en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

余洪艳(1996-),硕士研究生,研究方向为湿地生态学,(E-mail)yhy199610@163.com。

通讯作者:

孙梅,博士,助理研究员,研究方向为植物生理生态学,(E-mail)sm0510215@163.com。

中图分类号:Q945.79

文献标识码:A

文章编号:1000-3142(2023)09-1588-12

DOI:10.11931/guihaia.gxzw202202022

参考文献
CHATURVEDI RK, RAGHUBANSHI AS, SINGH JS, 2011. Leaf attributes and tree growth in a tropical dry forest [J]. J Veg Sci, 22(5): 917-931.
参考文献
CHENG JS, WANG LJ, JIANG AL, et al. , 2014. Research progress of photosynthetic mechanism regulated by leaf end products accumulation in fruit trees after sink-source manipulation [J]. Chin Agric Sci Bull, 30(19): 75-80. [程杰山, 王利军, 蒋爱丽, 等, 2014. 果树库源关系改变对源叶光合作用的影响机制研究进展 [J]. 中国农学通报, 30(19): 75-80. ]
参考文献
CHIKOV VI, ABDRAKHIMOV FA, BATASHEVA SN, et al. , 2016. Characteristics of photosynthesis in maize leaves (C4 plants) upon changes in the level of illuminance and nitrate nutrition [J]. Russ J Plant Physiol, 63(5): 620-625.
参考文献
DANG LH, ZHAO LP, LI YQ, et al. , 2021. Bolothrips bicolor (Heeger)(Thysanoptera: Idolothripinae): a genus and species newly recorded from China [J]. Acta Zootaxon Sin, 46(3): 264-268.
参考文献
DOVIS VL, ERISMANN NM, MACHADO EC, et al. , 2021. Biomass partitioning and photosynthesis in the quest for nitrogen-use efficiency for citrus tree species [J]. Tree Physiol, 41(2): 163-176.
参考文献
GAO K, BEARDALl J, HÄDER DP, et al. , 2019. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation [J]. Front Mar Sci, 6: 322.
参考文献
GAO WJ, HUANG H, 2010. Simulating the effect of temperature increase on plant growth and development [J]. Crop Res, 24(3): 205-208. [高文娟, 黄璜, 2010. 模拟增温对植物生长发育的影响 [J]. 作物研究, 24(3): 205-208. ]
参考文献
GENTILI R, AMBROSINI R, AUGUSTINUS BA, et al. , 2021. High phenotypic plasticity in a prominent plant invader along altitudinal and temperature gradients [J]. Plants, 10(10): 2144.
参考文献
GUO DG, LI F, GAO XD, et al. , 2022. Effects of CO2 concentration increase and water deficit on photosynthetic performance and water use efficiency of typical green manure plants [J]. Chin J Appl Ecol, 33(4): 995-1002. [郭大港, 李菲, 高晓东, 等, 2022. CO2浓度增加和水分亏缺对典型绿肥植物光合性能及水分利用效率的影响 [J]. 应用生态学报, 33(4): 995-1002. ]
参考文献
HARE CE, LEBLANC K, DITULLIO GR, et al. , 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea [J]. Mar Ecol Prog Ser, 352(12): 9-16.
参考文献
HONG JT, WU JB, WANG XD, 2013. Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants [J]. Chin J Appl Ecol, 24(9): 2658-2665. [洪江涛, 吴建波, 王小丹, 2013. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响 [J]. 应用生态学报, 24(9): 2658-2665. ]
参考文献
IPCC, 2013. Climate change 2013: The Physical Science Basis [M]. Cambridge: Cambridge University Press.
参考文献
JIANG YL, ZHANG QG, YANG SY, et al. , 2006. Ecophysiological responses of 28 species of garden plants to atmospheric CO2 enrichment [J]. J Plant Resour Environ, 15(2): 1-6. [蒋跃林, 张庆国, 杨书运, 等, 2006. 28种园林植物对大气CO2浓度增加的生理生态反应 [J]. 植物资源与环境学报, 15(2): 1-6. ]
参考文献
JIN JT, LI Y, LI RJ, et al. , 2019. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development [J]. J Plant Physiol, 55(5): 558-568. [金奖铁, 李扬, 李荣俊, 等, 2019. 大气二氧化碳浓度升高影响植物生长发育的研究进展 [J]. 植物生理学报, 55(5): 558-568. ]
参考文献
JING DY, XIE LY, ZHAO HL, 2022. Impacts of barnyard grass on photosynthesis and physiology of rice under elevated atmospheric CO2 concentration [J]. Chin J Agrometeorol, 43(3): 204-214. [金殿玉, 谢立勇, 赵洪亮, 等, 2022. 大气CO2浓度升高条件下稻稗共生系统中稗草对水稻光合生理的影响 [J]. 中国农业气象, 43(3): 204-214. ]
参考文献
KEMBEL SW, CAHILL JF, ANDREW H, 2011. Independent evolution of leaf and root traits within and among temperate grassland plant communities [J]. PLoS ONE, 6(6): e19992.
参考文献
LI L, WANG YS, LIU FL, 2021. Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2 [J]. Agric Water Manage, 258: 107168.
参考文献
LOPES A, FERREIRA AB, PANTOJA PO, et al. , 2018. Combined effect of elevated CO2 level and temperature on germination and initial growth of Montrichardia arborescens (L. ) Schott (Araceae): a microcosm experiment [J]. Hydrobiologia, 814(1): 19-30.
参考文献
MA P, LI RN, WANG B, et al. , 2020. Responses of net assimilation rate to elevated atmospheric CO2 and temperature at different growth stages in a double rice cropping system [J]. Chin J Appl Ecol, 31(3): 872-882. [马娉, 李如楠, 王斌, 等, 2020. 双季稻不同生育期净同化速率对大气CO2浓度和温度升高的响应 [J]. 应用生态学报, 31(3): 872-882. ]
参考文献
PAN H, CAO JX, CHEN Z, 2022. Effects of elevated CO2 concentration on photosynthetic characteristics of Schima superba seedlings [J]. Chin J Ecol, 41(5): 865-872. [潘鸿, 曹吉鑫, 陈展, 等, 2022. CO2浓度升高对木荷幼苗光合特征的影响 [J]. 生态学杂志, 41(5): 865-872. ]
参考文献
PAN YJ, CIERAAD E, ARMSTRONG J, et al. , 2020. Global patterns of the leaf economics spectrum in wetlands [J]. Nat Commun, 11(1): 1-9.
参考文献
PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. , 2013. New handbook for standardised measurement of plant functional traits worldwide [J]. Aust J Bot, 61(3): 167-234.
参考文献
QI QY, YANG SH, ZHONG QC, et al. , 2012. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China [J]. J E Chin Nor Univ (Nat Sci Ed), (6): 29-38. [祁秋艳, 杨淑慧, 仲启铖, 等, 2012. 崇明东滩芦苇光合特征对模拟增温的响应 [J]. 华东师范大学学报(自然科学版), (6): 29-38. ]
参考文献
QIAO JZ, WANG KY, ZHANG YB, 2007. Effects of elevated CO2 on the growth and nutrient contents of Betula albosinensis seed lings with two planting densities [J]. Chin J Ecol, 26(3): 301-306. [乔匀周, 王开运, 张远彬, 2007. CO2浓度升高对两个种植密度下红桦生长和养分含量的影响 [J]. 生态学杂志, 26(3): 301-306. ]
参考文献
REICH PB, 2014. The world-wide “fast-slow” plant economics spectrum: a traits manifesto [J]. J Ecol, 102(2): 275-301.
参考文献
REICH PB, HOBBIE SE, LEE TD, 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation [J]. Nat Geosci, 7(12): 920-924.
参考文献
REICH PB, OLEKSYN J, 2004. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Natl Acad Sci USA, 101(30): 11001-11006.
参考文献
REN J, WANG HM, WANG WJ, et al. , 2014. Responses of photosynthesis, chlorophyll fluorescence of leaf and bark chlorenchyma to elevated temperature [J]. Bull Bot Res, 34(6): 758-764. [任洁, 王慧梅, 王文杰, 等, 2014. 温度升高对杨树树皮绿色组织和叶片光合作用、叶绿素荧光特性的影响 [J]. 植物研究, 34(6): 758-764. ]
参考文献
RODRÍGUEZ-RODRÍGUEZ D, MARTÍNEZ-VEGA J, 2018. Protected area effectiveness against land development in Spain [J]. J Environ Manage, 215: 345-357.
参考文献
SACK L, SCOFFONI C, MCKOWN AD, et al. , 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns [J]. Nat Commun, 3(1): 1-10.
参考文献
SHI FS, WU N, WU Y, et al. , 2009. Effect of simulated temperature enhancement on growth and photosynthesis of Deschampsia caespitosa and Thlaspi arvense in Northwestern Sichuan, China [J]. Chin J Appl Environ Biol, 15(6): 750-755. [石福孙, 吴宁, 吴彦, 等, 2009. 模拟增温对川西北高寒草甸两种典型植物生长和光合特征的影响 [J]. 应用与环境生物学报, 15(6): 750-755. ]
参考文献
SHORT FT, KOSTEN S, MORGAN PA, et al. , 2016. Impacts of climate change on submerged and emergent wetland plants [J]. Aquat Bot, 135: 3-17.
参考文献
SUN M, TIAN K, ZHANG Y, et al. , 2017. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 35(6): 940-949. [孙梅, 田昆, 张贇, 等, 2017. 植物叶片功能性状及其环境适应研究 [J]. 植物科学学报, 35(6): 940-949. ]
参考文献
SUN SN, WANG Q, SUN CC, et al. , 2017. Response and adaptation of photosynthesis of cucumber seedlings to high temperature stress [J]. Chin J Appl Ecol, 28(5): 1603-1610. [孙胜楠, 王强, 孙晨晨, 等, 2017. 黄瓜幼苗光合作用对高温胁迫的响应与适应 [J]. 应用生态学报, 28(5): 1603-1610. ]
参考文献
TOBITA H, KITAO M, UEMURA A, et al. , 2021. Species-specific nitrogen resorption efficiency in Quercus mongolica and ascer mono in response to elevated CO2 and soil N deficiency [J]. Forests, 12(8): 1034.
参考文献
TONG KC, HU SW, YANG Y, et al. , 2020. Effects of atmospheric CO2 elevation and fertilization on yield and nutritional quality of Japonica rice——A FACE study [J]. Chin Rice, 26(4): 10-17. [童楷程, 户少武, 杨阳, 等, 2020. 大气CO2浓度升高和施肥对粳稻产量和稻米营养品质的影响——FACE研究 [J]. 中国稻米, 26(4): 10-17. ]
参考文献
WANG JL, WEN XF, ZHAO FH, et al. , 2012. Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species [J]. Chin J Plant Ecol, 36(5): 438-446. [王建林, 温学发, 赵风华, 等, 2012. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响 [J]. 植物生态学报, 36(5): 438-446. ]
参考文献
WANG X, WEI XL, WU GY, 2021. Effects of different nitrogen forms and supply on photosynthetic characteristics and growth of Phoebe bournei seedlings under elevated CO2 concentration [J]. Sci Silv Sin, 57(4): 173-181. [王晓, 韦小丽, 吴高殷, 等, 2021. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响 [J]. 林业科学, 57(4): 173-181. ]
参考文献
WRIGHT IJ, REICH PB, CORNELISSEN JHC, et al. , 2015. Assessing the generality of global leaf trait relationships [J]. New Phytol, 166(2): 485-496.
参考文献
WRIGHT IJ, REICH PB, WESTOBY M, et al. , 2004. The worldwide leaf economics spectrum [J]. Nature, 428(6985): 821-827.
参考文献
XU JP, SUN M, WANG H, et al. , 2018. Photosynthetic response of Scirpus validus and Typha orientalis to elevated temperatures in Dianchi Lake, Southwestern China [J]. J Mt Sci, 15(12): 2666-2675.
参考文献
XU JP, TIAN K, SUN M, et al. , 2016. The growth response of Scirpus validus to elevated CO2 [J]. J SW For Univ, 36(5): 84-88. [许俊萍, 田昆, 孙梅, 等, 2016. 水葱构件生长对大气CO2浓度升高的响应 [J]. 西南林业大学学报, 36(5): 84-88. ]
参考文献
YAMORI W, HIKOSAKA K, WAY DA, 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation [J]. Photosynth Res, 119(1): 101-117.
参考文献
ZHANG L, ZHANG W, CHEN XP, 2021. The effects and mechanism of climate change on vegetables quality: a review [J]. Chin J Eco-Agric, 29(12): 2034-2045. [张璐, 张伟, 陈新平, 2021. 气候变化对蔬菜品质的影响及其机制 [J]. 中国生态农业学报, 29(12): 2034-2045. ]
参考文献
ZHANG W, HUANG W, ZHANG SB, 2017. The study of a determinate growth orchid highlights the role of new leaf production in photosynthetic light acclimation [J]. Plant Ecol, 218(8): 997-1008.
参考文献
ZHENG YP, LI F, HOU YK, et al. , 2019. Effect of increasing CO2 concentration on photosynthesis and leaf water use efficiency of crops [J]. Transact Chin Soc Agric Eng, 35(10): 91-98. [郑云普, 李菲, 侯毅凯, 等, 2019. 大气CO2浓度增加对作物光合性能及叶片水分利用效率的影响 [J]. 农业工程学报, 35(10): 91-98. ]
参考文献
ZWIENIECKI MA, BRODRIBB TJ, HOLBROOK NM, 2007. Hydraulic design of leaves: insights from rehydration kinetics [J]. Plant Cell Environ, 30(8): 910-921.
目录contents

    摘要

    气候变化是国际社会共同关注的环境问题,植物对气候变化的响应反映了植物应对气候变化的生长和生存策略。叶经济性状与植物对资源的获取、利用和储存直接相关,并且受到温度条件和CO2浓度的显著影响。该文采用人工环境控制系统封顶式生长室研究广布湿地植物水葱(Scirpus validus)和香蒲(Typha orientalis)的叶经济性状对模拟增温(现行环境温度+2 ℃)和CO2浓度倍增(增至850 μmol·mol-1)的响应。结果表明:(1)增温处理下,水葱净光合速率、氮含量和磷含量显著降低,但其胞间CO2浓度和比叶重显著增加;CO2浓度倍增处理下,水葱胞间CO2浓度和净光合速率均显著降低,但比叶重显著增加。(2)增温处理下香蒲的比叶重显著增加,而氮含量和磷含量显著降低;香蒲的光合参数、氮含量和磷含量在CO2浓度倍增处理下均显著降低,而比叶重显著增加。(3)水葱的比叶重、氮含量、磷含量、净光合速率、气孔导度、胞间CO2浓度与主成分分析的两个环境变量相关;而香蒲的经济性状均与两个环境变量相关,表明这些经济性状在香蒲响应增温和CO2浓度变化过程中发挥重要作用。(4)除碳含量外,水葱和香蒲的其他经济性状参数包括净光合速率、气孔导度、蒸腾速率、胞间CO2浓度、氮含量、磷含量和比叶重均在响应增温和CO2浓度倍增过程中发挥重要作用。总体而言,该研究结果反映了水葱和香蒲在功能性状上对增温和CO2浓度倍增的响应策略。两种植物的光合能力和养分含量在两种处理下虽然均受到显著的抑制作用,但是其抗逆能力升高,表明增温和CO2浓度升高不利于水葱和香蒲的生长。

    Abstract

    Climate change is an environmental issue of common concern to the international community. The response of plants to climate change reflects the growth and survival strategies of plants in response to climate change. Leaf economic traits are directly related to the resource acquisition, utilization and storage of plant, and are significantly affected by temperature conditions and CO2 concentration. A capped growth chamber with an artificial environment control system was used to study the response of the leaf economic traits of the widely spread wetland plants Scirpus validus and Typha orientalis to the simulated warming (current ambient temperature +2 ℃) and doubled CO2 concentration (increased to 850 μmol·mol-1). The results were as follows: (1) The net photosynthetic rate, contents of N and P Scirpus validus were significantly reduced, but the intercellular CO2 concentration and leaf mass per area increased significantly under increased temperature treatment. Both the intercellular CO2 concentration and net photosynthetic rate of S. validus were significantly reduced, but the leaf mass per area was significantly increased under the treatment of doubled CO2 concentration. (2) Similar to S. validus, the leaf mass per area of Typha orientalis also increased significantly, while the contents of N and P were significantly reduced under warming treatment; in addition, the photosynthetic parameters, contents of N and P of T. orientalis were significantly reduced, while the leaf mass per area increased significantly under the treatment of doubled CO2 concentration. (3) The leaf mass per area, contents of N and P, net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration of Scirpus validus were significantly correlated with the first two axes of the principal component analysis; while all the studied leaf economic traits of Typha orientalis were related to two environment variables, indicating that these traits played an important role in the response of plants to changes in temperature and CO2 concentration. (4) In addition to C content, other economic trait parameters of Scirpus validus and Typha orientalis including net photosynthetic rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, contents of N and P and leaf mass per area were all played important roles in response to increasing temperature and doubled CO2 concentration. Overall, these results reflect the response strategies of Scirpus validus and Typha orientalis on functional traits to increasing temperature and doubled CO2 concentration. The photosynthetic capacity and nutrient contents of the two species are significantly inhibited under the two treatments, but their resistance to stress increased, indicating that the increase in temperature and CO2 concentration are not conducive to the growth of the two species.

  • 全球气候变化及其对人类和生态系统的影响已成为世界共同关注的科学问题。气候变暖和大气CO2浓度升高是全球气候变化的两大主要特征。政府间气候变化专门委员会(International Panel on Climate Change,IPCC)第五次报告指出,预计在21世纪末,全球平均地表温度在1986—2005年的基础上将升高0.3~4.8℃,大气CO2浓度将达540~970 μmol·mol-1,这些变化趋势还将进一步加剧(IPCC,2013)。气候变化势必会对地球生态系统的结构和特征产生显著影响。湿地生态系统为生态和人类社会提供了很多关键的服务,对气候变化十分敏感,因此,了解气候变化对湿地的影响尤其是对湿地关键物种的影响十分重要(Dang et al.,2021)。植物的叶经济性状与植物对资源的获取、利用和储存直接相关,反映了从保守型到获得型的一系列对资源利用的策略梯度,主要包括叶氮含量、叶磷含量、比叶重、光合速率等植物性状(Wright et al.,2004;Reich,2014)。环境变化显著影响叶经济性状的表现,因此这些性状的变化有效地反映了植物在不同环境条件下的生长和生存策略(Reich,2014)。通过对全球151项研究的365个湿地的植物研究进行总结,以及对我国陕西38个点的60种湿地植物和85种陆生植物不同结构经济性状的比较研究均发现,与非湿地植物相比,湿地植物聚集在叶较薄的一端,即资源获得型一端,比叶重较低,叶氮和磷较高,光合速率更快,叶寿命更短(Zhang et al.,2017;Pan et al.,2020)。这些研究为了解湿地植物经济性状提供了重要基础,但是湿地植物的经济性状如何适应气候环境变化尚不明确。

  • 作为全球气候变化的重要环境因子之一,不断增加的CO2浓度对植物的经济性状产生了深远影响。光合作用则是植物对高CO2浓度响应最敏感的指标之一。短期大气CO2浓度升高通常会增强植物的光合能力(许俊萍等,2016;金殿玉等,2022);而长期暴露在高CO2浓度环境下的植物光合作用则可能回落到正常CO2浓度时的水平,甚至发生下调(王晓等,2021),这种现象被称为“光合下调”(程杰山等,2014;Tobita et al.,2021);也有研究发现大气CO2浓度增加并未对植物的净光合速率产生显著影响(郑云普等,2019)。大气CO2浓度的升高同时会致使植物其他经济性状的变化。较高的CO2浓度导致气孔的张开度缩小,降低植物的气孔导度和单位叶面积的蒸腾速率,提高植物的水分利用效率(蒋跃林等,2006;金奖铁等,2019)。CO2浓度升高也会增加植物的比叶重,并且使植物体内氮、磷等矿质养分含量降低(金奖铁等,2019;Li et al.,2021)。可见,大气CO2浓度升高可以通过影响植物的比叶重、气孔形态和敏感度、元素含量等性状,进而影响植物的光合生理和其他生态功能,这些影响均存在种间差异(蒋跃林等,2006;金奖铁等,2019;金殿玉等,2022),且在不同生态系统中的影响程度也不同。温度是影响植物经济性状变化的另一关键因素。石福孙等(2009)对川西北高寒草甸的两种植物研究发现,增温不同程度地增加了单子叶草本植物发草(Deschampsiacaespitosa)的净光合速率、气孔导度、蒸腾速率和胞间CO2浓度,却使双子叶草本植物遏蓝菜(Thlaspiarvense)的净光合速率、气孔导度和蒸腾速率都显著降低。Xu等(2018)对典型湿地植物水葱和香蒲的光合能力响应短期增温的研究发现,温度升高显著提高了水葱的光合速率,而对香蒲的光合速率无显著影响。在一项对全球2 500多种植物的研究中发现,气温越高、太阳辐射越强的地方,植物比叶重和叶氮含量越高,叶寿命越短,光合能力越弱(Wright et al.,2005)。而另一项对全球452个地点1 280多种植物的观察比较结果显示,越靠近赤道,即随着温度的增高和生长季的延长,叶片氮、磷含量减少,氮磷比增加(Reich et al.,2004)。较低的温度会限制叶片的扩展,导致较小、较厚的叶片和较高的比叶重(Gentili et al.,2021)。相反,也有研究发现增温显著增加了植物比叶重而降低了植物叶片氮含量(祁秋艳等,2012)。此外,植物对增温的响应有一定的有效幅度,适度增温能提高植物的光合能力,但环境温度超过植物最适生长温度范围时,温度升高将会对植物光合作用产生抑制作用(高文娟等,2010)。针对不同的植物类群往往会得到不同的研究结果,反映了植物对温度变化的不同响应策略。温度和CO2浓度都是影响植物性状和功能的关键变量。由于二者之间相互伴随,并且CO2浓度升高影响着全球所有温度范围内的生物群落,因此温度和CO2浓度交互作用对植物碳平衡、光合生长及生物量积累等方面的影响也是全球生态学研究的热点(Gao et al.,2019)。有研究发现,温度升高总体上对湿地植物产生不利影响,而CO2浓度升高却可以增加湿地植物的光合速率(Short et al.,2016)。也有研究认为温度和CO2浓度升高的交互作用有协同促进作用(马娉等,2020)。增温和CO2浓度倍增的交互作用使白令海峡浮游植物群落的最大生物量和标准化光合速率分别增加了2.6倍和3.5倍,并且使植物群落组成由硅藻类逐渐改变为微型浮游植物(Hare et al.,2007)。而Lopes等(2018)对亚马孙流域大型水生植物溪边芋(Montrichardiaarborescens)的研究又发现,增温和CO2浓度升高的交互作用使溪边芋的光合碳同化能力及生物量均显著下降。当前研究模拟增温与CO2浓度升高对植物性状影响的交互作用已有不少报道,虽然未得出一致的结论,但这些研究仍然具有较高的参考价值。

  • 根据以上研究背景,本研究围绕湿地植物对气候变化的响应这一科学问题,从叶经济学角度探讨了湿地植物叶经济性状对增温和CO2浓度升高的响应策略。以湿地典型广布植物水葱(Scirpusvalidus)和香蒲(Typha orientalis)为研究对象,根据IPCC预测的CO2浓度和温度未来变化趋势,采用闭合式人工控制气候模拟实验系统进行模拟增温2℃ 和CO2浓度倍增的控制实验。通过观测模拟增温和CO2浓度倍增处理下水葱和香蒲的叶经济性状的变化情况,拟探讨:(1)湿地植物水葱和香蒲的叶经济性状对增温和CO2浓度倍增有怎样的响应趋势;(2)在响应增温和CO2浓度倍增过程中,水葱和香蒲的哪些叶经济性状发挥的作用更强;(3)性状间表现出怎样的功能协调关系。通过对上述问题的阐释,认识湿地植物叶经济性状对环境变化的响应策略,为应对气候变化和加强湿地保护提供理论依据。

  • 1 材料与方法

  • 1.1 研究地点概况

  • 本研究的实验材料从云南省昆明市晋宁区滇池湿地生态定位站附近的滇池湖滨带(102°35′54″—102°40′08″ E、24°39′59″—24°42′17″ N)移栽,移植点海拔1 888 m。滇池位于云南省昆明市西南郊,平均海拔1 891 m,常年水域面积(不含海口以下流域面积)2 960 km2,平均水深4.5 m。属于北纬低纬度亚热带高原山地季风气候区,干湿季分明。年温差小,年均气温15℃,年均日照2 200 h左右,无霜期达240 d以上,≥10℃ 年有效积温4 494.0℃。年平均降雨量1 450 mm。湖水终年不结冰,年平均水温17.03℃,最高月均温22.40℃,适宜多种水生植物的生长,鸟类和鱼类资源也十分丰富。其湖滨带分布着大量的挺水植物,以禾本科植物芦苇(Phragmites australis)和香蒲科植物香蒲(Typha orientalis)为主,另分布有很多其他常见湿地挺水植物如水葱(Scirpusvalidus)、茭草(Zizania latifolia)、水凤仙(Impatiens aquatillis)、莲(Nelumbo nucifera)、粉绿狐尾藻(Myriophyllum aquaticum)等以及人工种植木本植物中山杉(Taxodium ‘Zhongshanshan’)。

  • 1.2 实验设计

  • 根据最新的IPCC预测的温度和CO2浓度增加的趋势,在云南省昆明市国家高原湿地研究中心的实验地建立人工环境控制系统封顶式生长室(图1)。设定1个生长室内为正常环境,作为对照组(CK);另设2个生长室,其中1个生长室设定增温2℃,作为增温(ET)处理,另1个生长室的CO2浓度设定为 850 μmol·mol-1作为CO2浓度倍增(EC)处理,其他环境因子保持一致。生长室下部近似圆柱体,共有11个面构成,用浮法玻璃密封,上部近似球缺,高约1.5 m,由双层中空PC板将其密封,总体积约24.5 m3(图1)。通过压缩机的制冷功能和与其相连接的热交换器、电阻加热器以及新风量控制阀等控制生长室内温度,在球缺顶部装有2个自垂式单向开启调压扇和1个手动窗口来维持生长室内气压平衡和避免特殊事件(如停电、空调故障)造成生长室内温度升高,生长室内CO2浓度控制的硬件是由CO2传感器(GMT222)、控制模块(LT/ACR-2002)、电磁阀、流量计、减压阀和CO2钢瓶构成,要达到稳定的CO2浓度目标需要传感器、控制模块和流量计等协调实现,每个生长室具有独立、自控的特点,模拟控制监控系统维持生长室运行状态和数据采集稳步进行。

  • 图1 环境模拟控制实验系统封顶式生长室

  • Fig.1 Sealed-top chamber of artificial environment simulation control experiment system

  • 在2015年4月,选择滇池湖滨带生长健康、长势均匀的水葱和香蒲移栽到口径35 cm、高25 cm的实验装置内,原位采集滇池湖滨带土壤作为栽培基质,且土量一致。自然条件下缓苗15 d后,随机放置于3个人工封顶式控制生长室(STC)中,每室均放置4盆。为光照条件均一和排除棚内边缘效应,每个生长室中的植株安置均以控制室中心点为圆心,在圆半径0.85 m处(生长室半径1.7 m)随机安置。整个植物培养期内,每周浇水2次,使各生长室内植物淹水深度和环境生长条件均一。本研究于2019年7—9月开展植物叶经济性状的测定,植物经过长达4年的生长,已经充分适应了增温和CO2浓度倍增的生长环境,本研究结果反映了水葱和香蒲对增温和CO2浓度倍增的长期响应结果。在本实验结束后,对2019年生长室内水葱和香蒲生长季3—10月的温度和CO2浓度数据进行导出处理。生长季内,增温生长室内的月平均温度相比于对照升高了1.995℃,CO2浓度倍增处理生长室内的大气CO2浓度为840.05 μmol·mol-1,表明闭合式人工模拟控制系统实现了显著的环境控制作用,且模拟效果比较理想(图2)。

  • 图2 2019年生长季ET组空气温度(A)和EC组CO2浓度(B)与对照组(CK)的比较

  • Fig.2 Comparison of air temperature of ET group(A) and CO2 concentration of EC group(B) to the control group(CK) during growing season in 2019

  • 1.3 叶经济性状测定

  • 将不同组的两种植物各选取3株作为研究对象。在2019年植物生长盛期(7—9月),于晴朗天气的上午9:00—11:30,使用Li-6800XT便携式光合作用测定仪(LI-6800,LI-COR,Nebraska,USA)原位测定不同生长室内植物的净光合速率(net photosynthetic rate,Pn, μmol·m-2·s-1)及其对应的气孔导度(stomatal conductance,Gs,mol·m-2·s-1)、胞间CO2浓度(intercellular CO2 concentration,Ci,μmol·mol-1)和蒸腾速率(transpiration rate,Tr,mmol·m-2·s-1)等光合生理参数。每个生长室内的每株植物均选择2片健康、全展的成熟叶片并排进行测定。测定时叶室内部光强设置为1 500 μmol·m-2·s-1,叶温保持在22~24℃,流速设为500 μmol·s-1,参比室CO2浓度设置为425 μmol·mol-1

  • 剪下测定光合参数后的叶片,并迅速放置于保鲜盒内,带回环境控制室旁边的实验室进行其他叶经济性状的测定。在实验室内,将叶片从中间部分截取15 cm左右,放置在扫描仪上扫描,处理成图像格式后用Image J(v.1.48;http: //rsb.info.nih.gov/ij/)图片处理软件测量植物叶面积。将扫描后的叶片置于牛皮信封内并做好标记后放入烘箱进行烘干至少48 h至植物材料达到恒重,烘箱温度设置为75℃。植物叶片烘干至恒重后用电子天平称量其干重,并做记录。比叶重(leaf mass per area, LMA, g·m-2)计算为单位叶面积的叶干重。

  • 将不同处理下的两种植物的地上部分分别刈割3~5株,将叶用清水洗净后放入75℃烘箱烘干至恒重后用植物粉碎机将植物叶片磨碎,并过口径为0.25 mm的筛子。将过筛后的粉末用密封袋装好,并放置在4℃冰箱中冷藏保存。将磨碎后的植物样品称取3 mg用锡纸包好,采用德国Elementar公司的vario TOC select总有机碳分析仪测定植物叶的总碳(C)含量(total C content,TC,g·kg-1)。称取0.2 g植物叶片粉末用硫H2SO4-H2O2消解法消煮后,定容并取出滤液用AA3连续流动分析仪测定植物叶片的总氮(N)含量(total N content,TN,g·kg-1)和总磷(P)含量(total P content,TP,g·kg-1)。

  • 1.4 数据分析

  • 本该研究应用R(v.3.01; https://cran.r-project.org)统计分析软件进行所有的统计分析。采用“vegan”程序包首先进行单因素方差分析(one-way ANOVA),检验对照、增温、CO2倍增3组处理间叶经济性状的差异,显著性水平为P<0.05。运用主成分分析(PCA)来进一步筛选对植物适应增温和CO2倍增的主要经济性状。本研究采用Sigmaplot (v.10.0; https: //systatsoftware.com/)绘图软件进行绘图。

  • 2 结果与分析

  • 2.1 叶经济性状对模拟增温和CO2浓度倍增的响应

  • 与对照组(CK)相比,增温(ET)处理下,水葱的净光合速率(Pn)显著降低,但其胞间CO2浓度(Ci)显著增加;CO2浓度倍增(EC)处理下,水葱的CiPn均显著降低;气孔导度(Gs)和蒸腾速率(Tr)在3组之间均不存在显著差异(图3)。与水葱不完全相同,EC处理对香蒲光合性状的影响更加明显。与CK相比,ET处理下香蒲的光合性状均未产生显著变化,但4个光合参数在EC处理下均显著降低(图3)。ET处理下,水葱的Pn显著低于,而Ci显著高于EC处理;香蒲的4个光合参数在ET处理下均显著高于EC处理下的对应值(图3)。该结果表明水葱的光合能力对增温和CO2浓度升高均具有较高的敏感度;香蒲的光合能力则对CO2浓度升高较为敏感,但对温度变化敏感度较低。水葱和香蒲的Pn在增温条件下的下降可能是气孔限制和叶肉细胞同化能力降低共同作用的结果。

  • 相较于CK,两种植物的比叶重(LMA)在ET和EC处理下均显著增加,而其C含量在两组处理下均与对照组无显著差异(图4)。水葱的N和P含量在ET处理下均显著低于对照组,而在EC处理下与对照组均无显著差异(图4)。与对照组相比,香蒲的N和P含量在ET和EC处理下均显著降低,但二者在ET和EC处理间不存在显著差异(图4)。这表明水葱和香蒲的LMA对增温和CO2浓度升高均具有较高的敏感度;水葱的N和P含量对增温具有较高的敏感度,但对CO2浓度升高的响应较弱;香蒲的N和P含量对增温和CO2浓度升高均具有较强的响应。

  • 2.2 叶经济性状间的性状关联

  • 对水葱叶经济性状进行主成分分析,前两个主轴对总体变异的贡献率分别为49.42%和25.73%,合计75.15%(图5:A)。其中,第一主轴(PC 1)与TN、TP、PnTr显著正相关,但与Ci显著负相关;第二主轴(PC 2)与Gs显著正相关,而与LMA显著负相关(表1)。对香蒲叶经济性状的主成分分析显示,前两主轴对总体变异的贡献率分别为66.12%和15.91%,合计82.03 %(图5:B)。其中,PC 1与GsPnTr、TN、Ci和TP显著正相关,但与LMA显著负相关;PC 2与TC显著正相关(表1)。结果表明这些经济性状在香蒲响应增温和CO2浓度倍增过程中发挥了重要作用。

  • 3 讨论与结论

  • 本研究发现,增温不利于水葱和香蒲的光合生产,二者的净光合速率和N、P含量在增温条件下均显著降低,CO2浓度升高不利于香蒲的光合生产,香蒲的净光合速率和N、P含量在CO2浓度倍增条件下也显著降低,但两种植物的比叶重在增温和CO2浓度倍增条件下均显著升高。这一结果体现了水葱和香蒲对环境变化响应的差异,其中,水葱的光合参数和营养元素对增温较为敏感,而对CO2浓度变化敏感度较低,而香蒲光合参数和营养元素则对增温和CO2浓度升高均具有较高的敏感度。

  • 温度作为影响植物功能性状的关键因子,外界环境温度是否达到植物生长所需的最适光合温度对植物的光合速率有重要影响。植物光合特征对温度升高可能存在正向响应(任洁等,2014),负向响应(祁秋艳等,2012),或无响应(Dovis et al.,2021),且与植物的种类和生长阶段等因素密切相关(Yamori et al.,2014)。在短期增温处理的研究中,我们发现水葱和香蒲对短期增温均表现出光合能力显著升高的趋势(Xu et al.,2018)。但是长期适应增温之后,本研究发现水葱和香蒲的光合性状对增温响应的程度虽然不同,但趋势一致,均呈负向响应,表明从长期来看,增温2℃超过了水葱和香蒲的最适温度,使二者的光合酶活性下降,光合生产力随之降低,因此,长期增温对于这两种植物来说属于逆境。研究表明,增温对光合作用的负向影响有两个原因。第一,可能是因为气孔限制导致,增温条件下水葱和香蒲的Gs均略有下降,气孔导度下降限制了CO2进入叶片内部,导致光合作用原料减少,进而使Pn降低。第二,增温条件下,水葱和香蒲的Ci均升高,与Pn的变化方向相反。Chikov等(2016)认为,如果PnCi变化方向相反,那么气孔限制会减小,则Pn的下降可以归因于叶肉细胞同化能力的降低。因此,本研究中水葱和香蒲Pn在增温条件下的下降可能是气孔限制和叶肉细胞同化能力降低共同作用的结果。另外,一般情况下,增温会使植物叶内外的水汽浓度差增大,进而促进植物的蒸腾失水,Tr升高。而水葱的GsTr随温度的升高反而略有降低,可能是水葱适应增温条件的一项有效策略。增温产生高温胁迫可能导致植物过度的内部水分散失,造成生理水分亏缺,而GsTr的降低可以有效提高叶片的水分利用效率,防止叶片内部过度的水分散失。同时,由于GsTr的降低,植物的水汽交换能力下降,Pn也降低。

  • 图3 水葱和香蒲的光合性状在3个不同处理间的差异(平均值±标准误差)

  • Fig.3 Differences in photosynthetic traits of Scirpusvalidus and Typha orientalis between three different treatments (x-±sx-)

  • 植物为了适应逆境,在经济性状收支方面也进行了权衡。增温条件下,水葱和香蒲通过对酶活性、反应介质等的影响来减少N、P等主要养分的供应,进而降低Pn,这与一些前期的研究结果一致(Reich et al.,2014;孙胜楠等,2017)。比叶重反映的是植物获取生长资源的能力,受叶密度和厚度的正向影响(Wright et al.,2004)。本研究中两种植物的比叶重均随着温度的升高显著增加,可能是植物为了适应增温条件,防止生理缺水,在叶片结构性状上做出的一种保水适应策略。无论增加叶密度还是厚度(粗度)均能有效延长水在叶内部的传输距离和滞留时间,防止叶过度失水(Zwieniecki et al.,2007;Sack et al.,2012)。

  • 图4 水葱和香蒲的比叶重和元素含量在3个不同处理间的差异(平均值±标准误差)

  • Fig.4 Differences in LMA and element contents of Scirpusvalidus and Typha orientalis between three different treatments (x-±sx-)

  • CO2是光合作用的底物,因此大气CO2浓度升高可能直接引起植物光合能力的改变。在几乎所有短期实验中,植物的光合能力(尤其是C3植物)均随前期的CO2浓度的增加而增加(马娉等,2022;郭大港等,2022)。本研究材料水葱在前期的CO2浓度倍增短期响应时,也呈现出光合能力显著升高趋势(许俊萍等,2016)。然而本研究中水葱在CO2浓度倍增的条件下适应4年后,其光合参数在CO2浓度倍增下与对照组间无显著差异,而香蒲的PnGsCiTr在CO2浓度倍增条件下都显著降低,表明在长期大气CO2浓度升高的环境下,水葱和香蒲均出现了“光合下调”。植物体内光合作用的Rubisco活化酶活力会随着Ci增加而提高,进而使Pn增大,但长期处于高CO2浓度下,Rubisco含量和总活性会比CO2浓度初始增加时降低,导致“光合下调”(王建林等,2012)。此外,大气CO2浓度的升高会导致植物Ci增加,为维持胞间CO2分压始终位于大气CO2分压之下,植物必须通过降低Gs来降低植物叶片的Ci (潘鸿等,2022)。植物的 Gs在高CO2浓度下降低,进入气孔的CO2减少,导致其Pn下降。本研究中CO2浓度倍增处理下香蒲和水葱的PnGs以及Ci都有降低的趋势,因此其净光合速率降低可能是气孔因素引起的。而较小的Gs也会增加植物细胞内的水分向外扩散的阻力,进而导致香蒲的蒸腾速率显著降低。

  • 图5 水葱(A)和香蒲(B)叶经济性状的主成分分析

  • Fig.5 Principal component analysis for leaf economic traits of Scirpusvalidus(A)and Typha orientalis(B)

  • 表1 两种植物叶经济性状与主成分前两个主轴的相关性

  • Table1 Correlations of leaf economic traits of the two species to the first two axes of principal component analysis

  • 注:*表示P<0.05; **表示P<0.01; ***表示P<0.001。

  • Note: *indicates P<0.05; **indicates P<0.01; ***indicates P<0.001.

  • 大气CO2 浓度的升高会使植物碳同化速率的积累以及分配发生变化,致使植物体内C、N、P浓度发生变化(洪江涛等,2013)。研究发现高CO2浓度环境下,稻米内K、Mg、P、S、Zn含量均降低(童楷程等,2020)。香蒲叶的N、P含量在CO2浓度倍增环境下均显著降低,这与乔匀周等(2007)对红桦幼苗的研究一致。目前CO2浓度升高导致植物养分含量降低的机理尚不明确。有研究认为是稀释效应,即CO2浓度升高会造成植物生长速度增快,植株增大,体内淀粉含量积累致使植物体内的养分含量降低(Reich et al.,2014);也有研究指出高CO2浓度导致植物体内N含量降低是因为高CO2浓度导致Gs降低,致使植物对硝酸盐等矿物质的吸收降低而导致的(洪江涛等,2013);还有可能是因为大气CO2浓度升高,使Rubisco对CO2的敏感度增强,同化率所需的Rubisco减少,导致光合作用酶所需N含量减少,从而使更多的N可以分配到其他的组织及过程中去,进而导致叶片N含量相对降低(张璐等,2021)。本研究中CO2浓度升高对两种植物的C含量无显著改变,而CO2浓度使水葱的N、P含量相对于对照都有一定程度的提高,但差异不显著,这可能意味着较香蒲而言,水葱对CO2浓度升高的环境适应性更强。

  • 植物功能性状随环境的变化表现出较强可塑性,并且通过性状间的调整组合,形成充分适应环境变化的功能性状集(Rodríguez-Rodríguez et al.,2018)。除了水葱的C含量外,其他性状在水葱和香蒲适应增温和CO2浓度升高过程中均具有重要意义,这些性状共同形成了植物在适应环境变化过程中的“经济学谱”性状集。性状间并不是孤立的,而是存在显著的关联性(孙梅等,2017),反映了植物对生存环境的适应性策略(Kembel et al.,2011)。本研究表明,水葱和香蒲的TN、TP及Pn均分布在主成分第一主轴正轴,并与第一主轴显著正相关,且二者的LMA均与TN、TP、Pn的分布方向相反。这些性状及其关系与过去对全球尺度和很多个案的研究结果一致,这体现了性状间密切的功能关联(Chaturvedi et al.,2011;Pérez-Harguindeguy et al.,2013),表明湿地植物水葱和香蒲也符合“叶经济学”的基本性状关系。

  • 综上所述,增温显著降低了水葱和香蒲的Pn和N、P含量,并且也在一定程度上致使二者的GsTr有一定下降,但LMA增加。CO2浓度升高对水葱的营养元素影响不显著,但显著降低了香蒲的光合能力和N、P含量。光合性状、LMA和N、P含量对水葱和香蒲适应温度和CO2浓度变化均起到重要作用,但C含量在这一过程中发挥的作用不大。水葱和香蒲经济性状间存在显著的功能关联,反映出植物对生存环境的适应性策略。这与过去的很多研究结果一致,表明湿地植物水葱和香蒲也符合“叶经济学”的基本性状关系。本研究结果为湿地植物应对气候变化的适应性研究提供了案例。然而,本研究的增温和CO2浓度倍增控制组均仅设置了一个控制室,并且未设置增温和CO2浓度的交互作用,这是本研究的局限,可能会导致实验结果具有一定误差。根据增温和CO2浓度升高对本研究中植物经济性状分别造成的影响趋势,二者的交互作用可能会进一步降低水葱和香蒲的光合能力和营养元素含量,但由于水葱的多数经济性状对CO2浓度的响应不明显,因此交互作用对香蒲的作用可能比水葱更加显著。未来仍要针对更多植物来加大研究的广度,并设置足够的研究重复量和控制组交互作用,加大研究的深度和精确度。

  • 参考文献

    • CHATURVEDI RK, RAGHUBANSHI AS, SINGH JS, 2011. Leaf attributes and tree growth in a tropical dry forest [J]. J Veg Sci, 22(5): 917-931.

    • CHENG JS, WANG LJ, JIANG AL, et al. , 2014. Research progress of photosynthetic mechanism regulated by leaf end products accumulation in fruit trees after sink-source manipulation [J]. Chin Agric Sci Bull, 30(19): 75-80. [程杰山, 王利军, 蒋爱丽, 等, 2014. 果树库源关系改变对源叶光合作用的影响机制研究进展 [J]. 中国农学通报, 30(19): 75-80. ]

    • CHIKOV VI, ABDRAKHIMOV FA, BATASHEVA SN, et al. , 2016. Characteristics of photosynthesis in maize leaves (C4 plants) upon changes in the level of illuminance and nitrate nutrition [J]. Russ J Plant Physiol, 63(5): 620-625.

    • DANG LH, ZHAO LP, LI YQ, et al. , 2021. Bolothrips bicolor (Heeger)(Thysanoptera: Idolothripinae): a genus and species newly recorded from China [J]. Acta Zootaxon Sin, 46(3): 264-268.

    • DOVIS VL, ERISMANN NM, MACHADO EC, et al. , 2021. Biomass partitioning and photosynthesis in the quest for nitrogen-use efficiency for citrus tree species [J]. Tree Physiol, 41(2): 163-176.

    • GAO K, BEARDALl J, HÄDER DP, et al. , 2019. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation [J]. Front Mar Sci, 6: 322.

    • GAO WJ, HUANG H, 2010. Simulating the effect of temperature increase on plant growth and development [J]. Crop Res, 24(3): 205-208. [高文娟, 黄璜, 2010. 模拟增温对植物生长发育的影响 [J]. 作物研究, 24(3): 205-208. ]

    • GENTILI R, AMBROSINI R, AUGUSTINUS BA, et al. , 2021. High phenotypic plasticity in a prominent plant invader along altitudinal and temperature gradients [J]. Plants, 10(10): 2144.

    • GUO DG, LI F, GAO XD, et al. , 2022. Effects of CO2 concentration increase and water deficit on photosynthetic performance and water use efficiency of typical green manure plants [J]. Chin J Appl Ecol, 33(4): 995-1002. [郭大港, 李菲, 高晓东, 等, 2022. CO2浓度增加和水分亏缺对典型绿肥植物光合性能及水分利用效率的影响 [J]. 应用生态学报, 33(4): 995-1002. ]

    • HARE CE, LEBLANC K, DITULLIO GR, et al. , 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea [J]. Mar Ecol Prog Ser, 352(12): 9-16.

    • HONG JT, WU JB, WANG XD, 2013. Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants [J]. Chin J Appl Ecol, 24(9): 2658-2665. [洪江涛, 吴建波, 王小丹, 2013. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响 [J]. 应用生态学报, 24(9): 2658-2665. ]

    • IPCC, 2013. Climate change 2013: The Physical Science Basis [M]. Cambridge: Cambridge University Press.

    • JIANG YL, ZHANG QG, YANG SY, et al. , 2006. Ecophysiological responses of 28 species of garden plants to atmospheric CO2 enrichment [J]. J Plant Resour Environ, 15(2): 1-6. [蒋跃林, 张庆国, 杨书运, 等, 2006. 28种园林植物对大气CO2浓度增加的生理生态反应 [J]. 植物资源与环境学报, 15(2): 1-6. ]

    • JIN JT, LI Y, LI RJ, et al. , 2019. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development [J]. J Plant Physiol, 55(5): 558-568. [金奖铁, 李扬, 李荣俊, 等, 2019. 大气二氧化碳浓度升高影响植物生长发育的研究进展 [J]. 植物生理学报, 55(5): 558-568. ]

    • JING DY, XIE LY, ZHAO HL, 2022. Impacts of barnyard grass on photosynthesis and physiology of rice under elevated atmospheric CO2 concentration [J]. Chin J Agrometeorol, 43(3): 204-214. [金殿玉, 谢立勇, 赵洪亮, 等, 2022. 大气CO2浓度升高条件下稻稗共生系统中稗草对水稻光合生理的影响 [J]. 中国农业气象, 43(3): 204-214. ]

    • KEMBEL SW, CAHILL JF, ANDREW H, 2011. Independent evolution of leaf and root traits within and among temperate grassland plant communities [J]. PLoS ONE, 6(6): e19992.

    • LI L, WANG YS, LIU FL, 2021. Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2 [J]. Agric Water Manage, 258: 107168.

    • LOPES A, FERREIRA AB, PANTOJA PO, et al. , 2018. Combined effect of elevated CO2 level and temperature on germination and initial growth of Montrichardia arborescens (L. ) Schott (Araceae): a microcosm experiment [J]. Hydrobiologia, 814(1): 19-30.

    • MA P, LI RN, WANG B, et al. , 2020. Responses of net assimilation rate to elevated atmospheric CO2 and temperature at different growth stages in a double rice cropping system [J]. Chin J Appl Ecol, 31(3): 872-882. [马娉, 李如楠, 王斌, 等, 2020. 双季稻不同生育期净同化速率对大气CO2浓度和温度升高的响应 [J]. 应用生态学报, 31(3): 872-882. ]

    • PAN H, CAO JX, CHEN Z, 2022. Effects of elevated CO2 concentration on photosynthetic characteristics of Schima superba seedlings [J]. Chin J Ecol, 41(5): 865-872. [潘鸿, 曹吉鑫, 陈展, 等, 2022. CO2浓度升高对木荷幼苗光合特征的影响 [J]. 生态学杂志, 41(5): 865-872. ]

    • PAN YJ, CIERAAD E, ARMSTRONG J, et al. , 2020. Global patterns of the leaf economics spectrum in wetlands [J]. Nat Commun, 11(1): 1-9.

    • PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. , 2013. New handbook for standardised measurement of plant functional traits worldwide [J]. Aust J Bot, 61(3): 167-234.

    • QI QY, YANG SH, ZHONG QC, et al. , 2012. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China [J]. J E Chin Nor Univ (Nat Sci Ed), (6): 29-38. [祁秋艳, 杨淑慧, 仲启铖, 等, 2012. 崇明东滩芦苇光合特征对模拟增温的响应 [J]. 华东师范大学学报(自然科学版), (6): 29-38. ]

    • QIAO JZ, WANG KY, ZHANG YB, 2007. Effects of elevated CO2 on the growth and nutrient contents of Betula albosinensis seed lings with two planting densities [J]. Chin J Ecol, 26(3): 301-306. [乔匀周, 王开运, 张远彬, 2007. CO2浓度升高对两个种植密度下红桦生长和养分含量的影响 [J]. 生态学杂志, 26(3): 301-306. ]

    • REICH PB, 2014. The world-wide “fast-slow” plant economics spectrum: a traits manifesto [J]. J Ecol, 102(2): 275-301.

    • REICH PB, HOBBIE SE, LEE TD, 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation [J]. Nat Geosci, 7(12): 920-924.

    • REICH PB, OLEKSYN J, 2004. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Natl Acad Sci USA, 101(30): 11001-11006.

    • REN J, WANG HM, WANG WJ, et al. , 2014. Responses of photosynthesis, chlorophyll fluorescence of leaf and bark chlorenchyma to elevated temperature [J]. Bull Bot Res, 34(6): 758-764. [任洁, 王慧梅, 王文杰, 等, 2014. 温度升高对杨树树皮绿色组织和叶片光合作用、叶绿素荧光特性的影响 [J]. 植物研究, 34(6): 758-764. ]

    • RODRÍGUEZ-RODRÍGUEZ D, MARTÍNEZ-VEGA J, 2018. Protected area effectiveness against land development in Spain [J]. J Environ Manage, 215: 345-357.

    • SACK L, SCOFFONI C, MCKOWN AD, et al. , 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns [J]. Nat Commun, 3(1): 1-10.

    • SHI FS, WU N, WU Y, et al. , 2009. Effect of simulated temperature enhancement on growth and photosynthesis of Deschampsia caespitosa and Thlaspi arvense in Northwestern Sichuan, China [J]. Chin J Appl Environ Biol, 15(6): 750-755. [石福孙, 吴宁, 吴彦, 等, 2009. 模拟增温对川西北高寒草甸两种典型植物生长和光合特征的影响 [J]. 应用与环境生物学报, 15(6): 750-755. ]

    • SHORT FT, KOSTEN S, MORGAN PA, et al. , 2016. Impacts of climate change on submerged and emergent wetland plants [J]. Aquat Bot, 135: 3-17.

    • SUN M, TIAN K, ZHANG Y, et al. , 2017. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 35(6): 940-949. [孙梅, 田昆, 张贇, 等, 2017. 植物叶片功能性状及其环境适应研究 [J]. 植物科学学报, 35(6): 940-949. ]

    • SUN SN, WANG Q, SUN CC, et al. , 2017. Response and adaptation of photosynthesis of cucumber seedlings to high temperature stress [J]. Chin J Appl Ecol, 28(5): 1603-1610. [孙胜楠, 王强, 孙晨晨, 等, 2017. 黄瓜幼苗光合作用对高温胁迫的响应与适应 [J]. 应用生态学报, 28(5): 1603-1610. ]

    • TOBITA H, KITAO M, UEMURA A, et al. , 2021. Species-specific nitrogen resorption efficiency in Quercus mongolica and ascer mono in response to elevated CO2 and soil N deficiency [J]. Forests, 12(8): 1034.

    • TONG KC, HU SW, YANG Y, et al. , 2020. Effects of atmospheric CO2 elevation and fertilization on yield and nutritional quality of Japonica rice——A FACE study [J]. Chin Rice, 26(4): 10-17. [童楷程, 户少武, 杨阳, 等, 2020. 大气CO2浓度升高和施肥对粳稻产量和稻米营养品质的影响——FACE研究 [J]. 中国稻米, 26(4): 10-17. ]

    • WANG JL, WEN XF, ZHAO FH, et al. , 2012. Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species [J]. Chin J Plant Ecol, 36(5): 438-446. [王建林, 温学发, 赵风华, 等, 2012. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响 [J]. 植物生态学报, 36(5): 438-446. ]

    • WANG X, WEI XL, WU GY, 2021. Effects of different nitrogen forms and supply on photosynthetic characteristics and growth of Phoebe bournei seedlings under elevated CO2 concentration [J]. Sci Silv Sin, 57(4): 173-181. [王晓, 韦小丽, 吴高殷, 等, 2021. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响 [J]. 林业科学, 57(4): 173-181. ]

    • WRIGHT IJ, REICH PB, CORNELISSEN JHC, et al. , 2015. Assessing the generality of global leaf trait relationships [J]. New Phytol, 166(2): 485-496.

    • WRIGHT IJ, REICH PB, WESTOBY M, et al. , 2004. The worldwide leaf economics spectrum [J]. Nature, 428(6985): 821-827.

    • XU JP, SUN M, WANG H, et al. , 2018. Photosynthetic response of Scirpus validus and Typha orientalis to elevated temperatures in Dianchi Lake, Southwestern China [J]. J Mt Sci, 15(12): 2666-2675.

    • XU JP, TIAN K, SUN M, et al. , 2016. The growth response of Scirpus validus to elevated CO2 [J]. J SW For Univ, 36(5): 84-88. [许俊萍, 田昆, 孙梅, 等, 2016. 水葱构件生长对大气CO2浓度升高的响应 [J]. 西南林业大学学报, 36(5): 84-88. ]

    • YAMORI W, HIKOSAKA K, WAY DA, 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation [J]. Photosynth Res, 119(1): 101-117.

    • ZHANG L, ZHANG W, CHEN XP, 2021. The effects and mechanism of climate change on vegetables quality: a review [J]. Chin J Eco-Agric, 29(12): 2034-2045. [张璐, 张伟, 陈新平, 2021. 气候变化对蔬菜品质的影响及其机制 [J]. 中国生态农业学报, 29(12): 2034-2045. ]

    • ZHANG W, HUANG W, ZHANG SB, 2017. The study of a determinate growth orchid highlights the role of new leaf production in photosynthetic light acclimation [J]. Plant Ecol, 218(8): 997-1008.

    • ZHENG YP, LI F, HOU YK, et al. , 2019. Effect of increasing CO2 concentration on photosynthesis and leaf water use efficiency of crops [J]. Transact Chin Soc Agric Eng, 35(10): 91-98. [郑云普, 李菲, 侯毅凯, 等, 2019. 大气CO2浓度增加对作物光合性能及叶片水分利用效率的影响 [J]. 农业工程学报, 35(10): 91-98. ]

    • ZWIENIECKI MA, BRODRIBB TJ, HOLBROOK NM, 2007. Hydraulic design of leaves: insights from rehydration kinetics [J]. Plant Cell Environ, 30(8): 910-921.

  • 参考文献

    • CHATURVEDI RK, RAGHUBANSHI AS, SINGH JS, 2011. Leaf attributes and tree growth in a tropical dry forest [J]. J Veg Sci, 22(5): 917-931.

    • CHENG JS, WANG LJ, JIANG AL, et al. , 2014. Research progress of photosynthetic mechanism regulated by leaf end products accumulation in fruit trees after sink-source manipulation [J]. Chin Agric Sci Bull, 30(19): 75-80. [程杰山, 王利军, 蒋爱丽, 等, 2014. 果树库源关系改变对源叶光合作用的影响机制研究进展 [J]. 中国农学通报, 30(19): 75-80. ]

    • CHIKOV VI, ABDRAKHIMOV FA, BATASHEVA SN, et al. , 2016. Characteristics of photosynthesis in maize leaves (C4 plants) upon changes in the level of illuminance and nitrate nutrition [J]. Russ J Plant Physiol, 63(5): 620-625.

    • DANG LH, ZHAO LP, LI YQ, et al. , 2021. Bolothrips bicolor (Heeger)(Thysanoptera: Idolothripinae): a genus and species newly recorded from China [J]. Acta Zootaxon Sin, 46(3): 264-268.

    • DOVIS VL, ERISMANN NM, MACHADO EC, et al. , 2021. Biomass partitioning and photosynthesis in the quest for nitrogen-use efficiency for citrus tree species [J]. Tree Physiol, 41(2): 163-176.

    • GAO K, BEARDALl J, HÄDER DP, et al. , 2019. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation [J]. Front Mar Sci, 6: 322.

    • GAO WJ, HUANG H, 2010. Simulating the effect of temperature increase on plant growth and development [J]. Crop Res, 24(3): 205-208. [高文娟, 黄璜, 2010. 模拟增温对植物生长发育的影响 [J]. 作物研究, 24(3): 205-208. ]

    • GENTILI R, AMBROSINI R, AUGUSTINUS BA, et al. , 2021. High phenotypic plasticity in a prominent plant invader along altitudinal and temperature gradients [J]. Plants, 10(10): 2144.

    • GUO DG, LI F, GAO XD, et al. , 2022. Effects of CO2 concentration increase and water deficit on photosynthetic performance and water use efficiency of typical green manure plants [J]. Chin J Appl Ecol, 33(4): 995-1002. [郭大港, 李菲, 高晓东, 等, 2022. CO2浓度增加和水分亏缺对典型绿肥植物光合性能及水分利用效率的影响 [J]. 应用生态学报, 33(4): 995-1002. ]

    • HARE CE, LEBLANC K, DITULLIO GR, et al. , 2007. Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea [J]. Mar Ecol Prog Ser, 352(12): 9-16.

    • HONG JT, WU JB, WANG XD, 2013. Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants [J]. Chin J Appl Ecol, 24(9): 2658-2665. [洪江涛, 吴建波, 王小丹, 2013. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响 [J]. 应用生态学报, 24(9): 2658-2665. ]

    • IPCC, 2013. Climate change 2013: The Physical Science Basis [M]. Cambridge: Cambridge University Press.

    • JIANG YL, ZHANG QG, YANG SY, et al. , 2006. Ecophysiological responses of 28 species of garden plants to atmospheric CO2 enrichment [J]. J Plant Resour Environ, 15(2): 1-6. [蒋跃林, 张庆国, 杨书运, 等, 2006. 28种园林植物对大气CO2浓度增加的生理生态反应 [J]. 植物资源与环境学报, 15(2): 1-6. ]

    • JIN JT, LI Y, LI RJ, et al. , 2019. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development [J]. J Plant Physiol, 55(5): 558-568. [金奖铁, 李扬, 李荣俊, 等, 2019. 大气二氧化碳浓度升高影响植物生长发育的研究进展 [J]. 植物生理学报, 55(5): 558-568. ]

    • JING DY, XIE LY, ZHAO HL, 2022. Impacts of barnyard grass on photosynthesis and physiology of rice under elevated atmospheric CO2 concentration [J]. Chin J Agrometeorol, 43(3): 204-214. [金殿玉, 谢立勇, 赵洪亮, 等, 2022. 大气CO2浓度升高条件下稻稗共生系统中稗草对水稻光合生理的影响 [J]. 中国农业气象, 43(3): 204-214. ]

    • KEMBEL SW, CAHILL JF, ANDREW H, 2011. Independent evolution of leaf and root traits within and among temperate grassland plant communities [J]. PLoS ONE, 6(6): e19992.

    • LI L, WANG YS, LIU FL, 2021. Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2 [J]. Agric Water Manage, 258: 107168.

    • LOPES A, FERREIRA AB, PANTOJA PO, et al. , 2018. Combined effect of elevated CO2 level and temperature on germination and initial growth of Montrichardia arborescens (L. ) Schott (Araceae): a microcosm experiment [J]. Hydrobiologia, 814(1): 19-30.

    • MA P, LI RN, WANG B, et al. , 2020. Responses of net assimilation rate to elevated atmospheric CO2 and temperature at different growth stages in a double rice cropping system [J]. Chin J Appl Ecol, 31(3): 872-882. [马娉, 李如楠, 王斌, 等, 2020. 双季稻不同生育期净同化速率对大气CO2浓度和温度升高的响应 [J]. 应用生态学报, 31(3): 872-882. ]

    • PAN H, CAO JX, CHEN Z, 2022. Effects of elevated CO2 concentration on photosynthetic characteristics of Schima superba seedlings [J]. Chin J Ecol, 41(5): 865-872. [潘鸿, 曹吉鑫, 陈展, 等, 2022. CO2浓度升高对木荷幼苗光合特征的影响 [J]. 生态学杂志, 41(5): 865-872. ]

    • PAN YJ, CIERAAD E, ARMSTRONG J, et al. , 2020. Global patterns of the leaf economics spectrum in wetlands [J]. Nat Commun, 11(1): 1-9.

    • PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. , 2013. New handbook for standardised measurement of plant functional traits worldwide [J]. Aust J Bot, 61(3): 167-234.

    • QI QY, YANG SH, ZHONG QC, et al. , 2012. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China [J]. J E Chin Nor Univ (Nat Sci Ed), (6): 29-38. [祁秋艳, 杨淑慧, 仲启铖, 等, 2012. 崇明东滩芦苇光合特征对模拟增温的响应 [J]. 华东师范大学学报(自然科学版), (6): 29-38. ]

    • QIAO JZ, WANG KY, ZHANG YB, 2007. Effects of elevated CO2 on the growth and nutrient contents of Betula albosinensis seed lings with two planting densities [J]. Chin J Ecol, 26(3): 301-306. [乔匀周, 王开运, 张远彬, 2007. CO2浓度升高对两个种植密度下红桦生长和养分含量的影响 [J]. 生态学杂志, 26(3): 301-306. ]

    • REICH PB, 2014. The world-wide “fast-slow” plant economics spectrum: a traits manifesto [J]. J Ecol, 102(2): 275-301.

    • REICH PB, HOBBIE SE, LEE TD, 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation [J]. Nat Geosci, 7(12): 920-924.

    • REICH PB, OLEKSYN J, 2004. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Natl Acad Sci USA, 101(30): 11001-11006.

    • REN J, WANG HM, WANG WJ, et al. , 2014. Responses of photosynthesis, chlorophyll fluorescence of leaf and bark chlorenchyma to elevated temperature [J]. Bull Bot Res, 34(6): 758-764. [任洁, 王慧梅, 王文杰, 等, 2014. 温度升高对杨树树皮绿色组织和叶片光合作用、叶绿素荧光特性的影响 [J]. 植物研究, 34(6): 758-764. ]

    • RODRÍGUEZ-RODRÍGUEZ D, MARTÍNEZ-VEGA J, 2018. Protected area effectiveness against land development in Spain [J]. J Environ Manage, 215: 345-357.

    • SACK L, SCOFFONI C, MCKOWN AD, et al. , 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns [J]. Nat Commun, 3(1): 1-10.

    • SHI FS, WU N, WU Y, et al. , 2009. Effect of simulated temperature enhancement on growth and photosynthesis of Deschampsia caespitosa and Thlaspi arvense in Northwestern Sichuan, China [J]. Chin J Appl Environ Biol, 15(6): 750-755. [石福孙, 吴宁, 吴彦, 等, 2009. 模拟增温对川西北高寒草甸两种典型植物生长和光合特征的影响 [J]. 应用与环境生物学报, 15(6): 750-755. ]

    • SHORT FT, KOSTEN S, MORGAN PA, et al. , 2016. Impacts of climate change on submerged and emergent wetland plants [J]. Aquat Bot, 135: 3-17.

    • SUN M, TIAN K, ZHANG Y, et al. , 2017. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 35(6): 940-949. [孙梅, 田昆, 张贇, 等, 2017. 植物叶片功能性状及其环境适应研究 [J]. 植物科学学报, 35(6): 940-949. ]

    • SUN SN, WANG Q, SUN CC, et al. , 2017. Response and adaptation of photosynthesis of cucumber seedlings to high temperature stress [J]. Chin J Appl Ecol, 28(5): 1603-1610. [孙胜楠, 王强, 孙晨晨, 等, 2017. 黄瓜幼苗光合作用对高温胁迫的响应与适应 [J]. 应用生态学报, 28(5): 1603-1610. ]

    • TOBITA H, KITAO M, UEMURA A, et al. , 2021. Species-specific nitrogen resorption efficiency in Quercus mongolica and ascer mono in response to elevated CO2 and soil N deficiency [J]. Forests, 12(8): 1034.

    • TONG KC, HU SW, YANG Y, et al. , 2020. Effects of atmospheric CO2 elevation and fertilization on yield and nutritional quality of Japonica rice——A FACE study [J]. Chin Rice, 26(4): 10-17. [童楷程, 户少武, 杨阳, 等, 2020. 大气CO2浓度升高和施肥对粳稻产量和稻米营养品质的影响——FACE研究 [J]. 中国稻米, 26(4): 10-17. ]

    • WANG JL, WEN XF, ZHAO FH, et al. , 2012. Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species [J]. Chin J Plant Ecol, 36(5): 438-446. [王建林, 温学发, 赵风华, 等, 2012. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响 [J]. 植物生态学报, 36(5): 438-446. ]

    • WANG X, WEI XL, WU GY, 2021. Effects of different nitrogen forms and supply on photosynthetic characteristics and growth of Phoebe bournei seedlings under elevated CO2 concentration [J]. Sci Silv Sin, 57(4): 173-181. [王晓, 韦小丽, 吴高殷, 等, 2021. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响 [J]. 林业科学, 57(4): 173-181. ]

    • WRIGHT IJ, REICH PB, CORNELISSEN JHC, et al. , 2015. Assessing the generality of global leaf trait relationships [J]. New Phytol, 166(2): 485-496.

    • WRIGHT IJ, REICH PB, WESTOBY M, et al. , 2004. The worldwide leaf economics spectrum [J]. Nature, 428(6985): 821-827.

    • XU JP, SUN M, WANG H, et al. , 2018. Photosynthetic response of Scirpus validus and Typha orientalis to elevated temperatures in Dianchi Lake, Southwestern China [J]. J Mt Sci, 15(12): 2666-2675.

    • XU JP, TIAN K, SUN M, et al. , 2016. The growth response of Scirpus validus to elevated CO2 [J]. J SW For Univ, 36(5): 84-88. [许俊萍, 田昆, 孙梅, 等, 2016. 水葱构件生长对大气CO2浓度升高的响应 [J]. 西南林业大学学报, 36(5): 84-88. ]

    • YAMORI W, HIKOSAKA K, WAY DA, 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation [J]. Photosynth Res, 119(1): 101-117.

    • ZHANG L, ZHANG W, CHEN XP, 2021. The effects and mechanism of climate change on vegetables quality: a review [J]. Chin J Eco-Agric, 29(12): 2034-2045. [张璐, 张伟, 陈新平, 2021. 气候变化对蔬菜品质的影响及其机制 [J]. 中国生态农业学报, 29(12): 2034-2045. ]

    • ZHANG W, HUANG W, ZHANG SB, 2017. The study of a determinate growth orchid highlights the role of new leaf production in photosynthetic light acclimation [J]. Plant Ecol, 218(8): 997-1008.

    • ZHENG YP, LI F, HOU YK, et al. , 2019. Effect of increasing CO2 concentration on photosynthesis and leaf water use efficiency of crops [J]. Transact Chin Soc Agric Eng, 35(10): 91-98. [郑云普, 李菲, 侯毅凯, 等, 2019. 大气CO2浓度增加对作物光合性能及叶片水分利用效率的影响 [J]. 农业工程学报, 35(10): 91-98. ]

    • ZWIENIECKI MA, BRODRIBB TJ, HOLBROOK NM, 2007. Hydraulic design of leaves: insights from rehydration kinetics [J]. Plant Cell Environ, 30(8): 910-921.