en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周黎(1998-),硕士,研究方向为观赏植物生理与调控,(E-mail)zhouli@webmail.hzau.edu.cn。

通讯作者:

王彩云,博士,教授,研究方向为花卉生理与品质及其花卉应用,(E-mail)wangcy@mail.hzau.edu.cn。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2023)07-1276-11

DOI:10.11931/guihaia.gxzw202207058

参考文献
BURAPHAKA H, PUTALUN W, 2020. Stimulation of health-promoting triterpenoids accumulation in Centella asiatica (L. ) Urban leaves triggered by postharvest application of methyl jasmonate and salicylic acid elicitors [J]. Ind Crops Prod, 146: 112171.
参考文献
CHEN YQ, XU G, LINGHU QQ, 2021. Cloning and functional analysis of Jatropha curcas JcGAST1 gene promoter [J]. Plant Physiol J, 57(11): 2145-2154. [陈雨倩, 徐刚, 令狐前前, 2021. 麻疯树JcGAST1基因启动子克隆及其功能初步分析 [J]. 植物生理学报, 57(11): 2145-2154. ]
参考文献
FU XQ, PENG BW, HASSANI D, et al. , 2021. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua [J]. New Phytol, 231(5): 1858-1874.
参考文献
GUO XL, WANG YY, LU HJ, et al. , 2017. Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton [J]. Gene, 628: 230-245.
参考文献
HOU QC, BARTELS D, 2015. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes [J]. Ann Bot, 115(3): 465-479.
参考文献
HU HM, CAI WH, MU KB, et al. , 2021. Study on the heterologous expression of GmCDPK SK5 gene in soybean ABA signaling pathway [J]. Soybean Sci, 40(6): 737-747. [胡慧敏, 蔡婉菡, 穆可彬, 等, 2021. 大豆ABA信号途径GmCDPK SK5基因异源表达探究 [J]. 大豆科学, 40(6): 737-747. ]
参考文献
HU YG, 2019. Preliminary analiysis of ALDH7 and ALDH12 gene functions in cotton under salt and drought stress [D]. Kaifeng: Henan University. [胡阳光, 2019. 棉花ALDH7和ALDH12基因在盐和干旱胁迫下功能初步分析 [D]. 开封: 河南大学. ]
参考文献
KIKUTA Y, UEDA H, TAKAHASHI M, et al. , 2012. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium—a new target for plant protection [J]. Plant J, 71(2): 183-193.
参考文献
KIRCH HH, SCHLINGENSIEPEN S, KOTCHONI S, et al, 2005. Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana [J]. Plant Mol Biol, 57: 315-332.
参考文献
LEE DS, KIM BK, KWON SJ, et al. , 2009. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling [J]. Biochem Biophys Res Commun, 379(4): 1038-1042.
参考文献
LI JW, XU ZZ, ZENG T, et al. , 2022a. Overexpression of TcCHS increases pyrethrin content when using a genotype-independent transformation system in pyrethrum (Tanacetum cinerariifolium) [J]. Plants (Basel), 11(12): 1575.
参考文献
LI JW, ZENG T, XU ZZ, et al. , 2022b. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter [J]. Plant Methods, 18(1): 32.
参考文献
LI JJ, HU H, MAO J, et al. , 2019. Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone [J]. New Phytol, 223(3): 1607-1620.
参考文献
LI JJ, HU H, CHEN Y, et al. , 2021. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers [J]. Phytochemistry, 187: 112768.
参考文献
LI W, ZHOU F, PICHERSKY E, 2018. Jasmone hydroxylase, a key enzyme in the synthesis of the alcohol moiety of pyrethrin insecticides [J]. Plant Physiol, 177(4): 1498-1509.
参考文献
LV ZY, ZHANG L, TANG KX, 2017. New insights into artemisinin regulation [J]. Plant Signal Behav, 12(10): e1366398.
参考文献
LYBRAND DB, XU HY, LAST RL, et al. , 2020. How plants synthesize pyrethrins: safe and biodegradable insecticides [J]. Trends Plant Sci, 25(12): 1240-1251.
参考文献
MA R, YUAN HL, AN J, et al. , 2018. A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis [J]. PLoS ONE, 13(4): e0195556.
参考文献
MATSUDA K, KIKUTA Y, HABA A, et al. , 2005. Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium [J]. Phytochemistry, 66(13): 1529-1535.
参考文献
MOSSA AH, MOHAFRASH SMM, CHANDRASEKARAN N, 2018. Safety of natural insecticides: toxic effects on experimental animals [J]. Biomed Res Int, 2018(1): 1-17.
参考文献
NELSON RH, 1974. Pyrethrum: The natural insecticide [J]. Bull Esa, 20(3): 16.
参考文献
OH IS, PARK AR, BAE MS, et al. , 2005. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola [J]. Plant Cell, 17(10): 2832-2847.
参考文献
RAMIREZ AM, STOOPEN G, MENZEL TR, et al. , 2012. Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings [J]. Plant Cell, 24(10): 4252-4265.
参考文献
STAUDINGER H, RUZICKA L, 1924. Insektentötende Stoffe IV. Konstitution des Tetrahydro-pyrethrons [J]. Helvetica Chimica Acta, 7(1): 236-244.
参考文献
SULTANA S, HU H, GAO L, et al. , 2015. Molecular cloning and characterization of the trichome specific chrysanthemyl diphosphate/chrysanthemol synthase promoter from Tanacetum cinerariifolium [J]. Sci Hortic, 185: 193-199.
参考文献
SURAWEERA DD, GROOM T, TAYLOR PWJ, et al. , 2017. Dynamics of flower, achene and trichome development governs the accumulation of pyrethrins in pyrethrum (Tanacetum cinerariifolium) under irrigated and dryland conditions [J]. Indust Crops Prod, 109: 123-133.
参考文献
WANG HY, 2016. Molecular cloning and characterization of the promoter of aldehyde dehydrogenase gene from Artemisia annua L. [D]. Chongqing: Southwest University: 43. [王焕燕, 2016. 黄花蒿ALDH1启动子的克隆及其功能分析 [D]. 重庆: 西南大学. ]
参考文献
WASTERNACK C, STRNAD M, 2019. Jasmonates are signals in the biosynthesis of secondary metabolites—Pathways, transcription factors and applied aspects—A brief review [J]. New Biotechnol, 48: 1-11.
参考文献
WANG Y, WEN J, LIU L, et al. , 2022. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides [J]. Metab Eng, 72: 188-199.
参考文献
WANG FJ, XU HY, YAN JB, et al. , 2021. Biosynthesis and application of pyrethrins: a natural pesticide from plants [J]. Synth Biol J, 2(5): 753-761. [王凤姣, 徐海洋, 闫建斌, 等, 2021. 植物天然农药除虫菊酯的生物合成和应用研究进展 [J]. 合成生物学, 2(5): 753-761. ]
参考文献
XU HY, MOGHE GD, WIEGERT-RININGER K, et al. , 2018. Coexpression analysis identifies two oxidoreductases involved in the biosynthesis of the monoterpene acid moiety of natural pyrethrin insecticides in Tanacetum cinerariifolium [J]. Plant Physiol, 176(1): 524-537.
参考文献
YAMASHIRO T, SHIRAISHI A, SATAKE H, et al. , 2019. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil [J]. Sci Rep, 9(1): 18249.
参考文献
YANG Y, YU TF, MA J, et al. , 2020. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants [J]. Int J Mol Sci, 21(2): 670.
参考文献
YANG YN, KIM Y, KIM H, et al. , 2021. The transcription factor ORA59 exhibits dual DNA binding specificity that differentially regulates ethylene- and jasmonic acid-induced genes in plant immunity [J]. Plant Physiol, 187(4): 2763-2784.
参考文献
ZENG T, LI JW, XU ZZ, et al. , 2022. TcMYC2 regulates pyrethrin biosynthesis in Tanacetum cinerariifolium [J]. Hortic Res, 9: uhac178.
参考文献
ZENG T, LI JW, ZHOU L, et al. , 2021. Transcriptional responses and GCMS analysis for the biosynthesis of pyrethrins and volatile terpenes in Tanacetum coccineum [J]. Int J Mol Sci, 22(23): 13005.
参考文献
ZENG T, LI JW, ZHOU L, et al. , 2021. Advances in the mutualistic and antagonistic interactions between flower colors and the pollinators of ornamental plants [J]. Acta Hortic Sin, 48(10): 2001-2017. [曾拓, 李伽文, 周黎, 等, 2021. 观赏植物花色与授粉昆虫相互适应关系的研究进展 [J]. 园艺学报, 48(10): 2001-2017. ]
参考文献
ZHOU L, LI JW, ZENG T, et al. , 2022. TcMYB8, a R3-MYB transcription factor, positively regulates pyrethrin biosynthesis in Tanacetum cinerariifolium [J]. Int J Mol Sci, 23(20): 12186.
参考文献
ZHOU L, ZENG T, LI JJ, et al. , 2022. The preliminary investigation on the interplanting patterns and agronomic effects of Tanacetum cinerariifolium and horticultural plants [J]. J Guizhou Norm Univ (Nat Sci Ed), 40(3): 18-26. [周黎, 曾拓, 李进进, 等, 2022. 除虫菊间作套种模式及其农艺效应初探 [J]. 贵州师范大学学报(自然科学版), 40(3): 18-26. ]
目录contents

    摘要

    天然除虫菊酯是从除虫菊(Tanacetum cinerariifolium)中提取的绿色植物源生物杀虫剂。醛脱氢酶(TcALDH)和GDSL脂肪酶(TcGLIP)是除虫菊酯生物合成途径中的关键限速酶。为探究TcALDHTcGLIP基因的功能,该研究从除虫菊无性系‘W99’中克隆得到TcALDHTcGLIP基因的启动子,并通过生物信息学分析、组织化学染色(GUS染色)、荧光素酶报告实验和外源植物激素处理实验对其启动子的调控元件、启动子活性、激素诱导特异性和组织特异性进行分析。结果表明:(1)克隆得到的TcALDHTcGLIP启动子序列分别为2848、1343 bp,均含有多个与逆境应答和激素信号相关的顺式作用元件。(2)分别构建了启动子和荧光素酶融合的植物表达载体,在烟草叶片中观察荧光成像发现,TcALDH启动子具有茉莉酸甲酯(MeJA)和脱落酸(ABA)激素诱导特异性。(3)用MeJA和ABA处理除虫菊‘W99’组培苗发现,TcALDH的表达量在12 h内受ABA诱导时上调,受MeJA诱导时先升高后降低,TcGLIP的表达量受ABA和MeJA诱导下调。(4)分别构建了TcALDHTcGLIP启动子与GUS基因融合的植物表达载体,转化烟草并对其转基因叶片进行GUS活性染色发现,TcALDH启动子在烟草叶片腺体、腺毛头部及叶肉细胞中表达,而TcGLIP启动子仅在烟草叶肉细胞中表达。综上认为,TcALDHTcGLIP的启动子具有组织特异性,TcALDH启动子具有MeJA和ABA激素诱导特性。该研究结果为除虫菊TcALDHTcGLIP基因参与除虫菊酯合成的调控机制提供了新见解。

    Abstract

    Natural pyrethrin is a green botanical insecticide that extracted from the aboveground tissues of pyrethrum (Tanacetum cinerariifolium). Aldehyde dehydrogenase (TcALDH) and GDSL lipase (TcGLIP) are key rate-limiting enzymes involved in pyrethrin biosynthesis pathway in pyrethrum. The promoters of TcALDH and TcGLIP genes were cloned from the genomic DNA of pyrethrum clone ‘W99’ in order to investigate the regulatory mechanism of these genes. The regulatory elements, activity, hormone specificity and tissue inducibility of the two promoters were analyzed through bioinformatics analysis, histochemical staining (GUS staining), luciferase reporting, and exogenous hormone treatment. The results were as follows: (1) Using pyrethrum genomic DNA as a template, specific primers were used to clone the pTcALDH and pTcGLIP fragments. The sequence lengths of pTcALDH and pTcGLIP were 2848 and 1343 bp, respectively, and the promoter analysis software the PlantCARE predicted that they both contained multiple cis-elements related to stress response and hormone signals. (2) The plant expression vectors fused by pTcALDH and pTcGLIP and luciferase report gene were constructed, and were transformed into tobacco (Nicotiana benthamiana) to analyse hormone inducibility by observing the fluorescence imaging in tobacco leaves. The results demonstrated that the pTcALDH displayed typical hormone inducibility of methyl jasmonate (MeJA) and abscisic acid (ABA), whereas the pTcGLIP showed no response. (3) The tissue culture seedlings of pyrethrum ‘W99’ were treated with MeJA and ABA, the expression of TcALDH was up-regulated by ABA within 12 h, and first increased and then decreased under MeJA treatment; the expression of TcGLIP was down-regulated by ABA and MeJA. (4) We constructed the expression vectors of pTcALDH and pTcGLIP fused with GUS reporters and transformed them into tobacco, then the transient transformation of tobacco drived the expression of GUS gene and showed initiating activity. It was found that the pTcALDH expressed in the glands, glandular hair heads and mesophyll of the leaves, while the pTcGLIP was only expressed in the parenchyma cell. These results indicated that the pTcALDH and pTcGLIP were tissue-specific promoters, and the pTcALDH appeared MeJA-inducible and ABA-inducible characteristics. This study provides a new insight into the regulatory mechanism of TcALDH and TcGLIP genes involved in pyrethrin synthesis.

  • 除虫菊(Tanacetum cinerariifolium)作为一种多年生菊科植物,几个世纪以来一直被用于提取绿色植物源杀虫剂除虫菊酯(Lybrand et al.,2020)。其因提取于花头的除虫菊酯具有杀虫迅速、无富集易降解、对哺乳动物毒性小、适用于敏感人群等特性,被广泛应用于有机农业和家居防治(Nelson,1974),其花头还能够释放大量挥发性萜烯(E)-beta-法尼烯 [(E)-beta-farnesene,EβF],能够在田间吸引瓢虫驱避蚜虫(Li et al.,2019; Li et al.,2021),同时吸引大量授粉昆虫如食蚜蝇等(Zeng et al.,2021; 曾拓等,2021)。因此,除虫菊也作为一种间作作物,在我国云南有广泛的应用(周黎等,2022)。全世界对除虫菊酯的需求较大,将其作为天然植物源杀虫剂以避免过度使用化学合成杀虫剂(Suraweera et al.,2017)。因此,如何提高除虫菊酯的含量一直是除虫菊产业和基础研究的热点和重点。

  • 除虫菊酯在植物体内由单萜羧基部分(菊酸和除虫菊酸)和酮醇部分(除虫菊酮醇、茉莉酮醇和瓜叶酮醇)酯化形成(Staudinger &Ruzicka1924; Mossa et al.,2018)。酸前体来源于萜烯途径的质体甲基赤藓醇-4磷酸(methylerythritol4-phosphate,MEP)途径(Lybrand et al.,2020),酮醇前体来源于茉莉酸类激素(jasmonates,JAas)途径(Matsuda et al.,2005)。在除虫菊酯单萜合成模型中,两分子二甲基烯丙基二磷酸(dimethylallyl pyrophosphate,DMAPP)首先在腺体中依次由菊基二磷酸合成酶(chrysanthemyl diphosphate synthase,CDS)、乙醇脱氢酶2(alcohol dehydrogenase2,ADH2)、醛脱氢酶 1(aldehyde dehydrogenase1,ALDH1)催化形成前体分子菊酸,随后菊酸被运输到腺体下方的皮下组织,最终在种子和果皮中被GDSL脂肪酶(GDSL lipase protein,GLIP)催化形成除虫菊酯,后被胚胎吸收转移至幼苗组织中(Kikuta et al.,2012; Ramirez et al.,2012; Xu et al.,2018; Lybrand et al.,2020; Li et al.,2022a)。TcALDH参与除虫菊酸部分最后一步催化反应合成菊酸CoA,菊酸CoA和酮醇则在TcGLIP的催化作用下通过酯键相连合成最终产物除虫菊酯(Kikuta et al.,2012; Wang et al.,2022)。由此可知, TcALDHTcGLIP是除虫菊酯合成的关键限速酶基因。目前,已经从拟南芥和棉花中克隆到大量ALDHGLIP基因的启动子(Hou &Bartels,2015; Guo et al.,2017; Ma et al.,2018; Yang et al.,2021),此外,高粱、大豆以及黄花蒿等物种中也报道了ALDH基因的启动子。然而从除虫菊中仅分离出一个具有腺体特异表达的菊基二磷酸合成酶基因TcCHS的启动子(Sultana et al.,2015)。因此,研究其他除虫菊酯合成酶基因的启动子是解析除虫菊酯合成调控机制的前提。

  • 茉莉酸及其衍生物不仅作为反应底物参与除虫菊酯酮醇部分的生物合成,同时作为防御应激类激素调控除虫菊酯的合成(Matsuda et al.,2005; Li et al.,2018)。课题组前期进行了茉莉酸甲酯处理下的白花除虫菊叶片和花期转录组数据分析,注释到了很多与除虫菊酯合成代谢相关的基因。基于此,本研究通过除虫菊无性系‘W99’克隆得到TcALDHTcGLIP基因的启动子序列,对其调控元件、启动子活性、激素诱导特异性和组织特异性进行了分析,进一步揭示除虫菊酯的合成机制及代谢调控中植物激素的作用,从而为培育除虫菊优良品种和提高除虫菊酯含量提供理论依据。

  • 1 材料与方法

  • 1.1 实验材料

  • 除虫菊无性系‘W99’的叶片取自华中农业大学组培室。大肠杆菌DH5α 和根癌农杆菌GV3101、EHA105购自上海唯地生物技术有限公司。用于转化的本氏烟草(Nicotiana benthamiana)在 25℃、16 h光照/8 h黑暗条件的组培室中生长。

  • 1.2 启动子克隆

  • 利用RaPure plant DNA mini kit(美基生物,中国)提取除虫菊叶片的gDNA作为模板,依据除虫菊基因组(Yamashiro et al.,2019),设计TcALDH基因启动子的特异引物F-ALDH-pro及ORF下游R-ALDH-ORF(表1),TcGLIP基因启动子的特异引物F-GLIP-pro及ORF下游R-GLIP-ORF(表1),利用高保真酶High-Fidelity Master Mix(MCLAB,China)进行扩增,将扩增产物连接到pBLUE-T载体(ZOMANBIO,China),转化大肠杆菌,挑选单菌落进行测序。利用除虫菊基因组对获得的片段进行检验。利用PlantCARE软件对启动子的元件进行预测。

  • 1.3 载体构建

  • 以测序正确的质粒为模板,分别利用含有同源重组片段的引物Luc-aldh-F、Luc-aldh-R、Luc-glip-F、Luc-glip-R(表1)进行扩增。回收PCR产物,连接到经HindⅢ酶切的pGreenII 0800-LUC载体上,转化大肠杆菌,挑选单菌落进行测序,选取测序正确的载体转化GV3101农杆菌。

  • 以测序正确的质粒为模板,分别利用含有同源重组片段的引物F-aldh121pro、R-aldh121pro、F-glip121pro、R-glip121pro(表1)进行扩增。回收PCR产物,连接到经Hind III和BamH I酶切的PBI121载体上,转化大肠杆菌,挑选单菌落进行测序,选取测序正确的载体转化EHA105农杆菌。

  • 1.4 烟草中LUC瞬时表达和荧光成像

  • 将含有重组pGreenⅡ 0800-LUC载体的农杆菌单菌落接种到发根农杆菌培养基(YEB)中,培养至OD600=0.5,5 000 r·min-1离心7 min后,用MES侵染液重悬,调节至OD600=1.0。选取生长2至3周的本氏烟草,用无针头的注射器将农杆菌菌液注射到烟草叶片,叶片左半部分注射含有空载pGreenⅡ 0800-LUC载体的农杆菌,右半部分注射含有重组pGreenⅡ 0800-LUC载体的农杆菌。注射后的烟草置于人工气候室中培养2 d后,在烟草叶片上喷施50 μmol·L-1的脱落酸(abscisic acid,ABA),浓度参考胡慧敏等(2021)的方法,或喷施100 μmol·L-1的茉莉酸甲酯(methyl jasmonate,MeJA),浓度参考陈雨倩等(2021)的方法,以喷施清水植株的叶片作为对照。放置12 h后,将Dual-Luciferase Reporter Assay 试剂盒中的Luaferase Assay Substrate与Luaferase Assay Buffer II混合,涂抹在烟草的注射区,然后使用LB 985 Nightshade system(Berthold,Bad Wildbad,德国)仪器观察荧光。

  • 1.5 不同激素处理下除虫菊TcALDH和TcGLIP基因表达分析

  • MeJA处理:以继代培养一个月的除虫菊‘W99’无性系作为实验材料,使用5 mL的2 mmol·L-1的MeJA溶液喷施处理组培苗,浓度参考(Buraphaka &Putalun,2020),拧紧瓶盖,培养0、4、12 h后,将实验材料叶片放置在液氮中迅速冷却后,保存于-80℃冰箱。

  • ABA处理:以继代培养一个月的除虫菊‘W99’无性系作为实验材料,使用5 mL的1 mmol·L-1的ABA溶液喷施处理组培苗,拧紧瓶盖,培养0、4、12 h后,将实验材料叶片放置在液氮中迅速冷却后,保存于-80℃冰箱。

  • 利用Real-time qPCR分析两种激素处理后的基因表达水平。RNA提取使用植物RNA提取试剂盒Ultrapure RNA Kit(CWBIO康为世纪生物科技有限公司),反转录形成cDNA,使用EasyScript One-Step gDNA Removal and cDNA Synthesis SuperMix(TRAN北京全式金生物技术有限公司)进行荧光定量分析,荧光定量的仪器为Applied Biosystems 7500 platform,试剂为2×Sybr Green qPCR Mix(Aidlab,北京艾德莱生物科技有限公司),荧光定量使用的引物为TcALDH-RT-F、TcALDH-RT-R、TcGLIP-RT-F、TcGLIP-RT-R、TcGAPDH-F和TcGAPDH-R(表1)(Ramirez et al.,2012)。

  • 1.6 烟草遗传转化筛选及GUS表达

  • 将含有pTcGLIP-GUS质粒的农杆菌单菌落接种到YEB液体培养基中,培养至OD600=0.5,5 000 r·min-1离心7 min后,用液体MS(Murashige &Skoog)基本培养基重悬,调节至OD600=0.5。将烟草叶片切成0.5 cm×0.5 cm,放入农杆菌菌液,侵染10 min后,在滤纸上晾干,将侵染后的烟草叶片转移至共培养培养基上,培养基配方为MS基本培养基+2.25 mg·L-16-苄氨基嘌呤(6-benzyladenine,6-BA)+0.3 mg·L-11-萘乙酸(1-naphthylacetic acid,NAA),黑暗条件下培养2 d后,将叶片转移至筛选培养基,培养基配方为MS基本培养基+2.25 mg·L-1 6-BA+0.3 mg·L-1 NAA+400 mg·L-1头孢霉素(cefotaxime,Cef)+50 mg·L-1 卡那霉素(kanamycin,Kan),每2周继代一次,当抗性芽生长至1 cm时,将抗性芽切下,放置在含有400 mg·L-1 Cef和50 mg·L-1 Kan的MS培养基中,继续培养。

  • 提取卡纳霉素抗性本氏烟草叶片的DNA,以其为模板,用F-aldh121pro作为上游,TcALDH启动子特异引物R-aldh-pro280作为下游,检验pTcALDH-GUS转基因烟草;用F-glip121pro作为上游,R-GUS-T作为下游,检验pTcGLIP-GUS转基因烟草,转化所用菌株为阳性对照,野生烟草为阴性对照。植物DNA提取试剂盒为HiPure Plant DNA Mini Kit(美基生物,中国),PCR扩增mix为2×Taq Master Mix(近岸蛋白质科技有限公司,中国)。

  • 表1 实验所用引物

  • Table1 Primers used in the experiments

  • 将继代培养一个月的阳性烟草用GUS Staining Kit(Coolaber,中国)进行染色,实验步骤参照试剂盒说明书,染色后用70%的酒精脱色至叶片完全褪绿后,在体视显微镜下观察染色情况。每个启动子均取3个独立的转基因株系进行染色。

  • 2 结果与分析

  • 2.1 TcALDHTcGLIP启动子克隆

  • 以提取的除虫菊基因组DNA为模板,使用特异性引物F-ALDH-pro和R-ALDH-ORF克隆得到TcALDH基因ATG上游2 848 bp的启动子序列,使用特异性引物F-GLIP-pro和R-GLIP-ORF扩增TcGLIP启动子,获得条带大小为1 343 bp(图1)。分别命名为pTcALDHpTcGLIP

  • 图1pTcALDH(A)和pTcGLIP(B)PCR扩增

  • Fig.1 PCR amplification of pTcALDH (A) andpTcGLIP (B)

  • 2.2 pTcALDHpTcGLIP调控元件分析

  • 利用PlantCARE软件分析了pTcALDHpTcGLIP的顺式作用元件。结果显示在pTcALDH序列2 848 bp 的区域共检测到43种210个作用元件,在pTcGLIP序列1 343 bp的区域检测到30种116个作用元件。pTcALDHpTcGLIP均含有多个核心启动子元件(TATA-box)和增强子元件(CAAT-box)等基本特征元件,此外还包含许多与激素响应[MeJA、水杨酸(salicylic acid,SA)、生长素(auxin)、ABA、赤霉素(gibberellin,GA)等],胁迫响应(损伤、低温、干旱等)和光响应相关的元件(表2,表3)。这两个基因启动子序列均含有MeJA响应元件(TGACG-motif和CGTCA-motif)和ABA响应元件(ABRE)。

  • 2.3 pTcALDHpTcGLIP活性和激素诱导特性分析

  • 将含有pTcALDH-LUCpTcGLIP-LUC表达载体的农杆菌分别注射烟草叶片,荧光成像结果显示,含有pTcALDH-LUCpTcGLIP-LUC载体的农杆菌注射部位,荧光强度高于空载对照,说明pTcALDHpTcGLIP能够驱动LUC基因的表达,具有启动子活性。注射含有pTcALDH-LUC表达载体农杆菌的叶片在ABA和MeJA激素处理后,荧光强度显著高于清水对照,表明pTcALDH具有ABA和MeJA激素诱导特性(图2)。而注射含有pTcGLIP-LUC表达载体农杆菌的叶片在ABA和MeJA激素处理后,荧光强度低于清水对照(图2)。

  • 2.4 不同激素处理下除虫菊叶片TcALDHTcGLIP基因表达分析

  • 用ABA和MeJA处理除虫菊组培苗,检测TcALDHTcGLIP基因转录水平。结果表明,MeJA和ABA处理可显著影响除虫菊TcALDHTcGLIP基因的表达,其中TcALDH的表达受ABA诱导上调,受MeJA诱导表达量先升高后降低;TcGLIP的表达受ABA和MeJA诱导下调(图3)。

  • 2.5 pTcALDHpTcGLIP组织特异性分析

  • TcALDHTcGLIP启动子区域与GUS报告基因融合,转化烟草,获得了4个独立的pTcALDH-GUS转基因株系和5个独立的pTcALDH-GUS转基因株系。对这些转基因株系进行GUS染色,结果表明,在野生型植物中无任何组织观察到蓝色,在pTcALDH-GUS转基因烟草叶的腺毛头部显现出明显蓝色,而在pTcALDH-GUS转基因烟草叶中未发现明显的组织特异染色(图4)。

  • 表2 pTcALDH部分顺式作用元件

  • Table2 Part of cis-acting regulatory elements of pTcALDH

  • 3 讨论与结论

  • 本研究利用除虫菊基因组及PCR测序验证,获得了TcALDHTcGLIP的启动子序列。pTcALDHpTcGLIP序列均含有多个核心启动子元件(TATA-box)和增强子元件(CAAT-box)等基本特征元件,表明这两个基因的启动子拥有典型启动子的功能。此外,pTcALDHpTcGLIP区域还包含了激素响应、胁迫响应和光响应元件。启动子序列分析表明,pTcALDHpTcGLIP均含有参与MeJA响应的CGTCA基序和ABA响应基序,这恰好解释了MeJA可以促进除虫菊酯的合成。类似地,在pTcALDHpTcGLIP中均发现了MBS元件,它是参与干旱诱导的MYB的结合位点,而有趣的是,之前Suraweera等(2017)研究表明除虫菊酯的产量受干旱的影响。除了除虫菊中TcALDHTcGLIP基因会响应机械损伤使得除虫菊酯含量上升外(Kikuta et al.,2012),黄花蒿中AaALDH基因也会因为伤害处理而上调(王焕燕,2016),这可能与损伤响应元件W-box相关。综上可知,pTcALDHpTcGLIP序列包含MYB、MYC、BZIP、WRKY等转录因子可结合的元件,如MBS、RBRE、G-box、W-box等(Yang et al.,2020; Fu et al.,2021),因此推测这两个基因的表达可能受这些转录因子的调控。最新的研究发现证实了白花除虫菊中TcMYC2TcMYB8均可以通过上调TcGLIP基因表达进而提高叶片中除虫菊酯的含量(Zhou et al.,2022; Zeng et al.,2022)。

  • 表3 pTcGLIP部分顺式作用元件

  • Table3 Part of cis-acting regulatory elements of pTcGLIP

  • 植物次生代谢物质合成受茉莉酸(jasmonic acid,JA)、ABA、SA等植物激素的调控(Lv et al.,2017)。TcALDH作为除虫菊酯合成关键基因,其启动子具有ABA和MeJA激素诱导特性。TcALDH的基因表达量在ABA诱导下上调,在MeJA诱导下先显著上升后下降。这与前人的研究结果基本一致,除虫菊中TcALDHTcGLIP基因的表达受MeJA的影响(Li et al.,2018),进一步证明MeJA可以调控除虫菊酯合成。在除虫菊的近缘种黄花蒿中,用MeJA处理黄花蒿,AaALDH1基因表达量也有显著的提高(王焕燕,2016)。这说明MeJA也会调控青蒿素的合成。与TcALDH处理结果相反的是,TcGLIP启动子不具备MeJA和ABA诱导特异性,且处理后基因表达量显著下降。这与前人研究报道的拟南芥NtGLIP1不受JA调控结果基本一致,NtGLIP1仅为SA响应分泌蛋白(Oh et al.,2005)。而NtGLIP2可以响应JA,并通过响应生长素抵御生物胁迫(Lee et al.,2009)。拟南芥、棉花和除虫菊的ALDH基因启动子均能响应ABA,除此之外,除虫菊pTcALDH可以响应MeJA;拟南芥和棉花GLIP基因启动子均可响应乙烯(ethylene,ET),且拟南芥NtGLIP基因启动子具有生长素诱导特性,这在除虫菊中未见报道(Kirch et al.,2005; Hou &Bartels,2015; Guo et al.,2017; 胡阳光,2019)。这说明参与代谢合成的基因通常具有各自的激素诱导特异性,通过响应一种或者多种植物激素调控次生代谢物质合成,在植物生物或非生物胁迫中发挥作用。

  • 图2 不同激素处理下pTcALDH-LUCpTcGLIP-LUC转基因烟草荧光成像结果

  • Fig.2 Firefly luminescence imaging of pTcALDH-LUC andpTcGLIP-LUC in transgenic tobacco under different hormone treatments

  • 图3 不同处理下除虫菊叶片TcALDHTcGLIP基因表达分析

  • Fig.3 Expression analysis of TcALDHand TcGLIPin Tanacetum cinerariifolium leaves under different treatments

  • 图4 转基因烟草和野生型烟草GUS染色

  • Fig.4 GUS staining of transgenic and wild type Nicotiana benthamiana

  • Wasternack等(2019)研究表明MeJA能够促进次生代谢物在植物体内的积累。MeJA短效处理可以促进除虫菊酯合成基因的瞬时上调,但不能维持较高的除虫菊酯含量,JA路径部分合成酶基因和TcGLIP基因表达量反而下调(Zeng et al.,2022)。除虫菊酯前体物质主要在腺体中合成,被运输到细胞外形成最终产物,储存在花头的子房中(王凤姣等,2021)。花头中具有丰富的特殊结构,如分泌管/腔或胞外空间(Ramirez et al.,2012)。然而在叶片中并没有发现类似的结构或空间来储存除虫菊酯。除虫菊毛状根中也仅存在极低含量的除虫菊酯(Li et al.,2022b)。这意味着除虫菊酯的生物合成可能受到强大的负反馈,以避免除虫菊酯的过度积累。植物体内这种负反馈调节机制可能通过抑制GLIP酶的活性从而降低除虫菊酯的含量。

  • 此外,GUS组织染色结果表明,TcALDH主要在腺体中表达,而TcGLIP仅在皮下薄壁细胞表达。这些结果基本与前人的研究一致,即腺体中表达的TcALDH用以合成菊酸,薄壁细胞中表达TcGLIP用以合成除虫菊酯(Kikuta et al.,2012; Ramirez et al.,2012; Xu et al.,2018)。黄花蒿ALDH1基因只在成熟的莲座叶的腺毛体中表达(王焕燕,2016)。然而,本研究的结果与前人的预测略有不同,本研究表明薄壁细胞也可能具有表达TcALDH的能力,TcALDH基因并非为腺体特异表达。拟南芥中NtGLIP1和其他NtGLIPs信号同样定位在细胞壁或者胞外(Oh et al.,2005; Lee et al.,2009)。通过亚细胞定位研究拟南芥NtALDHNtGLIPNtALDH蛋白多分泌于质体和细胞质中,NtGLIP蛋白通常分布在细胞壁或胞外(Oh et al.,2005; Lee et al.,2009; Hou &Bartels,2015)。当前报道仅分析了棉花GhALDHGhGLIP基因组数据和启动子的元件,在空间表达研究上未见报道(Guo et al.,2017; Ma et al.,2018)。

  • 本研究分析了pTcALDHpTcGLIP的调控元件、启动子活性、激素诱导特异性和组织特异性。其中pTcALDH具有MeJA和ABA激素诱导特异性,且这两种激素影响除虫菊酯合成基因的表达水平。TcALDH主要定位在腺体中,而TcGLIP主要定位在胞外,这再次验证了菊酸的合成部位在腺体而除虫菊酯的合成部位在胞外。本研究可为进一步探讨除虫菊中TcALDHTcGLIP基因的表达调控机制提供理论参考依据。

  • 参考文献

    • BURAPHAKA H, PUTALUN W, 2020. Stimulation of health-promoting triterpenoids accumulation in Centella asiatica (L. ) Urban leaves triggered by postharvest application of methyl jasmonate and salicylic acid elicitors [J]. Ind Crops Prod, 146: 112171.

    • CHEN YQ, XU G, LINGHU QQ, 2021. Cloning and functional analysis of Jatropha curcas JcGAST1 gene promoter [J]. Plant Physiol J, 57(11): 2145-2154. [陈雨倩, 徐刚, 令狐前前, 2021. 麻疯树JcGAST1基因启动子克隆及其功能初步分析 [J]. 植物生理学报, 57(11): 2145-2154. ]

    • FU XQ, PENG BW, HASSANI D, et al. , 2021. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua [J]. New Phytol, 231(5): 1858-1874.

    • GUO XL, WANG YY, LU HJ, et al. , 2017. Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton [J]. Gene, 628: 230-245.

    • HOU QC, BARTELS D, 2015. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes [J]. Ann Bot, 115(3): 465-479.

    • HU HM, CAI WH, MU KB, et al. , 2021. Study on the heterologous expression of GmCDPK SK5 gene in soybean ABA signaling pathway [J]. Soybean Sci, 40(6): 737-747. [胡慧敏, 蔡婉菡, 穆可彬, 等, 2021. 大豆ABA信号途径GmCDPK SK5基因异源表达探究 [J]. 大豆科学, 40(6): 737-747. ]

    • HU YG, 2019. Preliminary analiysis of ALDH7 and ALDH12 gene functions in cotton under salt and drought stress [D]. Kaifeng: Henan University. [胡阳光, 2019. 棉花ALDH7和ALDH12基因在盐和干旱胁迫下功能初步分析 [D]. 开封: 河南大学. ]

    • KIKUTA Y, UEDA H, TAKAHASHI M, et al. , 2012. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium—a new target for plant protection [J]. Plant J, 71(2): 183-193.

    • KIRCH HH, SCHLINGENSIEPEN S, KOTCHONI S, et al, 2005. Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana [J]. Plant Mol Biol, 57: 315-332.

    • LEE DS, KIM BK, KWON SJ, et al. , 2009. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling [J]. Biochem Biophys Res Commun, 379(4): 1038-1042.

    • LI JW, XU ZZ, ZENG T, et al. , 2022a. Overexpression of TcCHS increases pyrethrin content when using a genotype-independent transformation system in pyrethrum (Tanacetum cinerariifolium) [J]. Plants (Basel), 11(12): 1575.

    • LI JW, ZENG T, XU ZZ, et al. , 2022b. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter [J]. Plant Methods, 18(1): 32.

    • LI JJ, HU H, MAO J, et al. , 2019. Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone [J]. New Phytol, 223(3): 1607-1620.

    • LI JJ, HU H, CHEN Y, et al. , 2021. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers [J]. Phytochemistry, 187: 112768.

    • LI W, ZHOU F, PICHERSKY E, 2018. Jasmone hydroxylase, a key enzyme in the synthesis of the alcohol moiety of pyrethrin insecticides [J]. Plant Physiol, 177(4): 1498-1509.

    • LV ZY, ZHANG L, TANG KX, 2017. New insights into artemisinin regulation [J]. Plant Signal Behav, 12(10): e1366398.

    • LYBRAND DB, XU HY, LAST RL, et al. , 2020. How plants synthesize pyrethrins: safe and biodegradable insecticides [J]. Trends Plant Sci, 25(12): 1240-1251.

    • MA R, YUAN HL, AN J, et al. , 2018. A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis [J]. PLoS ONE, 13(4): e0195556.

    • MATSUDA K, KIKUTA Y, HABA A, et al. , 2005. Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium [J]. Phytochemistry, 66(13): 1529-1535.

    • MOSSA AH, MOHAFRASH SMM, CHANDRASEKARAN N, 2018. Safety of natural insecticides: toxic effects on experimental animals [J]. Biomed Res Int, 2018(1): 1-17.

    • NELSON RH, 1974. Pyrethrum: The natural insecticide [J]. Bull Esa, 20(3): 16.

    • OH IS, PARK AR, BAE MS, et al. , 2005. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola [J]. Plant Cell, 17(10): 2832-2847.

    • RAMIREZ AM, STOOPEN G, MENZEL TR, et al. , 2012. Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings [J]. Plant Cell, 24(10): 4252-4265.

    • STAUDINGER H, RUZICKA L, 1924. Insektentötende Stoffe IV. Konstitution des Tetrahydro-pyrethrons [J]. Helvetica Chimica Acta, 7(1): 236-244.

    • SULTANA S, HU H, GAO L, et al. , 2015. Molecular cloning and characterization of the trichome specific chrysanthemyl diphosphate/chrysanthemol synthase promoter from Tanacetum cinerariifolium [J]. Sci Hortic, 185: 193-199.

    • SURAWEERA DD, GROOM T, TAYLOR PWJ, et al. , 2017. Dynamics of flower, achene and trichome development governs the accumulation of pyrethrins in pyrethrum (Tanacetum cinerariifolium) under irrigated and dryland conditions [J]. Indust Crops Prod, 109: 123-133.

    • WANG HY, 2016. Molecular cloning and characterization of the promoter of aldehyde dehydrogenase gene from Artemisia annua L. [D]. Chongqing: Southwest University: 43. [王焕燕, 2016. 黄花蒿ALDH1启动子的克隆及其功能分析 [D]. 重庆: 西南大学. ]

    • WASTERNACK C, STRNAD M, 2019. Jasmonates are signals in the biosynthesis of secondary metabolites—Pathways, transcription factors and applied aspects—A brief review [J]. New Biotechnol, 48: 1-11.

    • WANG Y, WEN J, LIU L, et al. , 2022. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides [J]. Metab Eng, 72: 188-199.

    • WANG FJ, XU HY, YAN JB, et al. , 2021. Biosynthesis and application of pyrethrins: a natural pesticide from plants [J]. Synth Biol J, 2(5): 753-761. [王凤姣, 徐海洋, 闫建斌, 等, 2021. 植物天然农药除虫菊酯的生物合成和应用研究进展 [J]. 合成生物学, 2(5): 753-761. ]

    • XU HY, MOGHE GD, WIEGERT-RININGER K, et al. , 2018. Coexpression analysis identifies two oxidoreductases involved in the biosynthesis of the monoterpene acid moiety of natural pyrethrin insecticides in Tanacetum cinerariifolium [J]. Plant Physiol, 176(1): 524-537.

    • YAMASHIRO T, SHIRAISHI A, SATAKE H, et al. , 2019. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil [J]. Sci Rep, 9(1): 18249.

    • YANG Y, YU TF, MA J, et al. , 2020. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants [J]. Int J Mol Sci, 21(2): 670.

    • YANG YN, KIM Y, KIM H, et al. , 2021. The transcription factor ORA59 exhibits dual DNA binding specificity that differentially regulates ethylene- and jasmonic acid-induced genes in plant immunity [J]. Plant Physiol, 187(4): 2763-2784.

    • ZENG T, LI JW, XU ZZ, et al. , 2022. TcMYC2 regulates pyrethrin biosynthesis in Tanacetum cinerariifolium [J]. Hortic Res, 9: uhac178.

    • ZENG T, LI JW, ZHOU L, et al. , 2021. Transcriptional responses and GCMS analysis for the biosynthesis of pyrethrins and volatile terpenes in Tanacetum coccineum [J]. Int J Mol Sci, 22(23): 13005.

    • ZENG T, LI JW, ZHOU L, et al. , 2021. Advances in the mutualistic and antagonistic interactions between flower colors and the pollinators of ornamental plants [J]. Acta Hortic Sin, 48(10): 2001-2017. [曾拓, 李伽文, 周黎, 等, 2021. 观赏植物花色与授粉昆虫相互适应关系的研究进展 [J]. 园艺学报, 48(10): 2001-2017. ]

    • ZHOU L, LI JW, ZENG T, et al. , 2022. TcMYB8, a R3-MYB transcription factor, positively regulates pyrethrin biosynthesis in Tanacetum cinerariifolium [J]. Int J Mol Sci, 23(20): 12186.

    • ZHOU L, ZENG T, LI JJ, et al. , 2022. The preliminary investigation on the interplanting patterns and agronomic effects of Tanacetum cinerariifolium and horticultural plants [J]. J Guizhou Norm Univ (Nat Sci Ed), 40(3): 18-26. [周黎, 曾拓, 李进进, 等, 2022. 除虫菊间作套种模式及其农艺效应初探 [J]. 贵州师范大学学报(自然科学版), 40(3): 18-26. ]

  • 参考文献

    • BURAPHAKA H, PUTALUN W, 2020. Stimulation of health-promoting triterpenoids accumulation in Centella asiatica (L. ) Urban leaves triggered by postharvest application of methyl jasmonate and salicylic acid elicitors [J]. Ind Crops Prod, 146: 112171.

    • CHEN YQ, XU G, LINGHU QQ, 2021. Cloning and functional analysis of Jatropha curcas JcGAST1 gene promoter [J]. Plant Physiol J, 57(11): 2145-2154. [陈雨倩, 徐刚, 令狐前前, 2021. 麻疯树JcGAST1基因启动子克隆及其功能初步分析 [J]. 植物生理学报, 57(11): 2145-2154. ]

    • FU XQ, PENG BW, HASSANI D, et al. , 2021. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua [J]. New Phytol, 231(5): 1858-1874.

    • GUO XL, WANG YY, LU HJ, et al. , 2017. Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton [J]. Gene, 628: 230-245.

    • HOU QC, BARTELS D, 2015. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes [J]. Ann Bot, 115(3): 465-479.

    • HU HM, CAI WH, MU KB, et al. , 2021. Study on the heterologous expression of GmCDPK SK5 gene in soybean ABA signaling pathway [J]. Soybean Sci, 40(6): 737-747. [胡慧敏, 蔡婉菡, 穆可彬, 等, 2021. 大豆ABA信号途径GmCDPK SK5基因异源表达探究 [J]. 大豆科学, 40(6): 737-747. ]

    • HU YG, 2019. Preliminary analiysis of ALDH7 and ALDH12 gene functions in cotton under salt and drought stress [D]. Kaifeng: Henan University. [胡阳光, 2019. 棉花ALDH7和ALDH12基因在盐和干旱胁迫下功能初步分析 [D]. 开封: 河南大学. ]

    • KIKUTA Y, UEDA H, TAKAHASHI M, et al. , 2012. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium—a new target for plant protection [J]. Plant J, 71(2): 183-193.

    • KIRCH HH, SCHLINGENSIEPEN S, KOTCHONI S, et al, 2005. Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana [J]. Plant Mol Biol, 57: 315-332.

    • LEE DS, KIM BK, KWON SJ, et al. , 2009. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling [J]. Biochem Biophys Res Commun, 379(4): 1038-1042.

    • LI JW, XU ZZ, ZENG T, et al. , 2022a. Overexpression of TcCHS increases pyrethrin content when using a genotype-independent transformation system in pyrethrum (Tanacetum cinerariifolium) [J]. Plants (Basel), 11(12): 1575.

    • LI JW, ZENG T, XU ZZ, et al. , 2022b. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter [J]. Plant Methods, 18(1): 32.

    • LI JJ, HU H, MAO J, et al. , 2019. Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone [J]. New Phytol, 223(3): 1607-1620.

    • LI JJ, HU H, CHEN Y, et al. , 2021. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers [J]. Phytochemistry, 187: 112768.

    • LI W, ZHOU F, PICHERSKY E, 2018. Jasmone hydroxylase, a key enzyme in the synthesis of the alcohol moiety of pyrethrin insecticides [J]. Plant Physiol, 177(4): 1498-1509.

    • LV ZY, ZHANG L, TANG KX, 2017. New insights into artemisinin regulation [J]. Plant Signal Behav, 12(10): e1366398.

    • LYBRAND DB, XU HY, LAST RL, et al. , 2020. How plants synthesize pyrethrins: safe and biodegradable insecticides [J]. Trends Plant Sci, 25(12): 1240-1251.

    • MA R, YUAN HL, AN J, et al. , 2018. A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis [J]. PLoS ONE, 13(4): e0195556.

    • MATSUDA K, KIKUTA Y, HABA A, et al. , 2005. Biosynthesis of pyrethrin I in seedlings of Chrysanthemum cinerariaefolium [J]. Phytochemistry, 66(13): 1529-1535.

    • MOSSA AH, MOHAFRASH SMM, CHANDRASEKARAN N, 2018. Safety of natural insecticides: toxic effects on experimental animals [J]. Biomed Res Int, 2018(1): 1-17.

    • NELSON RH, 1974. Pyrethrum: The natural insecticide [J]. Bull Esa, 20(3): 16.

    • OH IS, PARK AR, BAE MS, et al. , 2005. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola [J]. Plant Cell, 17(10): 2832-2847.

    • RAMIREZ AM, STOOPEN G, MENZEL TR, et al. , 2012. Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings [J]. Plant Cell, 24(10): 4252-4265.

    • STAUDINGER H, RUZICKA L, 1924. Insektentötende Stoffe IV. Konstitution des Tetrahydro-pyrethrons [J]. Helvetica Chimica Acta, 7(1): 236-244.

    • SULTANA S, HU H, GAO L, et al. , 2015. Molecular cloning and characterization of the trichome specific chrysanthemyl diphosphate/chrysanthemol synthase promoter from Tanacetum cinerariifolium [J]. Sci Hortic, 185: 193-199.

    • SURAWEERA DD, GROOM T, TAYLOR PWJ, et al. , 2017. Dynamics of flower, achene and trichome development governs the accumulation of pyrethrins in pyrethrum (Tanacetum cinerariifolium) under irrigated and dryland conditions [J]. Indust Crops Prod, 109: 123-133.

    • WANG HY, 2016. Molecular cloning and characterization of the promoter of aldehyde dehydrogenase gene from Artemisia annua L. [D]. Chongqing: Southwest University: 43. [王焕燕, 2016. 黄花蒿ALDH1启动子的克隆及其功能分析 [D]. 重庆: 西南大学. ]

    • WASTERNACK C, STRNAD M, 2019. Jasmonates are signals in the biosynthesis of secondary metabolites—Pathways, transcription factors and applied aspects—A brief review [J]. New Biotechnol, 48: 1-11.

    • WANG Y, WEN J, LIU L, et al. , 2022. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides [J]. Metab Eng, 72: 188-199.

    • WANG FJ, XU HY, YAN JB, et al. , 2021. Biosynthesis and application of pyrethrins: a natural pesticide from plants [J]. Synth Biol J, 2(5): 753-761. [王凤姣, 徐海洋, 闫建斌, 等, 2021. 植物天然农药除虫菊酯的生物合成和应用研究进展 [J]. 合成生物学, 2(5): 753-761. ]

    • XU HY, MOGHE GD, WIEGERT-RININGER K, et al. , 2018. Coexpression analysis identifies two oxidoreductases involved in the biosynthesis of the monoterpene acid moiety of natural pyrethrin insecticides in Tanacetum cinerariifolium [J]. Plant Physiol, 176(1): 524-537.

    • YAMASHIRO T, SHIRAISHI A, SATAKE H, et al. , 2019. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil [J]. Sci Rep, 9(1): 18249.

    • YANG Y, YU TF, MA J, et al. , 2020. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants [J]. Int J Mol Sci, 21(2): 670.

    • YANG YN, KIM Y, KIM H, et al. , 2021. The transcription factor ORA59 exhibits dual DNA binding specificity that differentially regulates ethylene- and jasmonic acid-induced genes in plant immunity [J]. Plant Physiol, 187(4): 2763-2784.

    • ZENG T, LI JW, XU ZZ, et al. , 2022. TcMYC2 regulates pyrethrin biosynthesis in Tanacetum cinerariifolium [J]. Hortic Res, 9: uhac178.

    • ZENG T, LI JW, ZHOU L, et al. , 2021. Transcriptional responses and GCMS analysis for the biosynthesis of pyrethrins and volatile terpenes in Tanacetum coccineum [J]. Int J Mol Sci, 22(23): 13005.

    • ZENG T, LI JW, ZHOU L, et al. , 2021. Advances in the mutualistic and antagonistic interactions between flower colors and the pollinators of ornamental plants [J]. Acta Hortic Sin, 48(10): 2001-2017. [曾拓, 李伽文, 周黎, 等, 2021. 观赏植物花色与授粉昆虫相互适应关系的研究进展 [J]. 园艺学报, 48(10): 2001-2017. ]

    • ZHOU L, LI JW, ZENG T, et al. , 2022. TcMYB8, a R3-MYB transcription factor, positively regulates pyrethrin biosynthesis in Tanacetum cinerariifolium [J]. Int J Mol Sci, 23(20): 12186.

    • ZHOU L, ZENG T, LI JJ, et al. , 2022. The preliminary investigation on the interplanting patterns and agronomic effects of Tanacetum cinerariifolium and horticultural plants [J]. J Guizhou Norm Univ (Nat Sci Ed), 40(3): 18-26. [周黎, 曾拓, 李进进, 等, 2022. 除虫菊间作套种模式及其农艺效应初探 [J]. 贵州师范大学学报(自然科学版), 40(3): 18-26. ]