en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵渊祥(1998-),硕士研究生,主要从事林木遗传育种研究,(E-mail)gs.yxzhao20@gzu.edu.cn。

通讯作者:

吴峰,博士,教授,主要从事林木遗传育种研究,(E-mail)fwu@gzu.edu.cn。

中图分类号:Q943

文献标识码:A

文章编号:1000-3142(2023)10-1921-11

DOI:10.11931/guihaia.gxzw202206012

参考文献
AMAR MH, 2020. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica [J]. J Genet Eng Biotechnol, 18(1): 1-10.
参考文献
AMIRYOUSEFIA, HYVENON J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.
参考文献
BANKEVICH A, NURK S, ANTIPOV D, et al. , 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing [J]. J Comput Biol, 19(5): 455-477.
参考文献
BEIER S, THIEL T, MUNCH T, et al. , 2017. MISA-web: A web server for microsatellite prediction [J]. Bioinformatics, 33(16): 2583-2585.
参考文献
CHANDERBALI AS, WERFF H, RENNER SS, 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes [J]. Ann Mo Bot Gard, 88(1): 104-134.
参考文献
COLLYDA C, DIPLARIS S, MITKAS PA, et al. , 2006. Fuzzy Hidden Markov Models: a new approach in multiple sequence alignment [J]. Stud Health Technol Inform, 124: 99-104.
参考文献
DANIELL H, LIN CS, YU M, et al. , 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering [J]. Genome Biol, 17(1): 1-29.
参考文献
DOBROGOJSKI J, ADAMIEC M, LUCINSKI R, 2020. The chloroplast genome: A review [J]. Acta Physiol Plant, 42(1): 1-13.
参考文献
DONG WP, XU C, LI CH, et al. , 2015. ycf1, the most promising plastid DNA barcode of land plants [J]. Sci Rep, 5(1): 1-5.
参考文献
FANG JY, WANG ZH, TANG ZY, 2011. Atlas of woody plants in China: distribution and climate (Vol. 1) [M]. Beijing and Springer-Verlag Berlin Heidelberg: Higher Education Press: 349-357.
参考文献
GU CH, MA L, WU ZQ, et al. , 2019. Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales [J]. BMC Plant Biol, 19(1): 1-19.
参考文献
HUANG H, SHI C, LIU Y, et al. , 2014. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships [J]. BMC Evol Biol, 14(1): 1-17.
参考文献
HYATT D, CHEN GL, LOCASCIO PF, et al. , 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification [J]. BMC Bioinform, 11(1): 1-11.
参考文献
KOSTERMANS AJGH, 1957. Lauraceae [J]. Reinwardtia, 4(2): 193-256.
参考文献
LASLETT D, CANBACK B, 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences [J]. Nucl Acids Res, 32(1): 11-6.
参考文献
LI L, MADRINAN S, LI J, 2016. Phylogeny and biogeography of Caryodaphnopsis (Lauraceae) inferred from low-copy nuclear gene and ITS sequences [J]. Taxon, 65(3): 433-443.
参考文献
LIANG DQ, WANG HY, ZHANG J, et al. , 2022. Complete chloroplast genome sequence of Fagus longipetiolata Seemen (Fagaceae): genome structure, adaptive evolution, and phylogenetic relationships [J]. Life (Basel), 12(1): 92-109.
参考文献
LIU C, HAN LH, PENG Y, et al. , 2022. Characteristics of chloroplast genome of Litseae longata (Wall. ex Nees) Benth. et Hook. f. [J]. J S Agric, 53(1): 12-20. [刘潮, 韩利红, 彭悦, 等, 2022. 黄丹木姜子叶绿体基因组特征分析[J]. 南方农业学报, 53(1): 12-20. ]
参考文献
LIU C, TANG LZ, HAN LH, 2021. Characterization of the chloroplast genome of Lindera setchuenensis and phylogenetics of the genus Lindera [J]. Sci Silv Sin, 57(12): 167-174. [刘潮, 唐利洲, 韩利红, 2021. 四川山胡椒叶绿体基因组特征及山胡椒属系统发育[J]. 林业科学, 57(12): 167-174. ]
参考文献
LIU ZF, MA H, CI XQ, et al. , 2021. Can plastid genome sequencing be used for species identification in Lauraceae? [J]. Bot J Linn Soc, 197(1): 1-14.
参考文献
NAKAMURA T, YAMADA KD, TOMII K, et al. , 2018. Parallelization of MAFFT for large-scale multiple sequence alignments [J]. Bioinformatics, 34(14): 2490-2492.
参考文献
NGUYEN LT, SCHIMDT HA, HAESELER A, et al. , 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies [J]. Mol Biol Evol, 32(1): 268-274.
参考文献
NJUGUNA W, LISTON A, CRONN R, et al. , 2013. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing [J]. Mol Phylogenet Evol, 66(1): 17-29.
参考文献
PENG LW, YAMAMOTO H, SHIKANAI T, 2011. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex [J]. Biochim Biophys Acta, 1807(8): 945-953.
参考文献
QIN Z, ZHENG YJ, GUI LJ, et al. , 2018. Codon usage bias analysis of chloroplast genome of camphora tree (Cinnamomum camphora) [J]. Guihaia, 38(10): 1346-1355. [秦政, 郑永杰, 桂丽静, 等, 2018. 樟树叶绿体基因组密码子偏好性分析 [J]. 广西植物, 38(10): 1346-1355. ]
参考文献
SHINOZAKI K, OHME M, TANAKA M, et al. , 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. EMBO J, 5(9): 2043-2049.
参考文献
SONG FL, ZHANG MM, SU JL, et al. , 2012. The comparison on cold resistance between Cinnamomum bodinieri and Cinnamomum camphora seedlings in natural decreasing process of air temperature [J]. J W Chin For Sci, 41(6): 48-52. [宋芳琳, 张苗苗, 苏金乐, 等, 2012. 自然降温过程中猴樟和香樟幼苗的抗寒性比较 [J]. 西部林业科学, 41(6): 48-52. ]
参考文献
SONG K, HE M, YU JB, et al. , 2019. Characterization of the chloroplast genome of the family Lauraceae plant species, Cinnamomum cassia [J]. Mitochondrial DNA Part B, 4(2): 3906-3907.
参考文献
SONG Y, YAO X, TAN YH, et al. , 2016. Complete chloroplast genome sequence of the avocado: gene organization, comparative analysis, and phylogenetic relationships with other Lauraceae [J]. Can J For Res, 46(11): 1293-1301.
参考文献
SONG Y, YU WB, TAN YH, et al. , 2020. Plastid phylogenomics improve phylogenetic resolution in the Lauraceae [J]. J Syst Evol, 58(4): 423-439.
参考文献
TIAN XY, YE JW, SONG Y, 2019. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae [J]. PeerJ, 7: e7662.
参考文献
TIAN XQ, WEI XL, 2011. Effect of different ecological environments on plantation growth of Cinnamomum bodinieri in Guizhou [J]. Guizhou Agric Sci, 39(4): 184-187. [田小琴, 韦小丽, 2011. 生态环境对贵州猴樟人工林生长的影响 [J]. 贵州农业科学, 39(4): 184-187. ]
参考文献
TIAN YJ, 2021. The complete chloroplast genomes of Lauraceae species: comparative geomic and phylogenetic analyses [D]. Nanjing: Nanjing University: 5-7. [田永靖, 2021. 樟科植物比较叶绿体基因组与系统发育研究 [D]. 南京: 南京大学: 5-7. ]
参考文献
WANG YH, XIE YF, ZHANG ZH, et al. , 2021. The complete chloroplast genome of Sloanea sinensis and the systematic status of Eloeacarpaceae [J]. Guihaia, 42(1): 39-48. [王一麾, 谢宜飞, 张志翔, 等, 2021. 猴欢喜叶绿体全基因组及杜英科系统地位分析 [J]. 广西植物, 42(1): 39-48. ]
参考文献
WANG ZH, LI J, CONRAN JG, et al. , 2010. Phylogeny of the southeast Asian endemic genus Neocinnamomum H. Liu (Lauraceae) [J]. Plant Syst Evol, 290(1): 173-184.
参考文献
WONG EHM, SMITH DK, RABADAN R, et al. , 2010. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus [J]. BMC Evol Biol, 10(1): 1-14.
参考文献
XIAO ZF, JIN ZN, ZHANG BH, et al. , 2020. Effects of IBA on rooting ability of Cinnamomum bodinieri citral type micro-shoots from transcriptomics analysis [J]. Plant Biotechnol Rep, 14(4): 467-477.
参考文献
XIAO ZF, WANG LL, CAO LY, et al. , 2020. Tissue culture technology of stem segment of Cinnamomum bodinieri var.citralifera [J]. Bull Bot Res, 40(2): 196-201. [肖祖飞, 王玲玲, 曹璐瑶, 等, 2020. 柠檬醛猴樟茎段组织培养技术研究 [J]. 植物研究, 40(2): 196-201. ]
参考文献
ZHANG YY, TIAN YJ, TNG DYP, et al. , 2021. Comparative chloroplast genomics of Litsea Lam. (Lauraceae) and its phylogenetic implications [J]. Forests, 12(6): 744-758.
参考文献
ZHANG Y, WEI XL, WANG L, et al. , 2014. Growth variability of Cinnamomum bodinieri seedlings from different geographical provenances [J]. SW Chin J Agric Sci, 27(5): 2162-2167. [张怡, 韦小丽, 王娈, 等, 2014. 不同地理种源猴樟苗期生长变异性 [J]. 西南农业学报, 27(5): 2162-2167. ]
参考文献
ZHAO ML, SONG Y, NI J, et al. , 2018. Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae) [J]. Sci Rep, 8(1): 1-11.
目录contents

    摘要

    猴樟(Cinnamomum bodinieri)枝叶含有丰富的精油,是重要的园林绿化树种和经济树种,但目前有关猴樟基因组学的研究报道不多。为揭示猴樟叶绿体基因组特征及系统发育关系,该文基于高通量测序平台进行测序,从头组装了完整的猴樟叶绿体基因组,并对其基因组结构、基因构成及序列重复、密码子使用偏好性以及系统发育进行分析,结合樟亚科主要属物种叶绿体基因组数据构建系统发育树。结果表明:(1)猴樟叶绿体基因组全长152727 bp,包括一对20132 bp的反向重复(IRs)区、93605 bp的大单拷贝(LSC)区和18858 bp的小单拷贝(SSC)区,总GC含量为39.13%。(2)该基因组共编码127个基因,包括83个蛋白质编码基因(PCGs)、36个转运RNA基因(tRNAs)和8个核糖体RNA基因(rRNAs);共鉴定出92个SSR位点,其中大部分是A/T组成的单核苷酸重复序列;密码子适应指数(CAI)为0.166,有效密码子数(ENc)为54.68;猴樟与近缘种的叶绿体基因组主要在IR区和2个SC区边界上存在一定的差异。(3)24种樟亚科植物的系统发育树显示,猴樟与樟树亲缘关系最近,同时支持了樟属-甜樟属分支(Cinnamomum-Ocotea Clade)、月桂属-新木姜子属分支(Laurus-Neolitsea Clade)、润楠属-鳄梨属分支(Machilus-Persea Clade)的建立。该研究丰富了猴樟遗传资源信息,进一步确定了樟亚科主要属的系统发育地位。

    Abstract

    Cinnamomum bodinieri is important landscaping and economic tree species, which is rich in essential oils in branches and leaves. However, there are few theoretical researches on the genomics of C. bodinieri. In order to reveal the chloroplast genomic characteristics and phylogenetic relationship of C. bodinieri, the complete chloroplast genome was sequenced based on Illumina platform and assembled through de novo. The genome structure, gene composition, sequence repeats, codon usage bias and phylogeny were analyzed subsequently. Furthermore, the phylogenetic tree was constructed with the chloroplast genome data of the main species of Subfam. Lauroideae. The results were as follows: (1) The complete chloroplast genome of C. bodinieri was 152727 bp in length including two inverted repeats (IRs) of 20132 bp, which were separated by large single copy(LSC) of 93605 bp and short single copy(SSC) of 18858 bp, respectively, and the GC content was 39.13%. (2) The genome encoded 127 functional genes, including 83 protein-coding genes (PCGs), 36 tRNA genes, and 8 rRNA genes. A total of 92 SSR loci were detected in the chloroplast genome, and most of them were composed of nucleobase A and T. The codon adaptation index (CAI) and effective number of codons (ENc) were 0.166 and 54.68, respectively. There were some differences in IR region and the boundary of two SC regions of the chloroplast genomes between C. bodinieri and related species. (3) Phylogenetic tree based on 24 species of Subfam. Lauroideae showed that the C. bodinieri was most closely related to C. camphora. The phylogeny strongly supported the establishment of the three clades, Cinnamomum-Ocotea, Laurus-Neolitsea, and Machilus-Persea. This study enriched the information on the genetic resources of C. bodinieri, and further clarified the phylogenetic status of the main genera of Subfam. Lauroideae.

  • 叶绿体是植物细胞特有的细胞器,也是光合作用的主要场所,它们拥有独立于核基因组的完整的叶绿体基因组(Shinozaki et al.,1986)。大多数陆生植物叶绿体基因组大小在107~218 kb之间,与核基因组和线粒体组相比,遗传信息的携带量相对较少(Daniell et al.,2016)。但是,叶绿体基因组依赖于母系遗传,具有易于提取和纯化、遗传信息丰富、共线性良好、高度保守的序列和大量的简单序列重复(simple sequence repeats,SSR)基因座等优点(Dobrogojski et al.,2020)。近年来随着高通量测序技术的发展,研究者已相继组装、破译近千个物种的叶绿体基因组,揭示了植物物种内部和物种之间在序列和结构方面的变异,这些研究对一些植物的系统发育,特别是阐明进化分支内的物种进化关系做出了重大的贡献(Njuguna et al.,2013; Daniell et al.,2016)。

  • 樟科植物广泛分布于世界各地的热带与亚热带地区,包含50多个属3 500多种(Chanderbali et al.,2001)。早期分类系统中,研究者利用形态学特征将樟科分为樟亚科和无根藤亚科(Kostermans,1957),而一直以来樟亚科的系统发育关系存在争议,在是否建立樟族等族群以及檫木属、新樟属等的系统发育地位等问题分歧较多。随后基于单个或多个叶绿体关键基因区段等分子序列数据构建的系统发育树大大提高了对樟亚科植物分类的理解,但依然存在一个分辨率较低的末端分支,包含樟族、月桂族等,难以找到形态学上的共有衍征来阐明系统发育关系(田永靖,2021)。近年来研究者基于叶绿体基因组将樟亚科分为Hypodaphnis分支、Beilschmiedia-Cryptocarya分支、Neocinnamomum分支、Caryodaphnopsis分支、Chlorocardium-Mezilaurus分支、Machilus-Persea分支、Cinnamomum-Ocotea分支和Laurus-Neolitsea分支(Song et al.,2020),其中Machilus-Persea分支、Cinnamomum-Ocotea分支和Laurus-Neolitsea分支是樟亚科植物分类系统中争议较多的类群。已有研究表明,叶绿体基因组在纠正物种错误鉴定以及发现隐存种与新物种方面具有一定优势(Liu et al.,2021)。因此,在目前樟科植物核基因组、线粒体基因组的测序、组装技术暂未普及的前提下,利用叶绿体基因组构建樟科系统发育树仍然是当前的有效手段之一(Song et al.,2020; Liu et al.,2021)。

  • 猴樟(Cinnamomum bodinieri)是樟科樟属常绿阔叶树,原产于中国,主要分布在贵州省、湖南省西部和湖北省西部(Fang et al.,2011)。猴樟外形美观,树冠厚实,木材质地坚硬,有光泽,有香味,枝叶含有丰富的精油(Xiao et al.,2020),是重要的园林绿化树种和经济树种。已有研究主要集中在其生态特征(田小琴和韦小丽,2011)、抗逆性(宋芳琳等,2012)、栽培和育种(张怡等,2014),组织培养技术(肖祖飞等,2020)等方面,鲜有关于猴樟叶绿体基因组及系统发育方面的研究。本研究基于Illumina测序平台,对贵州产地猴樟的叶绿体全基因组进行测序、组装和注释,从叶绿体基因组结构、SSR位点、密码子使用偏性、反向重复区(inverted repeats,IR)的扩张与收缩以及系统发育等方面开展研究,同时结合樟亚科主要属的23个物种构建系统进化树,拟揭示猴樟叶绿体基因组以下信息:(1)猴樟叶绿体基因组的基本特征;(2)猴樟叶绿体基因组SSR位点及基因密码子偏好性情况;(3)猴樟与近缘种的叶绿体基因组IR区结构差异;(4)猴樟叶绿体基因组系统发育所属分支。

  • 1 材料与方法

  • 1.1 试验材料

  • 猴樟叶片采自贵州省贵阳市贵州大学南校区(106°67′ E,26°43′ N),经贵州省森林资源与环境研究中心吴峰教授鉴定为樟科樟属猴樟。样本经液氮速冻处理后保存于-80℃冰箱。

  • 1.2 叶绿体全基因组DNA提取与测序

  • 选取叶片组织,利用植物基因组DNA提取试剂盒(TIANGEN Beijing China)提取猴樟DNA,经过1%琼脂糖凝胶电泳和紫外分光光度计检测质量后利用Illumina NovaSeq平台完成高通量测序。具体实验流程按照Illumina公司提供的标准方法执行,将DNA片段化后,对其进行片段纯化、末端修复、3′端加A、连接测序接头,经PCR扩增形成测序文库,文库质检合格后进行测序。

  • 1.3 叶绿体全基因组的组装与注释

  • 采用SPAdes(v3.10.1)软件(Bankevich et al.,2012)组装叶绿体基因组。采用两种方法对叶绿体基因组进行注释,以提高注释的准确性。首先,使用PRODIGAL(v2.6.3)软件(Hyatt et al.,2010)注释叶绿体的CDS,使用HMMER(v3.1b2)软件(Collyda et al.,2006)预测rRNA,使用ARAGORN(v.1.2.38)软件(Laslett &Canback,2004)预测tRNA。其次,根据NCBI上已经公布的近缘物种,提取其基因序列,再使用BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)比对组装的序列,得到第二种注释结果。然后,通过对比去除错误注释及冗余的注释,确定多外显子边界,获得最终的注释。最后,将注释完成的猴樟叶绿体基因组序列提交至NCBI(https://www.ncbi.nlm.nih.gov/),获得登录号(MW381013)。

  • 1.4 叶绿体基因组SSR位点分析

  • 使用MISA(v1.0)软件(Beier et al.,2017)搜索叶绿体基因组中的SSR标记,设置单核苷酸重复次数>10,二核苷酸重复次数>5,三核苷酸重复次数>4,四核苷酸、五核苷酸和六核苷酸重复次数>3。

  • 1.5 密码子偏好性分析

  • 根据127个基因的CDS序列,筛选唯一的(多个拷贝基因选择一个拷贝)且序列长度大于300 bp的CDS,并用CodonW(v.1.4.2)软件(Wong et al.,2010)估计每个密码子的相对同义密码子使用(relative synonymous codon usage,RSCU)、有效密码子数(effective number of codons,ENc)和密码子适应指数(codon adaptation index,CAI)。

  • 1.6 边界分析

  • 利用近缘物种新樟(Neocinnamomumdelavayi)、肉桂(Cinnamomum cassia)、檫木(Sassafras tzumu)、月桂(Laurus nobilis)和大叶新木姜子(Neolitsealevinei)叶绿体基因组,通过Irscope(https://irscope.shinyapps.io/irapp/)在线软件(Amiryousefi et al.,2018)进行可视化对比,分析4个区域的变化,特别是IR区的扩张和收缩以及IR/SC边界基因种类和位置的变化。

  • 1.7 叶绿体基因组系统发育分析

  • 利用猴樟叶绿体基因组和从NCBI下载的23个樟亚科(Subfam. Lauroideae)植物叶绿体基因组构建系统发育树。利用MAFFT(v.7.475)软件(Nakamura et al.,2018)进行多序列比对,利用IQ-TREE(v.2.0.3)软件(Nguyen et al.,2015)构建系统发育树,步长自检1 000次。

  • 2 结果与分析

  • 2.1 叶绿体基因组结构

  • 猴樟叶绿体基因组全长为152 727 bp(图1),由图1可知,呈典型的四分体结构,由93 605 bp的大单拷贝区(large single copy,LSC)、 18 858 bp的小单拷贝区(small single copy,SSC)和20 132 bp的一对反向重复区(IRs)组成。基因组总GC含量为39.13%,IR区GC含量最高(44.37%),其次为LSC(37.94%),SSC最低(33.83%)。叶绿体基因组共有127个基因,包括蛋白质编码基因83个、tRNA基因36个、rRNA基因8个。根据功能将基因分成4类(表1),其中光合作用相关基因45个,自我复制相关基因70个,其他蛋白编码基因5个,未知功能基因7个。猴樟的叶绿体基因组中,有1个多拷贝基因(tRNA-Leu)、4个三拷贝基因(tRNA-Ser、tRNA-Arg、tRNA-Met和tRNA-Val)和12个双拷贝基因;17个基因均含有内含子,其中14个基因含有1个内含子、3个基因(ycf3、clpPrps12)含有2个内含子。

  • 图1 猴樟叶绿体基因组图谱

  • Fig.1 Chloroplast genome map of Cinnamomum bodinieri

  • 表1 猴樟叶绿体基因组注释基因信息

  • Table1 Annotated gene information of Cinnamomum bodinieri chloroplast genome

  • 注: *2*3分别表示该基因拷贝2次和3次; a和b分别表示有1个和2个内含子。

  • Note: *2and *3 indicate that the genes are copied two and three times respectively; a and b indicate that there are one and two introns, respectively.

  • 2.2 叶绿体基因组SSR位点分析

  • 猴樟叶绿体基因组中共检测到92个SSR位点(图2)。由图2可知,SSR主要分布在LSC区(70个,76.1%),其次是SSC区(18个SSR)和IR区(4个SSR)。SSR位点中包括68个单碱基重复序列(73.9%)、10个二碱基重复序列(10.9%)、3个三碱基重复序列(3.3%)、8个四碱基重复序列(8.7%)、2个五碱基重复序列(2.2%)以及1个六碱基重复序列(1.1%)。单核苷酸SSR为多聚腺嘌呤(A)和多胸腺嘧啶(T)重复。SSR基因序列碱基组成中,A或T组成的SSR占85.8%,表明猴樟叶绿体的SSR中碱基A和T有明显的优势。

  • 图2 猴樟叶绿体基因组SSR位点分布

  • Fig.2 Distribution of SSR loci of Cinnamomum bodinieri chloroplast genome

  • 2.3 叶绿体基因组密码子偏好性分析

  • 猴樟叶绿体基因组有效密码子数(ENc)为54.68,密码子适应指数(CAI)为0.166,RSCU>1的密码子有30个(表2),其中以A/U(T)结尾的有26个,以G/C结尾的有4个。鸟嘌呤和胞嘧啶碱基在密码子第三位出现频率(GC3s)为33.8%,较叶绿体基因组GC含量(39.13%)低。

  • 2.4 IR区边界的收缩和扩张分析

  • 将猴樟叶绿体基因组与樟亚科内近缘属中的肉桂、檫木、新樟、月桂和大叶新木姜子叶绿体基因组进行比较,分析IR边界的扩张和收缩(图3)。由图3可知,6种叶绿体基因组IR区域长度差异较小(20 066~20 257 bp),位于IR区边界及边界两侧的基因主要包括ycf2、ycf1、ndhFycf1、ycf2以及trnH。6个物种LSC-IRb(JLB)连接处的基因均为ycf2基因,SSC-IRa(JSA)连接处的基因均为ycf1基因,SSC区的长度为4 190~4 589 bp,差异较大,新樟ycf1位于IRa区长度明显缺失。所有的trnH基因均位于LSC区,距IRa-LSC(JLA)边界1~21 bp不等。肉桂和大叶新木姜子IRb-SSC(JSB)边界缺失一个ycf1基因,其余4个物种ycf1在938~1 430 bp之间,长度较短,可能为假基因。新樟JSB边界附近缺失一个ndhF基因。

  • 2.5 系统发育分析

  • 为明确猴樟在樟亚科的系统发育地位,利用樟亚科主要属中24个物种的叶绿体基因组构建了系统发育树(图4)。由图4可知,根据节点支撑将构建的系统发育树分为8个分支。猴樟所在分支樟属-甜樟属分支(Cinnamomum-Ocotea Clade)包括樟属(Cinnamomum)和檫木属(Sassafras),该分支分为3个亚分支,樟树(Cinnamomum camphora)和猴樟以100%支持率所处同一亚分支。月桂属-新木姜子属分支(Laurus-Neolitsea Clade)包括月桂属(Laurus)、木姜子属(Litsea)、黄肉楠属(Actinodaphne)、山胡椒属(Lindera)和新木姜子属(Neolitsea),其中月桂属、木姜子属和山胡椒属为复系,黄肉楠属和新木姜子属为复系。润楠属-鳄梨属分支(Machilus-Persea Clade)包括楠属(Phoebe)、鳄梨属(Persea)、油丹属(Alseodaphne)、润楠属(Machilus)和赛楠属(Nothaphoebe)。檬果樟属(Caryodaphnopsis)、新樟属(Neocinnamomum)、厚壳桂属(Cryptocarya)、琼楠属(Beilschmiedia)、油果樟属(Syndiclis)为单系。此外,值得注意的是,新樟属与同为樟亚族(Subtrib. Cinnamomeae)的樟属和檫木属关系较远。

  • 3 讨论与结论

  • 樟科植物叶绿体基因组全长在114 603~158 598 bp之间(田永靖,2021),差异较大,其基因组大小主要取决于IR区的扩张、收缩乃至缺失(Huang et al.,2014)。猴樟叶绿体基因全长152 727 bp,IR区全长20 132 bp,其全长与其他樟科植物叶绿体基因组相近(Zhang et al.,2021),并且IR区未发生明显的扩张与收缩。猴樟叶绿体基因组共编码127个基因,其中蛋白质编码基因83个,tRNA基因36个,rRNA基因8个,与肉桂(Song et al.,2019)、四川山胡椒(Lindera setchuenensis)(刘潮等,2021)、黄丹木姜子(Litseaelongata)(刘潮等,2022)基本一致,区别在于蛋白质编码的基因数略有不同,总GC含量在39.13%~39.20%之间。由此可见,猴樟叶绿体基因组在基因组成方面与已公布的樟科植物叶绿体基因组有很大的相似性,表明在樟科植物进化过程中叶绿体基因组成相对保守。

  • 表2 猴樟叶绿体基因组相对同义密码子使用(RSCU)情况分析

  • Table2 Relative synonymous codon usage (RSCU) analysis of Cinnamomum bodinieri chloroplast genome

  • 注: *表示RSCU>1。

  • Note: * indicates RSCU>1.

  • 图3 猴樟及近缘物种叶绿体基因组的4个连接边界

  • Fig.3 Four junction boundaries of the chloroplast genomes of Cinnamomum bodinieri and related species

  • 图4 24种樟亚科植物叶绿体基因组系统发育树

  • Fig.4 Phylogenetic tree of 24 species in Subfam. Lauroideae based on chloroplast genomes

  • 从猴樟叶绿体基因组中搜索到92个SSR位点,其中以单核苷酸重复为主,与鼎湖钓樟(Lindera chunii)(Tian et al.,2019)、鳄梨(Persea americana)(Song et al.,2016)等其他樟科植物重复序列特征相似。猴樟叶绿体基因组SSR位点主要分布在单拷贝区(LSC和SSC),其中LSC区占比最多,与猴欢喜(Sloanea sinensis)(王一麾等,2021)、长柄水青冈(Fagus longipetiolata)(Liang et al.,2021)等被子植物的研究结果一致。此外,所有的SSR位点中,A/T、AT/TA、AAT/TAT、AAAT/TAAA等A/T重复类SSR占总数的85.8%,与其他樟科植物的研究结果类似(Song et al.,2016; Tian et al.,2019)。在基因组中GC含量越低则表示DNA的稳定性越低,因此,较多的A/T重复类SSR可能产生更多的突变位点,这些SSR位点可进一步开发为樟属乃至樟科植物种内遗传变异和物种鉴定的分子标记。猴樟叶绿体基因组高频密码子有30个,其中A/T(U)结尾的占86%,这与樟树叶绿体基因密码子偏好性的研究结果相似(秦政等,2018),表明叶绿体基因组密码子第三位碱基存在不对称性,更加偏好使用A/T(U)碱基。此外,鸟嘌呤和胞嘧啶碱基在密码子第三位出现频率(GC3s)明显较叶绿体基因组GC含量低,与山胡椒属(Zhao et al.,2018)、木姜子属(Zhang et al.,2021)物种研究结果类似,表明猴樟叶绿体基因组密码子更加偏好A/T碱基。

  • 本研究中,6个树种IR区相差较小,边界基因分布基本一致。位于SSC、LSC与IR边界的基因分别为ycf1和ycf2,没有出现明显的重排现象,与田永靖(2021)对34种樟科植物叶绿体基因组的研究结果一致,表明樟科植物叶绿体基因组的结构具有较高的相似度,在进化上有密切的联系。被子植物中,假基因ycf1(ψycf1)和ycf2(ψycf2)等通常是由IR区的扩张与收缩产生(Gu et al.,2019),本研究中ψycf1在肉桂和大叶新木姜子中缺失,ψycf2在肉桂、大叶新木姜子和猴樟中均缺失。相比其他5个物种,新樟ycf1基因出现片段缺失,ndhF则完全缺失。此外,6个物种ycf1长度差异较大,主要表现为位于SSC区的长度变异明显。之前的研究表明,ycf1和ndhF等基因缺失和插入的频率明显高于平均水平(Daniell et al.,2016)。ycf1基因对植物的生存能力至关重要,其在SSC区部分具有较高的序列变异性(Dong et al.,2015),ndhF基因编码叶绿体NAD(P)H脱氢酶(NDH)复合体的一个亚基,叶绿体NDH蛋白在维持植物光合作用和环境胁迫下的光保护时发挥积极作用(Peng et al.,2011),表明ycf1和ndhF受环境选择作用较为明显,因此二者在系统发育研究中被认为是较有前途的叶绿体基因组条形码(Amar,2020)。综上结果可为樟科树种亲缘关系的鉴定提供新依据。

  • 本研究利用NCBI公布的樟亚科主要属的物种叶绿体基因组,通过系统进化分析确定猴樟在樟科植物中的进化地位和亲缘关系。猴樟与樟树亲缘关系最近,同时与檫木属的檫木、台湾檫木,以及樟属肉桂组的肉桂和刀把木可聚为一支,与Zhang等(2021)的研究结果一致。参考Song等(2020)基于叶绿体基因组对樟科的分类,将8个分支命名为Laurus-Neolitsea分支、Cinnamomum-Ocotea分支、Machilus-Persea分支、Neocinnamomum分支、Caryodaphnopsis分支、Cryptocarya分支、Beilschmiedia分支、Syndiclis分支。其中,樟属-甜樟属分支(Cinnamomum-Ocotea Clade)包括樟属和檫木属;月桂属、木姜子属、黄肉楠属、山胡椒属和新木姜子属归为月桂属-新木姜子属分支(Laurus-Neolitsea Clade),与Zhang等(2021)和田永靖(2021)基于叶绿体基因组的研究结果相似。润楠属-鳄梨属分支(Machilus-Persea Clade)包括楠属、鳄梨属、油丹属、润楠属和赛楠属,该结果支持了Song等(2020)的研究。此外,Kostermans(1957)基于表型特征将樟属、檫木属、新樟属划分为樟亚族;而本研究中猴樟所在的樟属与新樟属关系较远,对IR边界的分析也支撑这一结果,即猴樟与新樟的ycf1和ndhF基因存在较大的差异,而这两个基因在系统发育中有重要的作用,这些结果表明新樟在进化过程中受环境选择压力作用在叶绿体基因组上表现出了较为明显的变异。Wang等(2010)基于A-trnHtrnK和ITS等序列,Li等(2016)结合RPB2、LEAFYITS序列以及田永靖(2021)基于叶绿体基因组的研究结果均表明,新樟属与樟属、檫木属分开,在分类上应该具有独立的地位,本研究所得结果也支撑了这一结论。综上所述,本文解析了猴樟叶绿体基因组的结构、基因数量、重复序列、密码子偏好等特征,分析了猴樟在樟亚科的地位以及樟亚科植物的系统发育关系,为进一步研究猴樟的系统进化和育种研究提供了理论依据。

  • 参考文献

    • AMAR MH, 2020. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica [J]. J Genet Eng Biotechnol, 18(1): 1-10.

    • AMIRYOUSEFIA, HYVENON J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.

    • BANKEVICH A, NURK S, ANTIPOV D, et al. , 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing [J]. J Comput Biol, 19(5): 455-477.

    • BEIER S, THIEL T, MUNCH T, et al. , 2017. MISA-web: A web server for microsatellite prediction [J]. Bioinformatics, 33(16): 2583-2585.

    • CHANDERBALI AS, WERFF H, RENNER SS, 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes [J]. Ann Mo Bot Gard, 88(1): 104-134.

    • COLLYDA C, DIPLARIS S, MITKAS PA, et al. , 2006. Fuzzy Hidden Markov Models: a new approach in multiple sequence alignment [J]. Stud Health Technol Inform, 124: 99-104.

    • DANIELL H, LIN CS, YU M, et al. , 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering [J]. Genome Biol, 17(1): 1-29.

    • DOBROGOJSKI J, ADAMIEC M, LUCINSKI R, 2020. The chloroplast genome: A review [J]. Acta Physiol Plant, 42(1): 1-13.

    • DONG WP, XU C, LI CH, et al. , 2015. ycf1, the most promising plastid DNA barcode of land plants [J]. Sci Rep, 5(1): 1-5.

    • FANG JY, WANG ZH, TANG ZY, 2011. Atlas of woody plants in China: distribution and climate (Vol. 1) [M]. Beijing and Springer-Verlag Berlin Heidelberg: Higher Education Press: 349-357.

    • GU CH, MA L, WU ZQ, et al. , 2019. Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales [J]. BMC Plant Biol, 19(1): 1-19.

    • HUANG H, SHI C, LIU Y, et al. , 2014. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships [J]. BMC Evol Biol, 14(1): 1-17.

    • HYATT D, CHEN GL, LOCASCIO PF, et al. , 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification [J]. BMC Bioinform, 11(1): 1-11.

    • KOSTERMANS AJGH, 1957. Lauraceae [J]. Reinwardtia, 4(2): 193-256.

    • LASLETT D, CANBACK B, 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences [J]. Nucl Acids Res, 32(1): 11-6.

    • LI L, MADRINAN S, LI J, 2016. Phylogeny and biogeography of Caryodaphnopsis (Lauraceae) inferred from low-copy nuclear gene and ITS sequences [J]. Taxon, 65(3): 433-443.

    • LIANG DQ, WANG HY, ZHANG J, et al. , 2022. Complete chloroplast genome sequence of Fagus longipetiolata Seemen (Fagaceae): genome structure, adaptive evolution, and phylogenetic relationships [J]. Life (Basel), 12(1): 92-109.

    • LIU C, HAN LH, PENG Y, et al. , 2022. Characteristics of chloroplast genome of Litseae longata (Wall. ex Nees) Benth. et Hook. f. [J]. J S Agric, 53(1): 12-20. [刘潮, 韩利红, 彭悦, 等, 2022. 黄丹木姜子叶绿体基因组特征分析[J]. 南方农业学报, 53(1): 12-20. ]

    • LIU C, TANG LZ, HAN LH, 2021. Characterization of the chloroplast genome of Lindera setchuenensis and phylogenetics of the genus Lindera [J]. Sci Silv Sin, 57(12): 167-174. [刘潮, 唐利洲, 韩利红, 2021. 四川山胡椒叶绿体基因组特征及山胡椒属系统发育[J]. 林业科学, 57(12): 167-174. ]

    • LIU ZF, MA H, CI XQ, et al. , 2021. Can plastid genome sequencing be used for species identification in Lauraceae? [J]. Bot J Linn Soc, 197(1): 1-14.

    • NAKAMURA T, YAMADA KD, TOMII K, et al. , 2018. Parallelization of MAFFT for large-scale multiple sequence alignments [J]. Bioinformatics, 34(14): 2490-2492.

    • NGUYEN LT, SCHIMDT HA, HAESELER A, et al. , 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies [J]. Mol Biol Evol, 32(1): 268-274.

    • NJUGUNA W, LISTON A, CRONN R, et al. , 2013. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing [J]. Mol Phylogenet Evol, 66(1): 17-29.

    • PENG LW, YAMAMOTO H, SHIKANAI T, 2011. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex [J]. Biochim Biophys Acta, 1807(8): 945-953.

    • QIN Z, ZHENG YJ, GUI LJ, et al. , 2018. Codon usage bias analysis of chloroplast genome of camphora tree (Cinnamomum camphora) [J]. Guihaia, 38(10): 1346-1355. [秦政, 郑永杰, 桂丽静, 等, 2018. 樟树叶绿体基因组密码子偏好性分析 [J]. 广西植物, 38(10): 1346-1355. ]

    • SHINOZAKI K, OHME M, TANAKA M, et al. , 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. EMBO J, 5(9): 2043-2049.

    • SONG FL, ZHANG MM, SU JL, et al. , 2012. The comparison on cold resistance between Cinnamomum bodinieri and Cinnamomum camphora seedlings in natural decreasing process of air temperature [J]. J W Chin For Sci, 41(6): 48-52. [宋芳琳, 张苗苗, 苏金乐, 等, 2012. 自然降温过程中猴樟和香樟幼苗的抗寒性比较 [J]. 西部林业科学, 41(6): 48-52. ]

    • SONG K, HE M, YU JB, et al. , 2019. Characterization of the chloroplast genome of the family Lauraceae plant species, Cinnamomum cassia [J]. Mitochondrial DNA Part B, 4(2): 3906-3907.

    • SONG Y, YAO X, TAN YH, et al. , 2016. Complete chloroplast genome sequence of the avocado: gene organization, comparative analysis, and phylogenetic relationships with other Lauraceae [J]. Can J For Res, 46(11): 1293-1301.

    • SONG Y, YU WB, TAN YH, et al. , 2020. Plastid phylogenomics improve phylogenetic resolution in the Lauraceae [J]. J Syst Evol, 58(4): 423-439.

    • TIAN XY, YE JW, SONG Y, 2019. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae [J]. PeerJ, 7: e7662.

    • TIAN XQ, WEI XL, 2011. Effect of different ecological environments on plantation growth of Cinnamomum bodinieri in Guizhou [J]. Guizhou Agric Sci, 39(4): 184-187. [田小琴, 韦小丽, 2011. 生态环境对贵州猴樟人工林生长的影响 [J]. 贵州农业科学, 39(4): 184-187. ]

    • TIAN YJ, 2021. The complete chloroplast genomes of Lauraceae species: comparative geomic and phylogenetic analyses [D]. Nanjing: Nanjing University: 5-7. [田永靖, 2021. 樟科植物比较叶绿体基因组与系统发育研究 [D]. 南京: 南京大学: 5-7. ]

    • WANG YH, XIE YF, ZHANG ZH, et al. , 2021. The complete chloroplast genome of Sloanea sinensis and the systematic status of Eloeacarpaceae [J]. Guihaia, 42(1): 39-48. [王一麾, 谢宜飞, 张志翔, 等, 2021. 猴欢喜叶绿体全基因组及杜英科系统地位分析 [J]. 广西植物, 42(1): 39-48. ]

    • WANG ZH, LI J, CONRAN JG, et al. , 2010. Phylogeny of the southeast Asian endemic genus Neocinnamomum H. Liu (Lauraceae) [J]. Plant Syst Evol, 290(1): 173-184.

    • WONG EHM, SMITH DK, RABADAN R, et al. , 2010. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus [J]. BMC Evol Biol, 10(1): 1-14.

    • XIAO ZF, JIN ZN, ZHANG BH, et al. , 2020. Effects of IBA on rooting ability of Cinnamomum bodinieri citral type micro-shoots from transcriptomics analysis [J]. Plant Biotechnol Rep, 14(4): 467-477.

    • XIAO ZF, WANG LL, CAO LY, et al. , 2020. Tissue culture technology of stem segment of Cinnamomum bodinieri var.citralifera [J]. Bull Bot Res, 40(2): 196-201. [肖祖飞, 王玲玲, 曹璐瑶, 等, 2020. 柠檬醛猴樟茎段组织培养技术研究 [J]. 植物研究, 40(2): 196-201. ]

    • ZHANG YY, TIAN YJ, TNG DYP, et al. , 2021. Comparative chloroplast genomics of Litsea Lam. (Lauraceae) and its phylogenetic implications [J]. Forests, 12(6): 744-758.

    • ZHANG Y, WEI XL, WANG L, et al. , 2014. Growth variability of Cinnamomum bodinieri seedlings from different geographical provenances [J]. SW Chin J Agric Sci, 27(5): 2162-2167. [张怡, 韦小丽, 王娈, 等, 2014. 不同地理种源猴樟苗期生长变异性 [J]. 西南农业学报, 27(5): 2162-2167. ]

    • ZHAO ML, SONG Y, NI J, et al. , 2018. Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae) [J]. Sci Rep, 8(1): 1-11.

  • 参考文献

    • AMAR MH, 2020. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica [J]. J Genet Eng Biotechnol, 18(1): 1-10.

    • AMIRYOUSEFIA, HYVENON J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.

    • BANKEVICH A, NURK S, ANTIPOV D, et al. , 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing [J]. J Comput Biol, 19(5): 455-477.

    • BEIER S, THIEL T, MUNCH T, et al. , 2017. MISA-web: A web server for microsatellite prediction [J]. Bioinformatics, 33(16): 2583-2585.

    • CHANDERBALI AS, WERFF H, RENNER SS, 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes [J]. Ann Mo Bot Gard, 88(1): 104-134.

    • COLLYDA C, DIPLARIS S, MITKAS PA, et al. , 2006. Fuzzy Hidden Markov Models: a new approach in multiple sequence alignment [J]. Stud Health Technol Inform, 124: 99-104.

    • DANIELL H, LIN CS, YU M, et al. , 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering [J]. Genome Biol, 17(1): 1-29.

    • DOBROGOJSKI J, ADAMIEC M, LUCINSKI R, 2020. The chloroplast genome: A review [J]. Acta Physiol Plant, 42(1): 1-13.

    • DONG WP, XU C, LI CH, et al. , 2015. ycf1, the most promising plastid DNA barcode of land plants [J]. Sci Rep, 5(1): 1-5.

    • FANG JY, WANG ZH, TANG ZY, 2011. Atlas of woody plants in China: distribution and climate (Vol. 1) [M]. Beijing and Springer-Verlag Berlin Heidelberg: Higher Education Press: 349-357.

    • GU CH, MA L, WU ZQ, et al. , 2019. Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales [J]. BMC Plant Biol, 19(1): 1-19.

    • HUANG H, SHI C, LIU Y, et al. , 2014. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships [J]. BMC Evol Biol, 14(1): 1-17.

    • HYATT D, CHEN GL, LOCASCIO PF, et al. , 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification [J]. BMC Bioinform, 11(1): 1-11.

    • KOSTERMANS AJGH, 1957. Lauraceae [J]. Reinwardtia, 4(2): 193-256.

    • LASLETT D, CANBACK B, 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences [J]. Nucl Acids Res, 32(1): 11-6.

    • LI L, MADRINAN S, LI J, 2016. Phylogeny and biogeography of Caryodaphnopsis (Lauraceae) inferred from low-copy nuclear gene and ITS sequences [J]. Taxon, 65(3): 433-443.

    • LIANG DQ, WANG HY, ZHANG J, et al. , 2022. Complete chloroplast genome sequence of Fagus longipetiolata Seemen (Fagaceae): genome structure, adaptive evolution, and phylogenetic relationships [J]. Life (Basel), 12(1): 92-109.

    • LIU C, HAN LH, PENG Y, et al. , 2022. Characteristics of chloroplast genome of Litseae longata (Wall. ex Nees) Benth. et Hook. f. [J]. J S Agric, 53(1): 12-20. [刘潮, 韩利红, 彭悦, 等, 2022. 黄丹木姜子叶绿体基因组特征分析[J]. 南方农业学报, 53(1): 12-20. ]

    • LIU C, TANG LZ, HAN LH, 2021. Characterization of the chloroplast genome of Lindera setchuenensis and phylogenetics of the genus Lindera [J]. Sci Silv Sin, 57(12): 167-174. [刘潮, 唐利洲, 韩利红, 2021. 四川山胡椒叶绿体基因组特征及山胡椒属系统发育[J]. 林业科学, 57(12): 167-174. ]

    • LIU ZF, MA H, CI XQ, et al. , 2021. Can plastid genome sequencing be used for species identification in Lauraceae? [J]. Bot J Linn Soc, 197(1): 1-14.

    • NAKAMURA T, YAMADA KD, TOMII K, et al. , 2018. Parallelization of MAFFT for large-scale multiple sequence alignments [J]. Bioinformatics, 34(14): 2490-2492.

    • NGUYEN LT, SCHIMDT HA, HAESELER A, et al. , 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies [J]. Mol Biol Evol, 32(1): 268-274.

    • NJUGUNA W, LISTON A, CRONN R, et al. , 2013. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing [J]. Mol Phylogenet Evol, 66(1): 17-29.

    • PENG LW, YAMAMOTO H, SHIKANAI T, 2011. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex [J]. Biochim Biophys Acta, 1807(8): 945-953.

    • QIN Z, ZHENG YJ, GUI LJ, et al. , 2018. Codon usage bias analysis of chloroplast genome of camphora tree (Cinnamomum camphora) [J]. Guihaia, 38(10): 1346-1355. [秦政, 郑永杰, 桂丽静, 等, 2018. 樟树叶绿体基因组密码子偏好性分析 [J]. 广西植物, 38(10): 1346-1355. ]

    • SHINOZAKI K, OHME M, TANAKA M, et al. , 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. EMBO J, 5(9): 2043-2049.

    • SONG FL, ZHANG MM, SU JL, et al. , 2012. The comparison on cold resistance between Cinnamomum bodinieri and Cinnamomum camphora seedlings in natural decreasing process of air temperature [J]. J W Chin For Sci, 41(6): 48-52. [宋芳琳, 张苗苗, 苏金乐, 等, 2012. 自然降温过程中猴樟和香樟幼苗的抗寒性比较 [J]. 西部林业科学, 41(6): 48-52. ]

    • SONG K, HE M, YU JB, et al. , 2019. Characterization of the chloroplast genome of the family Lauraceae plant species, Cinnamomum cassia [J]. Mitochondrial DNA Part B, 4(2): 3906-3907.

    • SONG Y, YAO X, TAN YH, et al. , 2016. Complete chloroplast genome sequence of the avocado: gene organization, comparative analysis, and phylogenetic relationships with other Lauraceae [J]. Can J For Res, 46(11): 1293-1301.

    • SONG Y, YU WB, TAN YH, et al. , 2020. Plastid phylogenomics improve phylogenetic resolution in the Lauraceae [J]. J Syst Evol, 58(4): 423-439.

    • TIAN XY, YE JW, SONG Y, 2019. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae [J]. PeerJ, 7: e7662.

    • TIAN XQ, WEI XL, 2011. Effect of different ecological environments on plantation growth of Cinnamomum bodinieri in Guizhou [J]. Guizhou Agric Sci, 39(4): 184-187. [田小琴, 韦小丽, 2011. 生态环境对贵州猴樟人工林生长的影响 [J]. 贵州农业科学, 39(4): 184-187. ]

    • TIAN YJ, 2021. The complete chloroplast genomes of Lauraceae species: comparative geomic and phylogenetic analyses [D]. Nanjing: Nanjing University: 5-7. [田永靖, 2021. 樟科植物比较叶绿体基因组与系统发育研究 [D]. 南京: 南京大学: 5-7. ]

    • WANG YH, XIE YF, ZHANG ZH, et al. , 2021. The complete chloroplast genome of Sloanea sinensis and the systematic status of Eloeacarpaceae [J]. Guihaia, 42(1): 39-48. [王一麾, 谢宜飞, 张志翔, 等, 2021. 猴欢喜叶绿体全基因组及杜英科系统地位分析 [J]. 广西植物, 42(1): 39-48. ]

    • WANG ZH, LI J, CONRAN JG, et al. , 2010. Phylogeny of the southeast Asian endemic genus Neocinnamomum H. Liu (Lauraceae) [J]. Plant Syst Evol, 290(1): 173-184.

    • WONG EHM, SMITH DK, RABADAN R, et al. , 2010. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus [J]. BMC Evol Biol, 10(1): 1-14.

    • XIAO ZF, JIN ZN, ZHANG BH, et al. , 2020. Effects of IBA on rooting ability of Cinnamomum bodinieri citral type micro-shoots from transcriptomics analysis [J]. Plant Biotechnol Rep, 14(4): 467-477.

    • XIAO ZF, WANG LL, CAO LY, et al. , 2020. Tissue culture technology of stem segment of Cinnamomum bodinieri var.citralifera [J]. Bull Bot Res, 40(2): 196-201. [肖祖飞, 王玲玲, 曹璐瑶, 等, 2020. 柠檬醛猴樟茎段组织培养技术研究 [J]. 植物研究, 40(2): 196-201. ]

    • ZHANG YY, TIAN YJ, TNG DYP, et al. , 2021. Comparative chloroplast genomics of Litsea Lam. (Lauraceae) and its phylogenetic implications [J]. Forests, 12(6): 744-758.

    • ZHANG Y, WEI XL, WANG L, et al. , 2014. Growth variability of Cinnamomum bodinieri seedlings from different geographical provenances [J]. SW Chin J Agric Sci, 27(5): 2162-2167. [张怡, 韦小丽, 王娈, 等, 2014. 不同地理种源猴樟苗期生长变异性 [J]. 西南农业学报, 27(5): 2162-2167. ]

    • ZHAO ML, SONG Y, NI J, et al. , 2018. Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae) [J]. Sci Rep, 8(1): 1-11.