en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王玉凤(1998-),硕士研究生,研究方向为园林植物资源与种质创新,(E-mail)2447383563@qq.com。

通讯作者:

白云,博士,讲师,研究方向为观赏植物种质资源及分子育种,(E-mail)yunb@jlau.edu.cn。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2023)10-1861-15

DOI:10.11931/guihaia.gxzw202208050

参考文献
AKHTER MS, MOHAMMED N, KOUJ S, et al. , 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice [J]. Plant Cell Physiol, 52(2): 344-360.
参考文献
CARMEN MARTINELL M, LOPEZ-PUJOL J, BOSCH M, et al. , 2010. Low genetic variability in the rare, recently differentiated Aquilegia paui (Ranunculaceae) [J]. Biochem Syst Ecol, 38(3): 390-397.
参考文献
CHENG MC, LIAO PM, KUO WW, et al. , 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals [J]. Plant Physiol, 162(3): 1566-1582.
参考文献
CHEN CJ, CHEN H, ZHANG Y, et al. , 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 13(8): 1194-1202.
参考文献
CHEN HL, HU LL, WANG LX, et al. , 2022. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (Vigna radiata L. ) [J]. J Appl Genetics, 63(2): 223-236.
参考文献
CHEN YH, DAI YH, LI YX, et al. , 2022. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5 [J]. BMC Plant Biol, 22(1): 102.
参考文献
CHEN Y, SUN MZ, JIA BW, et al. , 2022. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agron Sin, 48(4): 781-790. [陈悦, 孙明哲, 贾博为, 等, 2022. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展 [J]. 作物学报, 48(4): 781-790. ]
参考文献
FARAJI S, FILIZ E, KAZEMITABAR SK, et al. , 2020. The AP2/ERF gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses [J]. Genes, 11(12): 1464.
参考文献
FENG K, HOU XL, XING GM, et al. , 2020. Advances in AP2/ERF super-family transcription factors in plant [J]. Crit Rev Biotechnol, 40(6): 750-776.
参考文献
GOU YL, ZHANG L, GUO H, et al. , 2020. Research progress on the AP2/ERF transcription factor in plants [J]. Pratac Sci, 37(6): 1150-1159. [苟艳丽, 张乐, 郭欢, 等, 2020. 植物AP2/ERF类转录因子研究进展 [J]. 草业科学, 37(6): 1150-1159. ]
参考文献
HONG L, YANG L, YANG HJ, et al. , 2020. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress [J]. Chin Bull Bot, 55(4): 481-496. [洪林, 杨蕾, 杨海健, 等, 2020. AP2/ERF转录因子调控植物非生物胁迫响应研究进展 [J]. 植物学报, 55(4): 481-496. ]
参考文献
JESUS MB, PEDRO JR, JULIO MA, 2015. Local adaptation to distinct elevational cores contributes to current elevational divergence of two Aquilegia vulgaris subspecies [J]. J Plant Ecol, 8(3): 273-283.
参考文献
JOFUKU KD, BOER BG, MONTAGU MV, et al. , 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell, 6(9): 1211-1225.
参考文献
KARABA A, DIXIT S, GRECO R, et al. , 2007. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene [J]. Pans, 104(39): 15270-15275.
参考文献
KIDOKORO S, HAYASHI K, HARAGUCHI H, et al. , 2021. Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in Arabidopsis [J]. Pans, 118(10): e2021048118.
参考文献
LIN RC, PARK HJ, WANG HY, 2008. Role of Arabidopsis RAP2. 4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance [J]. Mol Plant, 1(1): 42-57.
参考文献
LIU JL, DENG ZW, LIANG CL, et al. , 2021. Genome-wide analysis of RAV transcription factors and functional characterization of anthocyanin-biosynthesis-related RAV genes in pear [J]. Int J Mol Sci, 22(11): 5567.
参考文献
LIU PQ, SUN F, GAO R, et al. , 2012. RAP2. 6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity [J]. Plant Mol Biol, 79(6): 609-622.
参考文献
LU LL, QANMBER G, LI J, et al. , 2021. Identification and characterization of the ERF subfamily B3 group revealed GhERF13. 12 improves salt tolerance in upland cotton [J]. Front Plant Sci, 12: 705883.
参考文献
MA YC, ZHAO YM, HUANG DL, et al. , 2022. Identification and expression analysis of CesA gene family in Brassica rapa var. glabra [J]. Guihaia, 42(12): 2021-2031. [马宇辰, 赵玉梅, 黄丹霖, 等, 2022. 白菜CesA基因家族鉴定及表达模式分析 [J]. 广西植物, 42(12): 2021-2031. ]
参考文献
MENG LS, WANG YB, YAO SQ, et al. , 2015. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8 [J]. J Cell Sci, 128(15): 2919-2927.
参考文献
MORAN NC, COLE T, LOYAL G, et al. , 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J]. Gene Dev, 25(18): 1915-1927.
参考文献
MRUNMAY KG, SWADHIN S, JANESH KG, et al. , 2014. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens [J]. Aust J Plant Physiol, 171(10): 860-867.
参考文献
NAKANO T, SUZUKI K, FUJIMURA T, et al. , 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol, 140(2): 411-432.
参考文献
NIU SY, LIANG F, ZHANG ZH, et al. , 2023. Identification and analysis of TCP transcription factors in Solanum tuberosum response to low nitrogen fertilizer stress [J]. Guihaia, 43(2): 293-302. [牛苏燕, 梁芳, 张珍华, 等, 2023. 马铃薯低氮肥胁迫响应TCP转录因子的鉴定与分析 [J]. 广西植物, 43(2): 293-302. ]
参考文献
RAN W, SONG JH, LV ZY, et al. , 2022. Genome-wide identification and comprehensive analysis of the AP2/ERF gene family in pomegranate fruit development and postharvest preservation [J]. Genes, 13(5): 895.
参考文献
SAKUMA Y, LIU Q, DUBOUZET JG, et al. , 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression [J]. Biochem Biophys Res Commun, 290(3): 998-1009.
参考文献
SHARMA B, KRAMER E, 2013. Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae) [J]. New Phytol, 197(3): 951-959.
参考文献
SOWMYA K, SHIV V, MUHAMMAD HR, et al. , 2011. Functional characterization of four APETALA2-family genes (RAP2. 6, RAP2. 6L, DREB19 and DREB26) in Arabidopsis [J]. Plant Mol Biol, 75(1/2): 107-127.
参考文献
WANG HB, GONG M, GUO JY, et al. , 2018. Molecular cloning and prokaryotic expression of orphan gene Soloist of AP2/ERF gene family in Jatropha curcas [J]. Sci Silv Sin, 54(9): 60-69. [王海波, 龚明, 郭俊云, 等, 2018. 麻疯树AP2/ERF基因家族孤儿基因Soloist的克隆与原核表达分析 [J]. 林业科学, 54(9): 60-69. ]
参考文献
WANG LJ, WANG Y, LU B, et al. , 2022. Identification and expression analysis of AP2/ERF transcription factor under water stress in Olea europaea [J]. Guihaia, 42(12): 2032-2043. [王丽娟, 王毅, 陆斌, 等, 2022. 油橄榄AP2/ERF转录因子鉴定及水胁迫表达分析 [J]. 广西植物, 42(12): 2032-2043. ]
参考文献
WU CX, LIU XW, LI ZJ, et al. , 2022. Analysis of chloroplast genome of rice Dalixiang [J]. Guihaia, 42(11): 1830-1839. [吴朝昕, 刘雪薇, 李祖军, 等, 2022. 大粒香水稻叶绿体基因组特征分析 [J]. 广西植物, 42(11): 1830-1839. ]
参考文献
YU Y, YU M, ZHANG SX, et al. , 2022. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses [J]. Int J Mol Sci, 23(6): 3272.
参考文献
ZHANG ZJ, WANG J, ZHANG RX, et al. , 2012. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis [J]. Plant J, 71(2): 273-287.
参考文献
ZHOU LX, RAJESH Y, 2021. Genome-wide identification and characterization of AP2/ERF transcription factor family genes in oil palm under abiotic stress conditions [J]. Int J Mol Sci, 22(6): 2821.
目录contents

    摘要

    AP2/ERF转录因子在植物生长发育和响应非生物胁迫中发挥着重要作用。为探究欧耧斗菜(Aquilegia vulgaris)中AP2/ERF对盐胁迫的响应,该研究基于前期试验获得的盐胁迫下转录组数据,通过生物信息学方法筛选欧耧斗菜AP2/ERF家族基因,分析其生化特征、保守基序、系统进化等,并对其在盐胁迫处理下不同时间的根与叶中的表达量变化进行分析,利用qRT-PCR技术对候选基因表达量进行验证。结果表明:(1)筛选出86个AvAP2/ERF基因,其编码的氨基数目为132~722个,分子量为14763.30~79069.47 Da,等电点介于4.49~9.68之间,偏酸性蛋白较多,均为亲水性蛋白;对AvAP2/ERF蛋白进行亚细胞定位预测,大多数定位于细胞核。(2)二级结构以无规则卷曲和α-螺旋为主,均具有AP2保守结构域,有两个高度保守的基序Motif 1和Motif 2。(3)在盐胁迫下,71个AvAP2/ERF基因表达量发生变化,其中叶片中差异表达基因18个、根中19个;欧耧斗菜与拟南芥AP2/ERF基因聚类为5个亚家族、15个亚组,通过表达分析及同源关系,确定3个响应盐胁迫的基因AvAP2/ERF-56、AvAP2/ERF-61与AvAP2/ERF-80,其qRT-PCR结果与转录组数据一致。该研究结果为深入探究欧耧斗菜AP2/ERF基因的功能及逆境响应机制奠定了基础。

    Abstract

    AP2/ERF transcription factors play important roles in plant growth, development and response to abiotic stress. In order to explore the response of AvAP2/ERF genes in Aquilegia vulgaris to salt stress, based on the transcriptome data obtained under salt stress in previous experiments, the AP2/ERF gene family in A. vulgaris were screened by bioinformatic methods, and their physical and chemical properties, conserved motifs, phylogenetic relations and expression changes of these genes in leaves and roots under salt stress were analyzed, etc. The expression of candidate genes was verified by qRT-PCR. The results were as follows: (1) 86 AvAP2/ERF genes were identified which encoded 132-722 amino acids, with molecular weight of 14763.30-79069.47 Da and isoelectric point ranged from 4.49 to 9.68. Most of them were slightly acidic proteins and all of them were hydrophilic. Most of AvAP2/ERF were localized in nucleus. (2)The similarity of secondary structure was high, which was proportionally composed of random coil and α-helix. The members all contained AP2 domains, and two conserved motifs were predicted. (3) Under different stages of salt treatment, there were 71 AvAP2/ERF genes responded to salt stress. There were 18 and 19 differentially expressed genes in leaves and roots, respectively. There were 86 AP2/ERF genes of A. vulgaris were divided into five subfamilies clustering with A. thaliana; the AP2/ERF genes of A. vulgaris and Arabidopsis thaliana were clustered into five subfamilies and 15 subgroups. Through expression analysis and homology relationship, AvAP2/ERF-56, AvAP2/ERF-61 and AvAP2/ERF-80 of them might be involved in salt resistance, and the qRT-PCR results were consistent with sequencing expression trends. The results of this study provides a reliable reference for further research on the function and stress response mechanism of AP2/ERF gene in Aquilegia vulgaris.

  • AP2/ERF是广泛存在于植物中的一类转录因子超家族,参与植物的生长发育和响应外界胁迫。该家族成员均含有一段或两段由60~70个氨基酸组成的AP2保守结构域,根据含有AP2结构域的结构或数目不同,AP2/ERF超家族可进一步分为AP2、ERF、DREB、RAV及Soloist 5个亚家族(苟艳丽等,2020)。近年来,许多植物的AP2/ERF转录因子成员及功能已经得到了鉴定与验证,如拟南芥(Arabidopsis thaliana)中鉴定出147个(Nakano et al.,2006),水稻(Oryza sativa)中鉴定出163个(Akhter et al.,2011),绿豆(Vigna radiata)中鉴定出186个(Chen et al.,2022),硬粒小麦(Triticum durum)中鉴定出271个(Faraji et al.,2020),石榴(Vigna radiata)中鉴定出116个(Ran et al.,2022)。

  • AP2/ERF转录因子在植物的生长发育、应对外界各种生物胁迫、非生物胁迫中都发挥着重要作用(Feng et al.,2020)。AP2亚家族主要参与植物的生长发育,Jofuku等(1994)首次从拟南芥中分离出AP2转录因子,其与开花生理相关。DREB亚家族和ERF亚家族主要在植物的非生物逆境胁迫中起作用(洪林等,2020)。RAV亚家族参与植物响应各种生物和非生物胁迫过程(Liu et al.,2021)。目前关于Soloist亚家族的研究相对较少,其参与水杨酸的生物积累和基础防御的正向调节(王海波等,2018)。

  • 盐胁迫是植物生长发育的最重要的影响因子之一,AP2/ERF转录因子在植物应对盐胁迫过程中,发挥着举足轻重的作用。拟南芥AtERF1的表达受茉莉酸(JA)、乙烯(ET)和脱落酸(ABA)信号相互作用的控制,作为信号传递的中枢,在拟南芥的耐盐调节和干旱调节中都发挥着重要作用(Cheng et al.,2013)。小麦TaERF-6-3A通过影响脯氨酸合成,抑制抗氧化相关基因RD29AP5CS1的表达来降低植物的耐盐性,起到负调控作用(Yu et al.,2022)。陆地棉GhERF13.12基因受ABA信号影响,参与脯氨酸的生物合成,在拟南芥中过表达,能增强活性氧(ROS)清除基因的表达,提高拟南芥对盐胁迫耐受性(Lu et al.,2021)。旱柳SmAP2-17可以结合SOS3和ABI5的启动子且激活它们的表达,在盐胁迫的调控中起关键作用(Chen et al.,2022)。

  • 耧斗菜属(Aquilegia)花卉是重要的宿根花卉,其花形独特、花色艳丽,深受人们喜爱(Carmen Martinell et al.,2010;Jesus et al.,2015)。但近年来,随着土地盐碱化的加剧,耧斗菜属花卉的应用受到限制,盐胁迫使其观赏效果大大降低。课题组前期试验发现,欧耧斗菜(A. vulgaris)具有很强的抗寒性和耐盐性,在东北地区可以露地越冬,管理方便。本研究以欧耧斗菜盐胁迫处理不同时间的转录组测序数据为基础,筛选AP2/ERF家族基因,利用生物信息学方法对其进行分析,并结合试验进行验证,拟探讨以下问题:(1)欧耧斗菜AP2/ERF家族基因编码的蛋白质的理化性质;(2)二级结构及保守结构域特征;(3)对盐胁迫处理不同时间根与叶中AP2/ERF基因表达模式进行分析、系统进化分析并进行分类及功能预测。本研究以期为下一步研究欧耧斗菜AP2/ERF基因在抗盐过程中的生物学功能提供参考。

  • 1 材料与方法

  • 1.1 转录组测序试验材料

  • 欧耧斗菜盐胁迫下转录组数据为课题组前期试验获得,种子为吉林农业大学观赏植物资源团队保存。于2020年6月播种,待幼苗长至6片真叶时,选择长势良好、株高冠幅相近的植株,进行200 mmol·L-1NaCl溶液处理,在0(CK)、12、24、48 h后分别对根和叶片进行取样,重复3次,盐溶液浓度及处理时间均由预试验确定。样品在液氮中迅速冷冻后置于-80℃冰箱中保存备用,由北京诺禾致源科技股份有限公司进行转录组测序并进行数据分析。

  • 1.2 欧耧斗菜AP2/ERF基因的鉴定及生物信息学分析

  • 在Tair(https://www.arabidopsis.org/)上搜索并下载拟南芥AP2/ERF家族的基因序列,作为参考序列。将转录组序列与拟南芥序列进行本地BLAST比对,E值设置为1e-5,将得到的核酸序列通过TBtools(Chen et al.,2020)翻译为蛋白质序列,提交NCBI(https://www.ncbi.nlm.nih.gov/)和SMART(http://smart.embl-heidelberg.de/)预测结构域,保留含有完整AP2/ERF结构域的蛋白序列。利用MEGA 7.0软件,以邻接法(neighbor-joining,NJ)构建欧耧斗菜与拟南芥AP2/ERF基因的系统发育进化树,并使用iTOL(https://itol.embl.de/)进行美化。通过在线软件pI/Mw(http://web.expasy.Org/protparam/)分析蛋白质的分子量、氨基酸数目、等电点、平均亲水性等理化性质,利用在线软件MBC(http://cello.life.nctu.edu.tw/)进行亚细胞定位。利用在线网站Prabi(https://prabi.ibcp.fr/htm/site/web)预测蛋白质二级结构,在线工具MEME(http://meme-suite.org/tools/meme)分析基因保守基序,并通过TBtools进行可视化。

  • 1.3 欧耧斗菜AP2/ERF基因表达模式分析

  • 基于欧耧斗菜盐胁迫下转录组数据,将AP2/ERF家族基因在盐胁迫0(CK)、12、24、48 h的表达量通过FPKM(fragments per kilobase million)标准化;利用DEGseq软件进行处理组和对照组的比较,差异表达显著的标准为 |log2(Fold Change)|>1、P(padj)<0.05,符合以上标准的基因视为差异基因(牛苏燕等,2023)。利用TBtools绘制热图谱,Row Scale标准化,Cluster Rows聚类,其他参数默认,并进行表达模式分析。

  • 1.4 实时荧光定量PCR

  • 为了验证转录组测序的结果及目标基因的表达模式,设计特异引物(表1),IPP2作为内参基因(Sharma &Kramer,2013),经实时荧光定量PCR检测欧耧斗菜部分AP2/ERF基因在盐胁迫下不同时间在根和叶中的表达。用SYBR Green Ⅰ检测特异引物的PCR产物,反应体系:2×SYBR Mix主混合物10 μL、上下游引物1 μL、模板(cDNA)2 μL、ddH2O 6 μL。PCR反应程序:预变性(95℃,1 min),放大定量(95℃,20 s;60℃,20 s;72℃,30 s,重复40次),熔解曲线(60~95℃)。每个样品3个独立的生物学重复,2个技术重复。使用2-ΔΔCt法计算基因的相对表达量,log2(Fold Change)进行基因相对表达量(上调或下调)的标准化比较。

  • 表1 欧耧斗菜荧光定量检测引物序列

  • Table1 Sequence of the primers for fluorescent quantitative detection of Aquilegia vulgaris

  • 2 结果与分析

  • 2.1 转录组测序结果简介

  • 此次共获得转录组文库12个,过滤后每个文库至少获得41 521 502个clean reads、6.23 G clean bases。所有12个文库中的Q30均超过94.81%,GC均在41.51~42.72之间,共组装序列28 088个。各个样本比对到基因组的百分比均高于70%,表明转录组数据与参考物种接近。3次生物学重复R2均大于0.85,组内3次重复存在较好的相关性。为了进一步挖掘盐胁迫下各个通路的基因变化,以P(padj)<0.05为筛选条件,筛选出13个显著富集的KEGG通路,2 197个差异表达基因。

  • 2.2 欧耧斗菜AP2/ERF基因家族鉴定与系统发育分析

  • 本研究从欧耧斗菜转录组中共鉴定出86个AP2/ERF基因家族成员,分别命名为AvAP2/ERF-1~AvAP2/ERF-86。将欧耧斗菜与拟南芥AP2/ERF基因构建系统进化树,结果如图1所示,AvAP2/ERF分布在ERF、DREB、AP2、RAV和Soloist这5个亚家族中,其中,ERF亚家族进一步分为B1、B2、B3、B4、B5和B6 6个亚组,DREB亚家族分为A1、A2、A3、A4、A5和A6 6个亚组。在鉴定的86个AvAP2/ERF中:15个属于AP2亚家族,占总数的17.44%;37个属于ERF亚家族,占43.02%;29个属于DREB亚家族,占33.72%;4个属于RAV亚家族,占4.65%;还有1个属于Soloist亚家族,占1.16%。

  • 2.3 欧耧斗菜AP2/ERF蛋白的理化性质分析与亚细胞定位

  • 欧耧斗菜86个AP2/ERF基因所编码的蛋白质的氨基酸数目在132~722个之间,分子量在14 763.30~79 069.47 Da之间,等电点介于4.49~9.68之间,差异较大,暗示了其基因功能的多样性。酸性蛋白数目(54)高于碱性蛋白数目(32),平均亲水性的值皆小于0,皆为亲水蛋白。5个定位于叶绿体,1个定位于线粒体,1个定位于细胞质,其余79个均定位于细胞核,Soloist亚家族的蛋白AvAP2/ERF-17被定位在细胞质(表2)。定位在核外的基因在遗传进化上具有一定的独立性,与家族内其他基因差异较大(吴朝昕等,2022)。

  • 2.4 欧耧斗菜AP2/ERF蛋白的二级结构分析

  • 在欧耧斗菜AP2/ERF蛋白中,α-螺旋和无规则卷曲是构成二级结构的主要方式。AP2/ERF转录因子具有保守的AP2结构域,该结构域的C端存在1个RAYD元件,可形成1个两亲性α-螺旋,这有利于维持AP2/ERF蛋白的稳定性(苟艳丽等,2020)(表3)。

  • 2.5 欧耧斗菜AP2/ERF蛋白的保守基序分析

  • 通过MEME在线工具进行保守基序分析,结果显示,Motif 1和Motif 2的保守程度在欧耧斗菜AP2/ERF中是最高的,除AvAP2/ERF-13和AvAP2/ERF-23外,其余84个均包含该段基序。而其他类型结构域的保守程度会因所属亚家族的不同而有差异(图2)。在相同亚家族中,除AP2结构域外,还存在着一个或多个相对保守的其他类型结构域,如AP2亚家族有两段保守基序Motif 4和Motif 13,RAV亚家族有两段保守基序Motif 9和Motif 15,而这在其他亚家族中则不具备(图3)。

  • 2.6 欧耧斗菜AP2/ERF基因表达模式分析

  • 将欧耧斗菜AP2/ERF基因在盐胁迫下不同时间在根和叶中的表达数据绘制热图谱并聚类分析,将FPKM值大于0.05视为有效表达,并且其值越大说明表达水平越高(Moran et al.,2011)。在根中,有效表达基因69个,在叶中,有效表达基因50个,并且表达量均随盐胁迫时间的增加呈现一定的变化趋势(图4)。

  • 与对照相比,表达差异显著的标准为|log2(Fold Change)|>1、P(padj)<0.05。根中有19个差异基因,叶中有18个差异基因,分布于不同的盐胁迫时间中,8个AP2/ERF在根和叶中皆为差异基因。log2(Fold Change)>1为上调基因,log2(Fold Change)<-1为下调基因。在根中,上调基因有15个,其中AvAP2/ERF-2、AvAP2/ERF-3、AvAP2/ERF-22、AvAP2/ERF-40、AvAP2/ERF-53、AvAP2/ERF-64在盐处理12 h时表达量显著上调,AvAP2/ERF-29、AvAP2/ERF-50、AvAP2/ERF-56、AvAP2/ERF-57、AvAP2/ERF-61、AvAP2/ERF-80在24 h时显著上调,而AvAP2/ERF-46、AvAP2/ERF-54、AvAP2/ERF-56、AvAP2/ERF-81在48 h时显著上调;下调基因为AvAP2/ERF-35、AvAP2/ERF-51、AvAP2/ERF-58、AvAP2/ERF-82,显著下调的时间也不尽相同。在叶中,上调基因有13个,AvAP2/ERF-21、AvAP2/ERF-42、AvAP2/ERF-44、AvAP2/ERF-46、AvAP2/ERF-47、AvAP2/ERF-72、AvAP2/ERF-86的表达量在12 h时显著上调,AvAP2/ERF-80的表达量在24 h时显著上调,AvAP2/ERF-24、AvAP2/ERF-56、AvAP2/ERF-61、AvAP2/ERF-64、AvAP2/ERF-71的表达量在48 h时显著上调,AvAP2/ERF-23、AvAP2/ERF-30、AvAP2/ERF-37、AvAP2/ERF-58、AvAP2/ERF-73为下调基因(图5)。

  • 根据拟南芥中已知AP2/ERR抗逆基因(表4),结合欧耧斗菜与拟南芥系统进化关系,确定AvAP2/ERF-56、AvAP2/ERF-61、AvAP2/ERF-80为抗盐候选基因,并且这3个基因在盐胁迫处理后的根和叶中,均表现出显著上调,可见其积极响应盐胁迫。进一步通过qRT-PCR验证上述3个基因在盐胁迫下的表达模式(图6)。由图6可知:AvAP2/ERF-56在叶和根中,均随着盐胁迫时间的增加,表达量逐渐上升,盐胁迫48 h与对照组存在显著差异,与转录组测序结果基本一致。AvAP2/ERF-61在叶中,随着盐胁迫时间的增加,表达量逐渐上升,在48 h时上调显著;在根中,盐胁迫12、24 h上调显著,48 h时下降,与转录组数据一致。AvAP2/ERF-80在叶片中,随着盐胁迫时间的增加,表达量上调,在24、48 h时上调显著;在根中,盐胁迫12、24、48 h时均检测到表达量显著上调,与转录组测序结果一致。

  • 图1 欧耧斗菜与拟南芥AP2/ERF基因的系统进化树

  • Fig.1 Phylogenetic tree of AP2/ERF genes in Aquilegia vulgaris and Arabidopsis thaliana

  • 3 讨论与结论

  • 本研究从课题组前期获得的欧耧斗菜盐胁迫转录组测序数据中鉴定了86个AvAP2/ERF基因,并对其家族成员理化特征、系统进化及盐胁迫下表达模式进行了分析。86个AvAP2/ERF可被分为15个AP2基因、29个DREB基因、37个ERF基因、4个RAV基因及1个Soloist基因。在当前研究的大多植物中,ERF亚家族具有最多的成员,然后依次是DREB、AP2、RAV,Soloist亚家族成员最少(Nakano et al.,2006)。欧耧斗菜与拟南芥、水稻等物种的AP2/ERF基因的各亚家族成员在数量上也具有相似的规律(Akhter et al.,2011;陈悦等,2022),这说明植物AP2/ERF基因在进化上有共同的起源。

  • 表2 欧耧斗菜AP2/ERF的理化性质分析与亚细胞定位

  • Table2 Analysis of physical and chemical properties and subcellular localization of AP2/ERF in Aquilegia vulgaris

  • 续表2

  • 表3 欧耧斗菜AP2/ERF的二级结构

  • Table3 Secondary structure of AP2/ERF in Aquilegia vulgaris

  • 图2 欧耧斗菜AP2/ERF保守基序

  • Fig.2 Conserved motifs of AP2/ERF in Aquilegia vulgaris

  • 本研究发现欧耧斗菜AP2/ERF转录因子家族成员的分子量、等电点和亲水性存在较大差异,这与前人的研究结果一致(Ran et al.,2022),说明了欧耧斗菜AP2/ERF转录因子家族的结构较为复杂,暗示了其功能的多样性。欧耧斗菜AP2/ERF的亚细胞定位大多数在细胞核,说明其在细胞质中合成后进入细胞核发挥作用;也有在叶绿体中和线粒体中的,这说明其功能分工上有所不同,在信号传递的不同阶段发挥作用。

  • 在AP2/ERF转录因子中,AP2结构域的高度保守是其蛋白序列的重要结构特征,通常该结构域包含60~70个氨基酸残基,按照3个β-折叠和1个α-螺旋方式形成典型的三维结构(洪林等,2020)。在欧耧斗菜AP2/ERF转录因子家族中,Motif 1和Motif 2是保守性最高的,是构成AP2结构域的重要组成部分,这与前人的研究结果基本相符。保守的结构域与基序通常与转录因子的功能相关(Sakuma et al.,2002)。在欧耧斗菜AP2/ERF转录因子家族中,同一亚家族基因具有相同或相似的保守基序,可能具有相似的生物学功能和调控途径。如AP2亚家族有两段保守基序Motif 4和Motif 13,构成了另一个长度为72个氨基酸的AP2结构域,RAV亚家族中也有两段保守基序Motif 9和Motif 15,是B3结构域的重要组成部分,而这在其他亚家族中则不具备,这符合AP2亚家族和RAV亚家族的基本特征(苟艳丽等,2020)。不同亚家族特异的保守基序在转录调控中同样发挥了重要的作用。

  • 根据与已知功能基因的同源性,结合表达趋势推测目的基因的功能是目前研究中常用的手段(马宇辰等,2022)。本研究将欧耧斗菜86个、拟南芥147个AP2/ERF基因分为5个亚家族,各家族成员功能类似。通过同源比对发现,AP2亚家族AvAP2/ERF-37可能通过控制根细胞数量和大小,负调控拟南芥耐盐性(Meng et al.,2015)。Soloist亚家族的AvAP2/ERF-17,推测其在水杨酸防御信号途径中的PAD4基因下游发挥功能,正调控水杨酸的生物合成从而提高植物抗逆性(Mrunmay et al.,2014)。预测ERF亚家族的AvAP2/ERF-40、AvAP2/ERF-42、AvAP2/ERF-44、AvAP2/ERF-47在抗非生物胁迫激素信号转导中起着中枢作用(Cheng et al.,2013);AvAP2/ERF-50和AvAP2/ERF-51促进抗坏血酸合成,提高植物耐盐性(Zhang et al.,2012);AvAP2/ERF-56和AvAP2/ERF-57通过ABI1介导的ABA信号通路,延缓水淹诱导的早衰,通过表达量上调提高植物的耐盐性和耐旱性(Liu et al.,2012)。DREB亚家族的AvAP2/ERF-79、AvAP2/ERF-80、AvAP2/ERF-81可能参与ROS清除,从而提升植物耐寒性与耐盐性(Kidokoro et al.,2021),AvAP2/ERF-61通过表达上调提升植物抗盐性(Sowmya et al.,2011),AvAP2/ERF-64、AvAP2/ERF-66、AvAP2/ERF-68可能作用于光和乙烯信号通路的交汇点或下游(Lin et al.,2008),AvAP2/ERF-73、AvAP2/ERF-82、AvAP2/ERF-86则可能通过降低表达量,提高植物抗盐性(Karaba et al.,2007)。

  • 图3 欧耧斗菜AP2/ERF基序分布

  • Fig.3 Distribution of motifs of AP2/ERF in Aquilegia vulgaris

  • 图4 欧耧斗菜AP2/ERF基因盐胁迫下表达热图谱

  • Fig.4 Heatmap of AP2/ERF genes expression in Aquilegia vulgaris under salt stress

  • 表4 AP2/ERF家族同源基因在拟南芥中的功能研究

  • Table4 Studies on the function of AP2/ERF family homologous genes in Arabidopsis thaliana

  • 同一基因在不同组织中的表达可能存在较大差异(Zhou &Rajesh,2021;王丽娟等,2022)。本研究在分析欧耧斗菜盐胁迫转录组表达数据时发现:根中上调基因15个、下调基因4个;叶片中上调基因13个、下调基因5个;在根和叶片中皆上调的基因仅5个,皆下调的仅1个。根和叶片中,差异基因有明显区别,表达差异显著检测到的时间也不尽相同,说明不同组织响应盐胁迫的时间与分子机制不相同,不同基因在抗盐过程中功能也不同。AvAP2/ERF-56、AvAP2/ERF-61与AvAP2/ERF-80在欧耧斗菜根和叶中均显著上调,说明其积极参与了抗盐过程,其表达量随盐胁迫时间发生变化的模式有所不同,也体现出3个基因在抗盐过程的不同功能。通过与已知拟南芥抗盐AP2/ERF基因同源比对发现,AvAP2/ERF-56、AvAP2/ERF-61与AvAP2/ERF-80 3个基因极有可能在盐胁迫诱导下提高表达量,进而响应及抵抗盐胁迫。qRT-PCR验证发现3个基因在盐胁迫下表达模式与转录组数据一致。

  • 图5 欧耧斗菜AP2/ERF差异基因盐胁迫下表达热图谱

  • Fig.5 Heatmap of AP2/ERF differential genes expression in Aquilegia vulgaris under salt stress

  • 图6 欧耧斗菜部分AP2/ERF基因盐胁迫下表达量分析

  • Fig.6 Relative expression of partial AP2/ERF genes expression in Aquilegia vulgaris under salt stress

  • 综上所述,本研究筛选鉴定了86个欧耧斗菜AP2/ERF基因,对家族成员进行了详细的特征分析与进化分类,结合转录组表达数据,对AP2/ERF基因在盐胁迫下表达模式进行了总结,筛选出与盐胁迫相关的候选基因3个,AvAP2/ERF-56、AvAP2/ERF-61与AvAP2/ERF-80,可能在抵御盐胁迫中发挥着重要作用,但具体基因功能仍需开展后续试验进行验证。

  • 参考文献

    • AKHTER MS, MOHAMMED N, KOUJ S, et al. , 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice [J]. Plant Cell Physiol, 52(2): 344-360.

    • CARMEN MARTINELL M, LOPEZ-PUJOL J, BOSCH M, et al. , 2010. Low genetic variability in the rare, recently differentiated Aquilegia paui (Ranunculaceae) [J]. Biochem Syst Ecol, 38(3): 390-397.

    • CHENG MC, LIAO PM, KUO WW, et al. , 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals [J]. Plant Physiol, 162(3): 1566-1582.

    • CHEN CJ, CHEN H, ZHANG Y, et al. , 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 13(8): 1194-1202.

    • CHEN HL, HU LL, WANG LX, et al. , 2022. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (Vigna radiata L. ) [J]. J Appl Genetics, 63(2): 223-236.

    • CHEN YH, DAI YH, LI YX, et al. , 2022. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5 [J]. BMC Plant Biol, 22(1): 102.

    • CHEN Y, SUN MZ, JIA BW, et al. , 2022. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agron Sin, 48(4): 781-790. [陈悦, 孙明哲, 贾博为, 等, 2022. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展 [J]. 作物学报, 48(4): 781-790. ]

    • FARAJI S, FILIZ E, KAZEMITABAR SK, et al. , 2020. The AP2/ERF gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses [J]. Genes, 11(12): 1464.

    • FENG K, HOU XL, XING GM, et al. , 2020. Advances in AP2/ERF super-family transcription factors in plant [J]. Crit Rev Biotechnol, 40(6): 750-776.

    • GOU YL, ZHANG L, GUO H, et al. , 2020. Research progress on the AP2/ERF transcription factor in plants [J]. Pratac Sci, 37(6): 1150-1159. [苟艳丽, 张乐, 郭欢, 等, 2020. 植物AP2/ERF类转录因子研究进展 [J]. 草业科学, 37(6): 1150-1159. ]

    • HONG L, YANG L, YANG HJ, et al. , 2020. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress [J]. Chin Bull Bot, 55(4): 481-496. [洪林, 杨蕾, 杨海健, 等, 2020. AP2/ERF转录因子调控植物非生物胁迫响应研究进展 [J]. 植物学报, 55(4): 481-496. ]

    • JESUS MB, PEDRO JR, JULIO MA, 2015. Local adaptation to distinct elevational cores contributes to current elevational divergence of two Aquilegia vulgaris subspecies [J]. J Plant Ecol, 8(3): 273-283.

    • JOFUKU KD, BOER BG, MONTAGU MV, et al. , 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell, 6(9): 1211-1225.

    • KARABA A, DIXIT S, GRECO R, et al. , 2007. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene [J]. Pans, 104(39): 15270-15275.

    • KIDOKORO S, HAYASHI K, HARAGUCHI H, et al. , 2021. Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in Arabidopsis [J]. Pans, 118(10): e2021048118.

    • LIN RC, PARK HJ, WANG HY, 2008. Role of Arabidopsis RAP2. 4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance [J]. Mol Plant, 1(1): 42-57.

    • LIU JL, DENG ZW, LIANG CL, et al. , 2021. Genome-wide analysis of RAV transcription factors and functional characterization of anthocyanin-biosynthesis-related RAV genes in pear [J]. Int J Mol Sci, 22(11): 5567.

    • LIU PQ, SUN F, GAO R, et al. , 2012. RAP2. 6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity [J]. Plant Mol Biol, 79(6): 609-622.

    • LU LL, QANMBER G, LI J, et al. , 2021. Identification and characterization of the ERF subfamily B3 group revealed GhERF13. 12 improves salt tolerance in upland cotton [J]. Front Plant Sci, 12: 705883.

    • MA YC, ZHAO YM, HUANG DL, et al. , 2022. Identification and expression analysis of CesA gene family in Brassica rapa var. glabra [J]. Guihaia, 42(12): 2021-2031. [马宇辰, 赵玉梅, 黄丹霖, 等, 2022. 白菜CesA基因家族鉴定及表达模式分析 [J]. 广西植物, 42(12): 2021-2031. ]

    • MENG LS, WANG YB, YAO SQ, et al. , 2015. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8 [J]. J Cell Sci, 128(15): 2919-2927.

    • MORAN NC, COLE T, LOYAL G, et al. , 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J]. Gene Dev, 25(18): 1915-1927.

    • MRUNMAY KG, SWADHIN S, JANESH KG, et al. , 2014. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens [J]. Aust J Plant Physiol, 171(10): 860-867.

    • NAKANO T, SUZUKI K, FUJIMURA T, et al. , 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol, 140(2): 411-432.

    • NIU SY, LIANG F, ZHANG ZH, et al. , 2023. Identification and analysis of TCP transcription factors in Solanum tuberosum response to low nitrogen fertilizer stress [J]. Guihaia, 43(2): 293-302. [牛苏燕, 梁芳, 张珍华, 等, 2023. 马铃薯低氮肥胁迫响应TCP转录因子的鉴定与分析 [J]. 广西植物, 43(2): 293-302. ]

    • RAN W, SONG JH, LV ZY, et al. , 2022. Genome-wide identification and comprehensive analysis of the AP2/ERF gene family in pomegranate fruit development and postharvest preservation [J]. Genes, 13(5): 895.

    • SAKUMA Y, LIU Q, DUBOUZET JG, et al. , 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression [J]. Biochem Biophys Res Commun, 290(3): 998-1009.

    • SHARMA B, KRAMER E, 2013. Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae) [J]. New Phytol, 197(3): 951-959.

    • SOWMYA K, SHIV V, MUHAMMAD HR, et al. , 2011. Functional characterization of four APETALA2-family genes (RAP2. 6, RAP2. 6L, DREB19 and DREB26) in Arabidopsis [J]. Plant Mol Biol, 75(1/2): 107-127.

    • WANG HB, GONG M, GUO JY, et al. , 2018. Molecular cloning and prokaryotic expression of orphan gene Soloist of AP2/ERF gene family in Jatropha curcas [J]. Sci Silv Sin, 54(9): 60-69. [王海波, 龚明, 郭俊云, 等, 2018. 麻疯树AP2/ERF基因家族孤儿基因Soloist的克隆与原核表达分析 [J]. 林业科学, 54(9): 60-69. ]

    • WANG LJ, WANG Y, LU B, et al. , 2022. Identification and expression analysis of AP2/ERF transcription factor under water stress in Olea europaea [J]. Guihaia, 42(12): 2032-2043. [王丽娟, 王毅, 陆斌, 等, 2022. 油橄榄AP2/ERF转录因子鉴定及水胁迫表达分析 [J]. 广西植物, 42(12): 2032-2043. ]

    • WU CX, LIU XW, LI ZJ, et al. , 2022. Analysis of chloroplast genome of rice Dalixiang [J]. Guihaia, 42(11): 1830-1839. [吴朝昕, 刘雪薇, 李祖军, 等, 2022. 大粒香水稻叶绿体基因组特征分析 [J]. 广西植物, 42(11): 1830-1839. ]

    • YU Y, YU M, ZHANG SX, et al. , 2022. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses [J]. Int J Mol Sci, 23(6): 3272.

    • ZHANG ZJ, WANG J, ZHANG RX, et al. , 2012. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis [J]. Plant J, 71(2): 273-287.

    • ZHOU LX, RAJESH Y, 2021. Genome-wide identification and characterization of AP2/ERF transcription factor family genes in oil palm under abiotic stress conditions [J]. Int J Mol Sci, 22(6): 2821.

  • 参考文献

    • AKHTER MS, MOHAMMED N, KOUJ S, et al. , 2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice [J]. Plant Cell Physiol, 52(2): 344-360.

    • CARMEN MARTINELL M, LOPEZ-PUJOL J, BOSCH M, et al. , 2010. Low genetic variability in the rare, recently differentiated Aquilegia paui (Ranunculaceae) [J]. Biochem Syst Ecol, 38(3): 390-397.

    • CHENG MC, LIAO PM, KUO WW, et al. , 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals [J]. Plant Physiol, 162(3): 1566-1582.

    • CHEN CJ, CHEN H, ZHANG Y, et al. , 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 13(8): 1194-1202.

    • CHEN HL, HU LL, WANG LX, et al. , 2022. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean (Vigna radiata L. ) [J]. J Appl Genetics, 63(2): 223-236.

    • CHEN YH, DAI YH, LI YX, et al. , 2022. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5 [J]. BMC Plant Biol, 22(1): 102.

    • CHEN Y, SUN MZ, JIA BW, et al. , 2022. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agron Sin, 48(4): 781-790. [陈悦, 孙明哲, 贾博为, 等, 2022. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展 [J]. 作物学报, 48(4): 781-790. ]

    • FARAJI S, FILIZ E, KAZEMITABAR SK, et al. , 2020. The AP2/ERF gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses [J]. Genes, 11(12): 1464.

    • FENG K, HOU XL, XING GM, et al. , 2020. Advances in AP2/ERF super-family transcription factors in plant [J]. Crit Rev Biotechnol, 40(6): 750-776.

    • GOU YL, ZHANG L, GUO H, et al. , 2020. Research progress on the AP2/ERF transcription factor in plants [J]. Pratac Sci, 37(6): 1150-1159. [苟艳丽, 张乐, 郭欢, 等, 2020. 植物AP2/ERF类转录因子研究进展 [J]. 草业科学, 37(6): 1150-1159. ]

    • HONG L, YANG L, YANG HJ, et al. , 2020. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress [J]. Chin Bull Bot, 55(4): 481-496. [洪林, 杨蕾, 杨海健, 等, 2020. AP2/ERF转录因子调控植物非生物胁迫响应研究进展 [J]. 植物学报, 55(4): 481-496. ]

    • JESUS MB, PEDRO JR, JULIO MA, 2015. Local adaptation to distinct elevational cores contributes to current elevational divergence of two Aquilegia vulgaris subspecies [J]. J Plant Ecol, 8(3): 273-283.

    • JOFUKU KD, BOER BG, MONTAGU MV, et al. , 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell, 6(9): 1211-1225.

    • KARABA A, DIXIT S, GRECO R, et al. , 2007. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene [J]. Pans, 104(39): 15270-15275.

    • KIDOKORO S, HAYASHI K, HARAGUCHI H, et al. , 2021. Posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression in Arabidopsis [J]. Pans, 118(10): e2021048118.

    • LIN RC, PARK HJ, WANG HY, 2008. Role of Arabidopsis RAP2. 4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance [J]. Mol Plant, 1(1): 42-57.

    • LIU JL, DENG ZW, LIANG CL, et al. , 2021. Genome-wide analysis of RAV transcription factors and functional characterization of anthocyanin-biosynthesis-related RAV genes in pear [J]. Int J Mol Sci, 22(11): 5567.

    • LIU PQ, SUN F, GAO R, et al. , 2012. RAP2. 6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity [J]. Plant Mol Biol, 79(6): 609-622.

    • LU LL, QANMBER G, LI J, et al. , 2021. Identification and characterization of the ERF subfamily B3 group revealed GhERF13. 12 improves salt tolerance in upland cotton [J]. Front Plant Sci, 12: 705883.

    • MA YC, ZHAO YM, HUANG DL, et al. , 2022. Identification and expression analysis of CesA gene family in Brassica rapa var. glabra [J]. Guihaia, 42(12): 2021-2031. [马宇辰, 赵玉梅, 黄丹霖, 等, 2022. 白菜CesA基因家族鉴定及表达模式分析 [J]. 广西植物, 42(12): 2021-2031. ]

    • MENG LS, WANG YB, YAO SQ, et al. , 2015. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8 [J]. J Cell Sci, 128(15): 2919-2927.

    • MORAN NC, COLE T, LOYAL G, et al. , 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J]. Gene Dev, 25(18): 1915-1927.

    • MRUNMAY KG, SWADHIN S, JANESH KG, et al. , 2014. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens [J]. Aust J Plant Physiol, 171(10): 860-867.

    • NAKANO T, SUZUKI K, FUJIMURA T, et al. , 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol, 140(2): 411-432.

    • NIU SY, LIANG F, ZHANG ZH, et al. , 2023. Identification and analysis of TCP transcription factors in Solanum tuberosum response to low nitrogen fertilizer stress [J]. Guihaia, 43(2): 293-302. [牛苏燕, 梁芳, 张珍华, 等, 2023. 马铃薯低氮肥胁迫响应TCP转录因子的鉴定与分析 [J]. 广西植物, 43(2): 293-302. ]

    • RAN W, SONG JH, LV ZY, et al. , 2022. Genome-wide identification and comprehensive analysis of the AP2/ERF gene family in pomegranate fruit development and postharvest preservation [J]. Genes, 13(5): 895.

    • SAKUMA Y, LIU Q, DUBOUZET JG, et al. , 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression [J]. Biochem Biophys Res Commun, 290(3): 998-1009.

    • SHARMA B, KRAMER E, 2013. Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae) [J]. New Phytol, 197(3): 951-959.

    • SOWMYA K, SHIV V, MUHAMMAD HR, et al. , 2011. Functional characterization of four APETALA2-family genes (RAP2. 6, RAP2. 6L, DREB19 and DREB26) in Arabidopsis [J]. Plant Mol Biol, 75(1/2): 107-127.

    • WANG HB, GONG M, GUO JY, et al. , 2018. Molecular cloning and prokaryotic expression of orphan gene Soloist of AP2/ERF gene family in Jatropha curcas [J]. Sci Silv Sin, 54(9): 60-69. [王海波, 龚明, 郭俊云, 等, 2018. 麻疯树AP2/ERF基因家族孤儿基因Soloist的克隆与原核表达分析 [J]. 林业科学, 54(9): 60-69. ]

    • WANG LJ, WANG Y, LU B, et al. , 2022. Identification and expression analysis of AP2/ERF transcription factor under water stress in Olea europaea [J]. Guihaia, 42(12): 2032-2043. [王丽娟, 王毅, 陆斌, 等, 2022. 油橄榄AP2/ERF转录因子鉴定及水胁迫表达分析 [J]. 广西植物, 42(12): 2032-2043. ]

    • WU CX, LIU XW, LI ZJ, et al. , 2022. Analysis of chloroplast genome of rice Dalixiang [J]. Guihaia, 42(11): 1830-1839. [吴朝昕, 刘雪薇, 李祖军, 等, 2022. 大粒香水稻叶绿体基因组特征分析 [J]. 广西植物, 42(11): 1830-1839. ]

    • YU Y, YU M, ZHANG SX, et al. , 2022. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses [J]. Int J Mol Sci, 23(6): 3272.

    • ZHANG ZJ, WANG J, ZHANG RX, et al. , 2012. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis [J]. Plant J, 71(2): 273-287.

    • ZHOU LX, RAJESH Y, 2021. Genome-wide identification and characterization of AP2/ERF transcription factor family genes in oil palm under abiotic stress conditions [J]. Int J Mol Sci, 22(6): 2821.