J Integr Plant Biol, 60(9): 805-826.

    • RIDAOUI K, GUENAOU I, TAOUAM I, et al. , 2022. Comparative study of the antioxidant activity of the essential oils of five plants against the H2O2 induced stress in Saccharomyces cerevisiae [J]. Saudi J Biol Sci, 29(3): 1842-1852.

    • ROPITAUX M, BERNARD S, SCHAPMAN D, et al. , 2020. Root border cells and mucilage secretions of soybean, Glycine max (Merr) L. : characterization and role in interactions with the oomycete Phytophthora parasitica [J]. Cells, 9(10): 2215.

    • SAID ZBOS, HADDADI-GUEMGHAR H, BOULEKBACHE-MAKHLOUF L, et al. , 2016. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits [J]. Ind Crops Prod, 89: 167-175.

    • SHAN TJ, FENG H, XIE YY, et al. , 2019. Isolation of endophytic fungi from Eucalyptus citriodora the antibacterial activity of their extracts [J]. Acta Phytophy Sin, 45(6): 149-155. [单体江, 冯皓, 谢银燕, 等, 2019. 柠檬桉内生真菌的分离及其提取物的抗细菌活性 [J]. 植物保护, 45(6): 149-155. ]

    • SINGH R, CHAURASIA S, GUPTA AD, et al. , 2014. Comparative study of transpiration rate in Mangifera indica and Psidium guajawa affect by Lantana camara aqueous extract [J]. J Environ Sci Comput Sci Eng Technol, 3(3): 1228-1234.

    • STANLEY A, THOMPSON K, HYNES A, et al. , 2014. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration [J]. Antioxid Redox Signal, 20(13): 2026-2042.

    • TIAN XC, CHEN XX, 2014. Allelopathic effects of Eucalyptus robusta macrophylla on several crops and weeds [J]. J Zhejiang Agric Sci, (4): 530-532. [田雪晨, 陈贤兴, 2014. 大叶桉树对几种农作物和杂草的化感作用 [J]. 浙江农业科学, (4): 530-532. ]

    • VASCONCELOS LC, DE SOUZA SANTOS E, DE OLIVEIRA BERNARDES C, et al. , 2019. Phytochemical analysis and effect of the essential oil of Psidium L. species on the initial development and mitotic activity of plants [J]. Environ Sci Pollut Res Int, 26(25): 26216-26228.

    • VIVES-PERIS V, DE OLLAS C, GMEZ-CADENAS A, et al. , 2020. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Rep, 39(1): 3-17.

    • WANG YN, HU ZL, HAO JM, et al. , 2019. Allelopathic effects of volatile oil and its two main components from Chenopodium ambrosioides L. on maize (Zea mays) root border cells [J]. Allelopathy J, 46(2): 215-228.

    • WENG KJ, ER G, SHAMA MWN, et al. , 2018. Effects of Dysphania ambrosioides solution on photosynthetic characteristics and guard cell activity of Vicia faba [J]. J S Agric, 49(3): 530-535. [翁可佳, 尔格, 沙马五牛, 等, 2018. 土荆芥腐解液对蚕豆幼苗光合特性和保卫细胞活性的影响 [J]. 南方农业学报, 49(3): 530-535. ]

    • YY, YAO LX, WEI S , et al. , 2021. Allelopathic effects of weed spp on the root border cells of Fagopyrum tataricum (L. ) Gaertn [J]. Allelopathy J, 52(1): 83-100.

    • ZHAO HM, WANG HY, 2017. Research on the effect of Allium fistulosum L. extract on root tip cells of Vicia faba [J]. Bull Biol, 52(4): 53-55. [赵红梅, 王慧阳, 2017. 大葱提取液对蚕豆根尖细胞的致突作用研究 [J]. 生物学通报, 52(4): 53-55. ]

    • ZHOU J, LUAN W , HUANG XT, et al. , 2016. Effects of aueous etract of Galinsoga parviflora Cav. on leaf guard cells of Vicia faba [J]. SW Chin J Agric Sci, 29(4): 800-804. [周健, 栾威, 黄雪婷, 等, 2016. 辣子草水浸提液对蚕豆叶保卫细胞的影响 [J]. 西南农业学报, 29(4): 800-804. ]

    • ZHOU J, WANG YN, MA DW, et al. , 2017. Volatile allelochemicals from Dysphania ambrosioides L. induce guard cell death and signal regulation in Vicia faba [J]. Acta Ecol Sin, 37(17): 5713-5721. [周健, 王亚男, 马丹炜, 等, 2017. 土荆芥挥发性化感物质诱导蚕豆保卫细胞死亡及信号调节 [J]. 生态学报, 37(17): 5713-5721. ]

  • 参考文献

    • AGURLA S, SUNITHA V, RAGHAVENDRA AS, 2020. Methyl salicylate is the most effective natural salicylic acid ester to close stomata while raising reactive oxygen species and nitric oxide in Arabidopsis guard cells [J]. Plant Physiol Biochem, 57: 276-283.

    • ARAGAO FB, PALMIERI MJ, FERREIRA A, et al. , 2015. Phytotoxic and cytotoxic effects of Eucalyptus essential oil on lettuce (Lactuca sativa L. ) [J]. Allelopathy J, 35(2): 259-272.

    • BAYLE GK, 2019. Ecological and social impacts of Eucalyptus tree plantation on the environment [J]. J Biodivers Conserv Bioresour Manage, 5(1): 93-104.

    • DRIOUICH A, GAUDRY A, PAWLAK B, et al. , 2021. Root cap-derived cells and mucilage: a protective network at the root tip [J]. Protoplasma, 258(6): 1179-1185.

    • ELANSARY HO, SALEM MZM, ASHMAWY NA, et al. , 2017. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition [J]. Nat Prod Res, 31(24): 2927-2930.

    • FICHMAN Y, MITTLER R, 2020. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? [J]. Plant J, 102(5): 887-896.

    • HASANUZZAMAN M, OKU H, NAHAR K, et al. , 2018. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions [J]. Plant Biotechnol Rep, 12(2): 77-92.

    • HAWES M, ALLEN C, TURGEON BG, et al. , 2016. Root border cells and their role in plant defense [J]. Annu Rev Phytopathol, 54(1): 143-161.

    • HE SL, GU CJ, MA DW, et al. , 2022. Regulation of signaling molecules reactive oxygen species and NO in the allelopathic stress-induced cell death of Vicia faba root margin cells in Dysphania ambrosioides [J]. Acta Ecol Sin, 42(2): 818-827. [何胜利, 谷从璟, 马丹炜, 等, 2022. 信号分子活性氧和NO在土荆芥化感胁迫诱导蚕豆根边缘细胞死亡中的调控 [J]. 生态学报, 42(2): 818-827. ]

    • HU ZY, REN JJ, YU Q, et al. , 2017. The role and mechanism of microfilament skeleton and reactive oxygen species in regulating stomatal movement [J]. Chin J Cell Biol, 39(4): 510-514. [ 胡子英, 任静静, 余琴, 等, 2017. 微丝骨架和活性氧在调节气孔运动中的作用及机制 [J]. 中国细胞生物学学报, 39(4): 510-514. ]

    • HUANG S, LI J, MA DW, et al. , 2019. Caspase-dependent apoptosis and signal regulation of Zea mays guard cells induced by volatile oil of Dysphania ambrosioides [J]. SW Chin J Agric Sci, 32(5): 1023-1027. [ 黄素, 李洁, 马丹炜, 等, 2019. 土荆芥挥发油诱导玉米保卫细胞Caspase依赖性凋亡及信号调节 [J]. 西南农业学报, 32(5): 1023-1027. ]

    • JAMIL MA, AHMAD A, NAEEM S, et al. , 2021. Role of allelopathy for suppression of Parthenium hysterophorus: a review [J]. Int J Food Sci Agric, 5(3): 376-380.

    • JIAN KL, ZHANG C, SHANG ZC, et al. , 2017. Eucalrobusone C suppresses cell proliferation and induces ROS-dependent mitochondrial apoptosis via the p38 MAPK pathway in hepatocellular carcinoma cells [J]. Phytomedicine, 25: 71-82.

    • LAN HW , ZHOU ZZ, ZOU ML, et al. , 2020. Effects of Eucalyptus robusta globulin decoction combined with shortwave ultraviolet irradiation on residual wound healing and serum IL-1β, TNF-α and IL-6 expression in deep burn [J]. Chin J Aesthetic Med, 29(8): 88-92. [兰宏伟, 周忠志, 邹梅林, 等, 2020. 大叶桉煎剂浸浴联合短波紫外线照射对深度烧伤残余创面愈合及血清IL-1β、TNF-α、IL-6表达的影响 [J]. 中国美容医学, 29(8): 88-92. ]

    • LI AX, WU HW, FENG YJ, et al. , 2020. A strategy of rapidly screening out herbicidal chemicals from Eucalyptus essential oils [J]. Pest Manage Sci, 76(3): 917-927.

    • LI J, HE YQ, MA DW, et al. , 2018. Volatile allelochemicals of Chenopodium ambrosioides L. induced mitochondrion-mediated Ca2+-dependent and caspase-dependent apoptosis signaling pathways in receptor plant cells [J]. Plant Soil, 425(1/2): 297-308.

    • LIU HF, DI SZ, 2018. Analysis of bioactivity and active components of ethanol extract of Eucalyptus robusta against stemoma mustard downy mildew [J]. Bull Agric Sci Technol, (2): 141-144. [刘红芳, 邸仕忠, 2018. 大叶桉乙醇提取物对茎瘤芥霜霉病的生物活性及其活性成分分析 [J]. 农业科技通讯, (2): 141-144. ]

    • LIU QL, WU ZX, LI HH, et al. , 2021. Effects of water extract from Liriodendron chinense leaves on seed germination and seedling growth of Salvia miltiorrhiza [J]. Jiangxi Sci, 39(5): 820-825. [刘巧丽, 吴照祥, 李辉虎, 等, 2021. 杂交鹅掌楸叶水提液对丹参种子萌发及幼苗生长的影响 [J]. 江西科学, 39(5): 820-825. ]

    • LU WY, FANG K, BIAN HW, et al. , 2016. Research progress on stomatal development and its regulatory factors [J]. Plant Physiol J, 52(6): 782-788. [陆雯芸, 房克, 边红武, 等, 2016. 气孔发育及其调控因素的研究进展 [J]. 植物生理学报, 52(6): 782-788. ]

    • MA GZ, XU GF, YANG SS, et al. , 2022. Allelopathic effects of Dioscorea esculenta extracts on seed germination and seedling growth of three weeds [J]. SW Chin J Agric Sci, 35(6): 1295-1302. [马光宗, 徐高峰, 杨韶松, 等, 2022. 甘薯提取物对3种杂草种子萌发和幼苗生长的化感作用 [J]. 西南农业学报, 35(6): 1295-1302. ]

    • MA JH, FENG XX, YANG XH, et al. , 2020. The leaf extract of crofton weed (Eupatorium adenophorum) inhibits primary root growth by inducing cell death in maize root border cells [J]. Plant Divers, 42(3): 174-180.

    • MA X, BAI L, 2021. Elevated CO2 and reactive oxygen species in stomatal closure [J]. Plants, 10(2): 410.

    • MENG QQ, YUE HY, ZHANG YQ, et al. , 2020. Preliminary study on the constituents of volatile oils from three Eucalyptus leaves in Chengdu and their antitumor activity in vitro [J]. SW Chin J Agric Sci, 33(3): 540-546. [ 孟巧巧, 岳海燕, 张玉琴, 等, 2020. 成都地区3种桉树叶挥发油成分与体外抗肿瘤活性的初步研究 [J]. 西南农业学报, 33(3): 540-546. ]

    • MITTLER R, ZANDALINAS SI, FICHMAN Y, et al. , 2022. Reactive oxygen species signalling in plant stress responses [J]. Nat Rev Mol Cell Biol, 23(10): 1-17.

    • OLN K, KOCE JD, 2021. Allelopathic root inhibition and its mechanisms [J]. Allelopathy J, 52(2): 181-198.

    • PEI ZM, MURATA Y, BENNING G, et al. , 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells [J]. Nature, 406(6797): 731-734.

    • PETROV V, HILLE J, MUELLER-ROEBER B, et al. , 2015. ROS-mediated abiotic stress-induced programmed cell death in plants [J]. Front In Plant Sci, 6: 69.

    • QI J, SONG CP, WANG B, et al. , 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack [J]. J Integr Plant Biol, 60(9): 805-826.

    • RIDAOUI K, GUENAOU I, TAOUAM I, et al. , 2022. Comparative study of the antioxidant activity of the essential oils of five plants against the H2O2 induced stress in Saccharomyces cerevisiae [J]. Saudi J Biol Sci, 29(3): 1842-1852.

    • ROPITAUX M, BERNARD S, SCHAPMAN D, et al. , 2020. Root border cells and mucilage secretions of soybean, Glycine max (Merr) L. : characterization and role in interactions with the oomycete Phytophthora parasitica [J]. Cells, 9(10): 2215.

    • SAID ZBOS, HADDADI-GUEMGHAR H, BOULEKBACHE-MAKHLOUF L, et al. , 2016. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits [J]. Ind Crops Prod, 89: 167-175.

    • SHAN TJ, FENG H, XIE YY, et al. , 2019. Isolation of endophytic fungi from Eucalyptus citriodora the antibacterial activity of their extracts [J]. Acta Phytophy Sin, 45(6): 149-155. [单体江, 冯皓, 谢银燕, 等, 2019. 柠檬桉内生真菌的分离及其提取物的抗细菌活性 [J]. 植物保护, 45(6): 149-155. ]

    • SINGH R, CHAURASIA S, GUPTA AD, et al. , 2014. Comparative study of transpiration rate in Mangifera indica and Psidium guajawa affect by Lantana camara aqueous extract [J]. J Environ Sci Comput Sci Eng Technol, 3(3): 1228-1234.

    • STANLEY A, THOMPSON K, HYNES A, et al. , 2014. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration [J]. Antioxid Redox Signal, 20(13): 2026-2042.

    • TIAN XC, CHEN XX, 2014. Allelopathic effects of Eucalyptus robusta macrophylla on several crops and weeds [J]. J Zhejiang Agric Sci, (4): 530-532. [田雪晨, 陈贤兴, 2014. 大叶桉树对几种农作物和杂草的化感作用 [J]. 浙江农业科学, (4): 530-532. ]

    • VASCONCELOS LC, DE SOUZA SANTOS E, DE OLIVEIRA BERNARDES C, et al. , 2019. Phytochemical analysis and effect of the essential oil of Psidium L. species on the initial development and mitotic activity of plants [J]. Environ Sci Pollut Res Int, 26(25): 26216-26228.

    • VIVES-PERIS V, DE OLLAS C, GMEZ-CADENAS A, et al. , 2020. Root exudates: from plant to rhizosphere and beyond [J]. Plant Cell Rep, 39(1): 3-17.

    • WANG YN, HU ZL, HAO JM, et al. , 2019. Allelopathic effects of volatile oil and its two main components from Chenopodium ambrosioides L. on maize (Zea mays) root border cells [J]. Allelopathy J, 46(2): 215-228.

    • WENG KJ, ER G, SHAMA MWN, et al. , 2018. Effects of Dysphania ambrosioides solution on photosynthetic characteristics and guard cell activity of Vicia faba [J]. J S Agric, 49(3): 530-535. [翁可佳, 尔格, 沙马五牛, 等, 2018. 土荆芥腐解液对蚕豆幼苗光合特性和保卫细胞活性的影响 [J]. 南方农业学报, 49(3): 530-535. ]

    • YY, YAO LX, WEI S , et al. , 2021. Allelopathic effects of weed spp on the root border cells of Fagopyrum tataricum (L. ) Gaertn [J]. Allelopathy J, 52(1): 83-100.

    • ZHAO HM, WANG HY, 2017. Research on the effect of Allium fistulosum L. extract on root tip cells of Vicia faba [J]. Bull Biol, 52(4): 53-55. [赵红梅, 王慧阳, 2017. 大葱提取液对蚕豆根尖细胞的致突作用研究 [J]. 生物学通报, 52(4): 53-55. ]

    • ZHOU J, LUAN W , HUANG XT, et al. , 2016. Effects of aueous etract of Galinsoga parviflora Cav. on leaf guard cells of Vicia faba [J]. SW Chin J Agric Sci, 29(4): 800-804. [周健, 栾威, 黄雪婷, 等, 2016. 辣子草水浸提液对蚕豆叶保卫细胞的影响 [J]. 西南农业学报, 29(4): 800-804. ]

    • ZHOU J, WANG YN, MA DW, et al. , 2017. Volatile allelochemicals from Dysphania ambrosioides L. induce guard cell death and signal regulation in Vicia faba [J]. Acta Ecol Sin, 37(17): 5713-5721. [周健, 王亚男, 马丹炜, 等, 2017. 土荆芥挥发性化感物质诱导蚕豆保卫细胞死亡及信号调节 [J]. 生态学报, 37(17): 5713-5721. ]