en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈弘毅(1997-),硕士研究生,研究方向为湿地生态学,(E-mail)534354373@qq.com。

通讯作者:

孙梅,博士,副研究员,研究方向为植物生理生态学,(E-mail)sm0510215@163.com。

中图分类号:Q945.79

文献标识码:A

文章编号:1000-3142(2023)11-1986-13

DOI:10.11931/guihaia.gxzw202210036

参考文献
BAKER RL, YARKHUNOVA Y, VIDAL K, et al. , 2017. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica [J]. BMC Plant Biol, 17(1): 1-12.
参考文献
BAO T, JIA G, XU X, 2022. Warming enhances dominance of vascular plants over cryptogams across northern wetlands [J]. Glob Change Biol. https: //doi. org/10. 1111/gcb. 16182.
参考文献
CAI J, TYREE MT, 2010. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx [J]. Plant Cell Environ, 33(7): 1059-1069.
参考文献
CHEN CT, SETTER TL, 2021. Role of tuber developmental processes in response of potato to high temperature and elevated CO2 [J]. Plants, 10(5): 871.
参考文献
CHEN TB, HUANG Q, et al. , 2002. Accumulated temperature as an indicator to predict the stabilizing process in sewage sludge composting [J]. Acta Ecol Sin, 22(6): 911-915.
参考文献
DANG L, ZHAO L, LI Y, et al. , 2021. Bolothrips bicolor (Heeger) (Thysanoptera: Idolothripinae): a genus and species newly recorded from China [J]. Zool Syst, 46(3): 264-268.
参考文献
DIFFENBAUGH NS, GIORGI F, 2012. Climate change hotspots in the CMIP5 global climate model ensemble [J]. Clim Change, 114(3): 813-822.
参考文献
DJANAGUIRAMAN M, PRASAD PVV, BOYLE DL, et al. , 2011. High-temperature stress and soybean leaves: Leaf anatomy and photosynthesis [J]. Crop Sci, 51(5): 2125-2131.
参考文献
DONG Y, 2013. Research progress on the impact of climate change on wetland ecosystems [J]. Subtrop Soil Water Conserv, 25(2): 37-40. [董瑜, 2013. 气候变化对湿地生态系统影响的研究进展 [J]. 亚热带水土保持, 25(2): 37-40. ]
参考文献
ERWIN K L, 2009. Wetlands and global climate change: the role of wetland restoration in a changing world [J]. Wetl Ecol Manag, 17(1): 71-84.
参考文献
FANG MY, ZHANG M, DAI D, et al. , 2017. Study on leaf anatomical structure and resistance of air pineapple [J]. JNA, 45(1): 98-101. [方敏彦, 章明, 戴丹, 等, 2017. 空气凤梨叶片解剖结构与抗逆性研究 [J]. 北方农业学报, 45(1): 98-101. ]
参考文献
FENG CH, SUN M, TIAN K, et al. , 2020. Effect of conducting tissue of Scirpus validus to simulated warming [J]. J N For, 48(4): 24-28. [冯春慧, 孙梅, 田昆, 等, 2020. 模拟增温对水葱(Scirpus validus)输导组织的影响 [J]. 东北林业大学学报, 48(4): 24-28. ]
参考文献
FENG YL, LIU EJ, SUN GB, 1995. Influence of temperature of root system on plant (Ⅰ) ─ Influence of root temperature on plant growth and photosynthesis [J]. J N For Univ, 1995(3): 63-69. [冯玉龙, 刘恩举, 孙国斌, 1995. 根系温度对植物的影响(Ⅰ)──根温对植物生长及光合作用的影响 [J]. 东北林业大学学报, 1995(3): 63-69. ]
参考文献
GAO WJ, 2011. The initial response of leaf stomatal and stem vascular bundle of wheat and rice to simulated warming [D]. Hunan Agric Univ, 2012(4): 10-30. [高文娟, 2011. 小麦水稻叶面气孔和茎秆维管束对模拟增温的初期响应 [D]. 湖南农业大学, 2012(4): 10-30. ]
参考文献
GARCÍA-CERVIGÓN A I, GARCÍA-LÓPEZ M A, PISTÓN N, et al. , 2021. Co-ordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant [J]. Ann Bot, 127(7): 919-929.
参考文献
GORAYA GK, KAUR B, ASTHIR B, 2017. Rapid injuries of high temperature in plants [J]. J Plant Biol, 60(4): 298-305.
参考文献
GUAN DX, FENG CH, TIAN K, et al. , 2019. Responses of stem anatomical structure of a lakeside dominant plant Hippuris vulgaris to simulated warming in Napahai wetland [J]. Chin J Ecol, 38(6): 1620-1628. [管东旭, 冯春慧, 田昆, 等, 2019. 纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris)茎解剖结构对模拟增温的响应 [J]. 生态学杂志, 38(6): 1620-1628. ]
参考文献
GUAN DX, TIAN K, WANG ZB, et al. , 2018. Response of vascular structure of a lakeside dominant plant species Hippuris vulgaris L. to simulated warming in Napahai wetland of Northwestern Yunnan [J]. Chin J Ecol, 37(9): 2611-2618. [管东旭, 田昆, 王志保, 等, 2018. 滇西北纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris L. )维管结构对模拟增温的响应 [J]. 生态学杂志, 37(9): 2611-2618. ]
参考文献
HAN G, LI Y, QIAO Z, et al. , 2021. Advances in the regulation of epidermal cell development by C2H2 zinc finger proteins in plants [J]. Front Plant Sci, 12: 754512.
参考文献
HENDRICKSON L, SHARWOOD R, LUDWIG M, et al. , 2008. The effects of rubisco activase on C4 photosynthesis and metabolism at high temperature [J]. J Exp Bot, 59(7): 1789-1798.
参考文献
HEREDIA-GUERRERO JA, GUZMAN-PUYOL S, BENÍTEZ JJ, et al. , 2018. Plant cuticle under global change: biophysical implications [J]. Glob Change Biol, 24(7): 2749-2751.
参考文献
HODSON R, 2017. Climate change [J]. Nature, 550: S53.
参考文献
IPCC, 2013. Working group I contribution to the IPCC fifth assessment report, climate change 2013: The physical science basis: Summary for Policymakers [M]. Cambridge: Cambridge University Press.
参考文献
KENNEDY J, CHRISTIDIS N, DUNN R, et al. , 2022. Global and regional climate in 2021 [J]. Weather. DOI: 10. 1002/wea. 4256.
参考文献
KIM YX, STUMPF B, SUNG J, et al. , 2018. The relationship between turgor pressure change and cell hydraulics of midrib parenchyma cells in the leaves of Zea mays [J]. Cell, 7(10): 180.
参考文献
LI R, JIANG ZM, ZHANG SX, et al. , 2015. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plant Ecol, 39(8): 838-848. [李荣, 姜在民, 张硕新, 等, 2015. 木本植物木质部栓塞脆弱性研究新进展 [J]. 植物生态学报, 39(8): 838-848. ]
参考文献
LI WD, LIU YG, TIAN K, et al. , 2010. Research on purification effect of Jian Lake Z. latifolia wetland lakeside zone in Northwest of Yunnan plateau on nitrogen and phosphorus of agricultural non-point source [J]. J Anhui Agric Sci, 38(32): 18294-18296. [李卫东, 刘云根, 田昆, 等, 2010. 滇西北高原剑湖茭草湿地湖滨带对农业面源N·P污染净化效果研究 [J]. 安徽农业科学, 38(32): 18294-18296. ]
参考文献
LI Y, LIANG W, ZHAO B, 2020. Physiological and microstructural responses of two Rhododendron cultivars to high temperature and low light [J]. Hortic Environ Biotechnol, 61(3): 445-458.
参考文献
LIU CG, LIU FX, SONG XF, et al. , 2012. Growth adaptabilities of Z. latifolia in different artificial wetlands [J]. J Lake Sci, 24(1): 75-82. [刘长娥, 刘福兴, 宋祥甫, 等, 2012. 茭草(Z. latifolia)在不同人工湿地中的生长适应性 [J]. 湖泊科学, 24(1): 75-82. ]
参考文献
LIU ZY, ZHANG XN, LI LP, et al. , 2017. Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan [J]. Acta Ecol Sin, 37(23): 7821-7832. [刘振亚, 张晓宁, 李丽萍, 等, 2017. 大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响 [J]. 生态学报, 37(23): 7821-7832. ]
参考文献
MA YF, 2020. Effect of increased precipitation and nighttime warming on cotton yield in North China Plain [D]. Kaifeng: Henan University: 3-6. [马雅菲, 2020. 增雨和夜间增温对华北平原棉花产量的影响 [D]. 开封: 河南大学: 3-6. ]
参考文献
MANRIQUE LA, BARTHOLOMEW DP, 1991. Growth and yield performance of Potato grown at three elevations in Hawaii: II. dry matter production and efficiency of partitioning [J]. Crop Sci, 31: 367-372.
参考文献
MENG H, WANG L, ZHANG ZS, et al. , 2016. Researches on the impacts of climate change on spatial distribution and main ecological functions of inland wetland ecosystem in China [J]. Wetland Sci, 14(5): 710-716. [孟焕, 王琳, 张仲胜, 等, 2016. 气候变化对中国内陆湿地空间分布和主要生态功能的影响研究 [J]. 湿地科学, 14(5): 710-716. ]
参考文献
MIROSŁAW-ŚWIĄTEK D, MARCINKOWSKI P, KOCHANEK K, et al. , 2020. The impact of climate change on flow conditions and wetland ecosystems in the Lower Biebrza River (Poland) [J]. PeerJ, 8: e9778.
参考文献
PAUL S, DAS MK, BAISHYA P, et al. , 2017. Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars [J]. Sci Hortic, 225: 134-140.
参考文献
PITTERMANN J, SPERRY J, 2003. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers [J]. Tree Physiol, 23(13): 907-914.
参考文献
QADERI MM, MARTEL AB, DIXON SL, 2019. Environmental factors influence plant vascular system and water regulation [J]. Plants, 8(3): 65.
参考文献
RISTIC Z, JENKS MA, 2002. Leaf cuticle and water loss in maize lines differing in dehydration avoidance [J]. J Plant Physiol, 159(6): 645-651.
参考文献
SHANG W, YANG YX, 2012. Degradation characteristics, patterns, and processes of lakeside wetland in Napahai of northwest Yunnan plateau, Southwest China [J]. Chin J Appl Ecol, 23(12): 3257-3265. [尚文, 杨永兴, 2012. 滇西北高原纳帕海湖滨湿地退化特征、规律与过程 [J]. 应用生态学报23(12): 3257-3265. ]
参考文献
SKINNER CB, POULSEN CJ, MANKIN JS, 2018. Amplification of heat extremes by plant CO2 physiological forcing [J]. Nat Commun, 9(1): 1-11.
参考文献
SONG ML, WEN XZ, LI YL, 2010. Effects of high rhizosphere temperature on plant growth and metabolism: a review [J]. Chin J Ecol, 29(11): 2258-2264. [宋敏丽, 温祥珍, 李亚灵, 2010. 根际高温对植物生长和代谢的影响综述 [J]. 生态学杂志, 29(11): 2258-2264. ]
参考文献
SPERRY JS, 2000. Hydraulic constraints on plant gas exchange [J]. Agric For Meteorol, 104(1): 13-23.
参考文献
SUN M, TIAN K, ZHANG Y, et al. , 2017. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 35(6): 940-949. [孙梅, 田昆, 张贇, 等, 2017. 植物叶片功能性状及其环境适应研究 [J]. 植物科学学报, 35(6): 940-949. ]
参考文献
TIAN K, LIU G, XIAO D, et al. , 2015. Ecological effects of dam impoundment on closed and half-closed wetlands in China [J]. Wetlands, 35(5): 889-898.
参考文献
TYREE MT, ZIMMERMANN MH, 2002. Xylem structure and the ascent of sap [M]//TYREE MT. The Vessel Network in the Stem. Berlin, Heidelberg: Springer-Verlag: 28-48.
参考文献
WANG TX, LI JY, HU ZH, 2003. Correlation between the structure of vascular bundle and the content of aloin in Aloe [J]. Guihaia, 23(5): 436-439+483-484. [王太霞, 李景原, 胡正海, 2003. 芦荟维管束的结构与芦荟素积累的相关性 [J]. 广西植物, 23(5): 436-439+483-484. ]
参考文献
WILLIGEN CV, SHERWIN HW, PAMMENTER NW, 2000. Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions [J]. New Phytol, 145(1): 51-59.
参考文献
XIAO DR, 2007. The plant communities distribution patterns and its driving force of typical wetland in Northwestern Yunnan plateau, China [D]. Kunming: Southwest Forest University: 13-48. [肖德荣, 2007. 滇西北高原典型湿地植物群落分布格局及驱动力 [D]. 昆明: 西南林学院: 13-48. ]
参考文献
YIN QL, 2015. Anatomical structure of main plants and its environmental adaptations in the hilly-gullied loess plateau region [D]. Yangling: Northwest A & F University: 1-7. [尹秋龙, 2015. 黄土丘陵沟壑区主要植物叶解剖结构及其环境适应性研究 [D]. 杨陵: 西北农林科技大学: 1-7. ]
参考文献
YANG SJ, SUN M, ZHANG YJ, 2014. Strong leaf morphological, anatomical, and physiological responses of a subtropical woody bamboo (Sinarundinaria nitida) to contrasting light environments [J]. Plant Ecol, 215(1): 97-109.
参考文献
YU HY, SUN M, FENG CH, et al. , 2023. Responses of leaf economic traits of Scirpus validus and Typhaorientalis to simulated warming and CO2 concentration multiplication [J]. Guihaia, 43(9): 1588-1599. [余洪艳, 孙梅, 冯春慧, 等, 2023. 水葱和香蒲叶经济性状对模拟增温和CO2浓度倍增的响应 [J]. 广西植物, 43(9): 1588-1599. ]
参考文献
ZEH L, LIMPENS J, ERHAGEN B, et al. , 2019. Plant functional types and temperature control carbon input via roots in peatland soils [J]. Plant Soil, 438(1): 19-38.
参考文献
ZHANG F, PI XQ, WANG XE, et al. , 2019. Anatomy and apoplastic barrier histochemistry characteristics of Z. latifolia adapted to wetland environment [J]. Guihaia, 39(5): 615-623. [张梵, 皮秀权, 王晓娥, 等, 2019. 菰适应湿地环境的解剖和屏障结构特征研究 [J]. 广西植物, 39(5): 615-623. ]
参考文献
ZHANG X, LI ZF, ZHAO HL, et al. , 2016. Diurnal variation of photosynthetic characteristics of five kinds of arbor dominant species in Napahai [J]. Guihaia, 36(5): 515-522. [张曦, 栗忠飞, 赵慧丽, 等, 2016. 纳帕海流域五种优势乔木树种光合速率日变化特征 [J]. 广西植物, 36(5): 515-522. ]
参考文献
ZHANG YP, WANG YL, WANG YL, et al. , 2020. Response of rice starch synthesis to night temperature changes [J]. Chin J Rice Sci, 34(6): 525-538. [张玉屏, 王军可, 王亚梁, 等, 2020. 水稻淀粉合成对夜温变化的响应 [J]. 中国水稻科学, 34(6): 525-538. ]
参考文献
ZHANG ZL, LIU GD, ZHANG FC, et al. , 2014 Research progress of plant leaf hydraulic conductivity [J]. Chin J Ecol, 33(6): 1663-1670. [张志亮, 刘国东, 张富仓, 等, 2014. 植物叶片导水率的研究进展 [J]. 生态学杂志, 33(6): 1663-1670. ]
参考文献
ZHAO C, LIU Q, 2009. Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization [J]. Acta Physiol Plant, 31(1): 163-173.
参考文献
ZHAO Y, SUN M, GUO H, et al. , 2022. Responses of leaf hydraulic traits of Schoenoplectus tabernaemontani to increasing temperature and CO2 concentrations [J]. Bot Stud, 63(1): 1-10.
参考文献
ZHEN B, LI H, NIU Q, et al. , 2020. Effects of combined high temperature and waterlogging stress at booting stage on root anatomy of rice (Oryza sativa L. ) [J]. Water, 12(9): 2524.
参考文献
ZHU LQ, WANG BC, FU X, et al. , 2013. Turgor pressure in plant cell growth [J]. Acta Biophys Sin, 29(8): 583-593. [朱蠡庆, 王伯初, 付雪, 等, 2013. 膨压在植物细胞生长中的作用 [J]. 生物物理学报, 29(8): 583-593. ]
目录contents

    摘要

    高原湿地湖滨带植物对气候变暖表现出强烈的功能响应,是全球气候变化的主要现象之一。植物解剖性状直接关系到植物的生态功能,为探讨气候变暖对湿地植物茎解剖结构的影响,该研究利用开顶式生长室分析了模拟增温对滇西北纳帕海湿地湖滨带挺水植物茭草茎解剖结构的影响。结果表明:(1) 茭草地上茎在增温4 ℃的范围内,主要通过增加表皮结构厚度以增加表皮失水来响应增温;地下茎在增温2 ℃的轻度增温条件下与地上茎的响应策略相同,而在增温4 ℃时主要通过减小维管结构大小以降低气穴化风险来响应增温。(2) 年最高温度和夜间积温是影响茭草茎解剖结构性状的关键因子,但该两个温度因子仅对地下茎筛管大小的影响达到显著水平(R2=0.838, P<0.01)。(3) 内表皮细胞厚度是地上茎响应增温的最主要性状,并与温度因子呈显著正相关。地下茎导管和筛管大小是地下茎响应温度升高的主要性状,二者与温度变量呈负相关关系。综上表明,茭草地上茎和地下茎对增温响应策略存在差异,为揭示高原湿地植物应对气候变暖的响应规律以及生态适应策略提供了科学依据。基于当前气候变暖的背景,建议未来采用更科学的实验方法对更多高原湿地植物的生态响应过程及规律进一步深入研究。

    Abstract

    Lakeside plants of plateau wetland show strong functional responses to climate warming, one of the main phenomena of global change. Anatomical traits are closely related to the ecological function in plants. In order to explore the influences of climate warming on stem anatomical structures of wetland plants, the effects of simulated temperature increase on the stem anatomical structure of Zizania latifolia, an emergent plant in the lakeside zone of the Napahai wetland in the northwest of Yunnan Province, were studied by using an open-top chamber. The results were as follows: (1) In the temperature-increasing range of 4 ℃, the aboveground stem of Z. latifolia responded to warming mainly by increasing the thickness of the epidermal structure to increase the epidermal water loss. The response strategy of the underground stem was the same as that of the aboveground stem when the temperature was increased by 2 ℃, while the response to the temperature increase was mainly through reducing the sizes of the vascular structure to reduce the risk of cavitation when the temperature were increased by 4 ℃. (2) Annual maximum temperature(MAX) and nighttime accumulated temperature(NAT) were the key factors affecting the stem anatomical structure of Z. latifolia, but both of which only have significant effects on the sieve tube size of the underground stem (R2=0.838, P<0.01). (3) The thickness of inner epidermal cells was the main traits of the aboveground stem in response to the warming, and was significantly and positively correlated with temperature factors. The sizes of the vessel and sieve tube were the main traits of the underground stem response to the warming, and they were negatively correlated with temperature factors. The results indicate that there are differences in response strategies of the aboveground stem and underground stem of Z. latifolia to the temperature increase, which provides a scientific basis for revealing the response laws of plateau wetland plants to climate warming and ecological adaptation strategies. Based on the current climate warming context, we need to further investigate and supplement the ecological response processes and laws of more plateau wetland plants with more scientific experimental methods in the future.

  • 气候变暖是全球气候变化的主要体现(IPCC,2013; Hodson et al.,2017; Kennedy et al.,2022)。已有研究表明,气候变暖是导致湿地面积减少及其生态系统功能退化的主要影响因子(董瑜,2013; 孟焕等,2016; Mirosław-Świątek et al.,2020)。高海拔地区是气候变暖影响最大的区域之一,加强对高海拔地区湿地响应气候变暖策略的研究,是有效应对气候变化的关键(Diffenbaugh &Giorgi,2012)。滇西北地区是我国“川滇生态屏障”的重要组成部分,其高原面上发育了丰富的湿地。由于这些湿地具有独特的生态过程及特征,并且对气候变暖极其敏感,因此成为国内外关注的热点(Erwin,2009; Tian et al.,2015)。湖滨带植物是滇西北高原湿地生态系统的功能载体,在气候变暖条件下,其功能性状表现出强烈适应性(Zhao &Liu,2009; Dang et al.,2021)。

  • 植物解剖结构是指通过切片等方式获得的植物内部组织结构,主要包括表皮结构、维管束结构、叶肉结构等(孙梅等,2017)。植物解剖结构的性状表现直接关系着植物的生理功能。表皮是植物体内与外界环境的天然保护屏障(Han et al.,2021),较厚的表皮细胞具有更强的保水性和机械支撑能力(Ristic &Jenks,2002)。角质层厚度则是评价植物抗逆性的主要依据(方敏彦等,2017; Heredia-Guerrero et al.,2018)。维管束结构是植物最重要的输导系统,承载着植物体中水分及营养物质的长途运输任务,其中导管和筛管大小及数量更是关系到水和物质运输的阻力与效率(Tyree &Zimmermann,2002; 王太霞等,2003; 尹秋龙,2015)。鉴于植物解剖结构在维持植物生态功能上的重要作用,Baker等(2017)研究指出,植物解剖结构、生理生态功能和有机体形态之间关系的遗传结构,将是揭示植物育种和模拟自然系统中复杂生态与进化动力学的新途径。因此,基于解剖结构性状的生态适应性研究是探讨植物应对环境变化的重要方面。

  • 植物解剖结构性状通常表现出对温度变化的调节响应。在滇西北湿地,增温显著增加了极高山种杉叶藻(Hippuris vulgaris)的地上茎表皮厚度、导管和筛管数目以及维管束结构大小,提高了植物水分与养分输送效率和保水性(管东旭等,2018,2019);黑三棱(Sparganium stoloniferum)在增温处理下,其光饱和点、光能利用幅和净光合速率均显著提高(刘振亚等,2017);与之相反,增温显著降低了水葱(Schoenoplectus tabernaemontani)的角质层厚度、气孔大小、导管及筛管面积,抑制了水葱输导组织的传输能力以及光合生产力(冯春慧,2020; Zhao et al.,2022; 余洪艳等,2023)。这体现了滇西北地区湿地植物对气候变暖响应的种间差异,为高原湿地应对气候变化提供了研究基础。

  • 茭草(Zizania latifolia)为多年生宿根型草本植物,是广泛分布于滇西北高原湖滨带的挺水植物之一,通常与水葱、杉叶藻、水蓼、两栖蓼、黑三棱一起成为滇西北湖滨带最常见的挺水植物群落(张梵等,2019)。在剑湖、洱源西湖、泸沽湖、程海、纳帕海等典型滇西北高原湿地均为优势植物种。茭草在高原湿地具有较强的吸收与吸附能力,常作为富营养化水体的“天然净化器”(李卫东等,2010)。对湖滨带的固堤造陆、植被群落恢复、提高河道生物多样性等都具有积极的生态促进作用(刘长娥等,2012)。

  • 本研究以滇西北纳帕海湿地湖滨带挺水植物茭草为对象,测定其茎解剖结构性状包括表皮结构和维管束结构。通过构建开顶式人工模拟增温系统开展茭草茎解剖结构性状对人工模拟增温的响应策略及其机理研究。拟探讨:(1)高原湿地植物茭草的茎解剖性状对增温的响应趋势;(2)影响茭草茎解剖结构性状的主要温度变量;(3)对增温响应更强烈的茭草茎的解剖结构性状。通过对以上问题的阐述,进一步认识高原湿地植物茎解剖性状对气候变化的响应策略,以期为高原湿地应对气候变化、加强高原湿地保护提供科学依据。

  • 1 材料与方法

  • 1.1 研究区概况

  • 纳帕海湿地位于青藏高原东南缘横断山脉三江纵向岭谷区东部(99°37′—99°41′ E、27°49′—27°55′ N),海拔为3 260 m,面积为3 100 hm2,是我国独特的低纬度高海拔湿地类型。该区属寒温带高原季风气候,冷凉湿润,干湿季分明,气温日较差大、年较差小,长冬无夏,春秋短促,年均气温为5.4℃。该区属金沙江水系,水源补给以南部各地表径流汇入、冰雪融水、降雨等为主;受西南季风和南支西风急流的长期交替控制影响,每年6、7月为大降雨期,纳帕海湖面面积可达3 125 hm2,8月湖水经纳帕海湿地西北隅溶洞泻入地下暗河而不断退落,潜流10 km后汇集成地表支流排入金沙江,又因10月西南季风退缩所致降雨而再次上涨,11月退落后至来年5月均为旱季,湖面大幅度缩小,形成了广阔的湖滨带、沼泽化草甸与湿地景观(肖德荣,2007; 尚文和杨永兴,2012; 张曦等,2016)。

  • 纳帕海是许多植物区系成分的交汇区,据统计整个湿地区域共有湿地植物115种,隶属38科82属(肖德荣,2007)。湖滨带分布着大量的挺水植物,以禾本科茭草、极高山种杉叶藻和蓼科水蓼(Polygonum hydropiper)为主,其次为荇菜(Nymphoides peltata)等浮叶植物以及常见沉水植物金鱼藻(Ceratophyllum demersum)、蓖齿眼子菜(Stuckenia pectinata)等,湿地植物资源十分丰富(肖德荣,2007)。

  • 1.2 实验设计和处理

  • 2014年4月,在纳帕海湿地选择地势平缓、环境相似的区域建立底面直径为2.4 m的9个原位研究单元,各研究单元间设置3 m的间隔且使用PVC管连通,确保每个研究单元淹水深度与野外淹水深度(约8 cm)一致。根据IPCC对21世纪末的评估报告,全球近地面大气均温在RCP2.6情景与RCP8.5情景下分别升高0.3~1.7℃与2.6~4.8℃(IPCC,2013)。基于此,将研究单元分为3组,每组3个重复(图1)。其中,1组设为对照组(CK),与周围环境条件下温度一致;另外2组设为处理组,在其所在地面上构建以阳光板为材料,高2.4 m,顶端开口的生长室(Open-top chambers,OTCs)。生长室通过控制开口大小以实现室内温度不同程度的升高,其中一组生长室的开口大小设为2.0 m,以实现大气增温(2.0±0.5)℃(ET-2)的目的;另一组生长室的开口大小设为1.4 m,以实现大气增温(4.0±0.5)℃(ET-4)的目的。将9个TP-2200温度实时记录器置于不同处理研究单元中心距水面1 m处,以实时自动记录每个研究单元的大气温度数据,记录频率为1次·h-1,每天共记录24次,实验结束时对温度数据进行人工导出,并整理计算各组的年平均温度(MAT)、年最高温度(MAX)、年最低温度(MIN)、季平均温度(SAT)、日间积温(DAT)以及夜间积温(NAT)。根据2015年全年模拟增温的结果显示,两组增温处理组的大气温度平均值均高于对照组,其中ET-2组和ET-4组处理下的气温平均值分别高出CK组2.20、3.80℃(表1),说明本研究所采用的OTCs模拟增温系统起到了稳定的增温效果。

  • 图1 纳帕海湿地开顶式生长室

  • Fig.1 Open-top chambers (OTCs) in Napahai wetland

  • 根据前期对纳帕海湖滨带优势植物研究的基础,本文选取茭草作为研究对象。在2015年3—4月,挖去纳帕海湖滨带生长健康、长势均匀的茭草克隆株,移栽到口径35 cm、高40 cm的塑料盆中进行单株培养,原位采集纳帕海湖滨带土壤(30 cm)作为栽培基质,自然条件下缓苗15 d后,将移植了植株的塑料盆分别置入不同研究单元,每个研究单元放置3盆,即每个大气温度条件下共计9盆。各研究单元淹水深度以其原生水淹环境为基准(20~30 cm)。自植株盆栽后,加强对植株的日常管理,以保证移植植株的成活。

  • 表1 2015年不同温度条件下的温度变量值

  • Table1 Values of temperature variables under different temperature conditions in 2015

  • 注: CK. 环境温度(对照组); ET-2.(2.0±0.5)℃增温组; ET-4.(4.0±0.5)℃增温组。MAT. 年平均温度; MAX. 年最高温度; MIN. 年最低温度; SAT. 季平均温度; DAT. 日间积温; NAT. 夜间积温。

  • Note: CK. Ambient temperature (control) ; ET-2. (2.0±0.5) ℃ increment; ET-4. (4.0±0.5) ℃ increment. MAT. Mean annual temperature; MAX. Maximum annual temperature; MIN. Minimum annual temperature; SAT. Seasonal average temperature; DAT. Daytime accumulated temperature; NAT. Nighttime accumulated temperature.

  • 1.3 样品采集及茎解剖结构性状测定

  • 2015年9月,从CK、ET-2、ET-4三组中的9个研究单元中各选取生长成熟、长势健康的茭草3株(每盆1株),将整株茭草从盆中完整取出后用流水冲洗干净,每株植物分别剪取水面上方10 cm处的地上茎与土壤面下方10 cm处地下茎的茎干(长度约10 cm)。先将采集的茎干立即浸泡于 FAA 固定液(福尔马林、冰醋酸、酒精、蒸馏水体积比为10∶5∶50∶35)中固定,再分别装入自封袋密封并进行编号标记。将样品带回实验室进行茎解剖、测定。在实验室内,将采集回的茎干横切面进行徒手切片,用浓度为1%的甲苯胺蓝溶液对其染色,1 min后用质量分数为50%的酒精轻度冲洗叶片及玻片上过多甲苯胺蓝溶液,之后用吸水纸吸收载玻片周围多余的溶液,制成临时水玻片置于莱卡光学显微镜(Leica Corp DM6B,Germany)下观察,并拍摄维管束结构、角质层及表皮层等组织结构的照片(图2)。使用Image J(v.1.48,http://rsb.info.nih.gov /ij /)图片处理软件分别测量地上茎与地下茎的角质层厚度(cuticle thickness,CTup and CTunder)、外表皮细胞厚度(outside epidermal cell thickness,OETup and OETunder)、内表皮细胞厚度(inside epidermal cell thickness,IETup and IETunder)、表皮层厚度(epidermal layer thickness,ETup and ETunder)、维管束面积(vascular bundle area,VAup and VAunder)、导管面积(conduit area,CAup and CAunder)、筛管面积(sieve tube area,SAup and SAunder)等性状(表2),每个性状在不同温度处理下各有45组数据(每株5个数值)。

  • 图2 2015年1—12月不同温度条件下的大气日平均温度(A)和月平均温度(B)

  • Fig.2 Daily mean temperature (A) and monthly mean temperature (B) air temperatures in different conditions from January to December, 2015

  • 图3 自然状态下茭草的茎解剖结构

  • Fig.3 Anatomical structures of Zizania latifolia in natural state

  • 1.4 数据分析

  • 应用SPSS(26.0,https://spss.en.softonic.com/)统计分析软件进行差异性分析和逐步回归分析;使用单因素方差分析(one-way ANOVA)检测茭草茎解剖结构性状在不同生长温度间的差异(P<0.05),使用逐步回归分析筛选出影响茭草茎解剖结构性状的主要温度变量;应用R(v.3.01; https://cran.r-project.org)统计分析软件内置的“vegan”程序包进行主成分分析,检测茭草茎解剖结构性状与各温度变量间的关系。所有图片均由Adobe Illustrator(2021; http://www1. jsllcm.com/Adobe/ai-u5ky/)与Origin(2018; origin.shyihuog.cn/origin)绘图软件绘制。

  • 2 结果与分析

  • 2.1 茭草茎解剖结构对增温的响应

  • 与对照组(CK)相比,两组增温条件下茭草地上茎的内、外表皮细胞厚度及整个表皮层的厚度均显著增加,而其维管束结构大小在三组温度条件下均无显著差异(图4)。相比于对照组,地下茎内、外表皮细胞厚度及表皮层厚度在增温2℃处理下均显著增加,而这些表皮结构性状在增温4℃处理下与对照组却无显著差异(图4)。地下茎维管束结构大小在对照组和增温2℃处理下无显著差异,而在增温4℃处理下显著减小(图4)。

  • 2.2 茭草茎解剖结构与温度因子的相关性

  • 年最高温度和夜间积温是影响茭草茎解剖结构性状变化的主要温度变量,即二者是导致茭草茎解剖结构性状发生变化以响应温度升高的主要温度变量(表3)。基于茭草地上茎解剖结构性状和温度变量的主成分分析显示,第一主轴解释了总方差变异的55.21%,第二主轴解释了总方差变异的22.15%。其中,地上茎内表皮细胞厚度与所有温度参数均与第一主轴显著正相关;表皮层厚度、维管束面积和筛管面积均与第二主轴呈显著正相关(图5:a,表4)。这表明,对于茭草的地上茎,其内表皮细胞厚度是地上茎响应增温的最主要性状,并与温度因子呈正相关(表4)。

  • 基于茭草地下茎解剖结构性状和温度变量的主成分分析显示,第一主轴解释了总方差变异的58.72%,第二主轴解释了总方差变异的29.53%。其中,地下茎导管和筛管面积均与第一主轴呈显著负相关,而所有温度因子均与第一主轴呈显著正相关;地下茎内、外表皮细胞厚度及表皮层厚度均与第二主轴呈显著正相关(图5:b,表4)。这表明地下茎导管和筛管大小是地下茎响应温度升高的主要性状,二者与温度升高呈负相关关系。

  • 3 讨论

  • 3.1 茭草茎解剖结构性状对增温的响应策略

  • 滇西北高原湖滨带挺水植物茭草的地上茎和地下茎解剖结构对增温的响应策略不完全相同。增温促进了地上茎表皮结构厚度的增加,表明地上茎主要通过增加表皮厚度适应4℃以内的增温。其地下茎在增温2℃的轻度增温下是通过表皮结构厚度的增加来响应增温,而随着温度的进一步增加,在增温4℃条件下,地下茎主要通过维管束结构大小的减小来响应增温,此时其表皮结构厚度又恢复到与对照组间无差异。较厚的表皮细胞,一方面起到促进植物蒸腾散温,维持植物体表适温作用;另一方面能够促进植物维持足够的细胞膨压,以减轻逆境对细胞生长的抑制,使植物保持固有形态,防止萎蔫(朱蠡庆等,2013; Kim et al.,2018)。一般情况下,高温环境因容易促使植物新陈代谢保持高活跃度而导致生理失水,并引起植物体萎蔫。因此,茭草地上茎在增温4℃以内的条件下,对温度的主要响应策略都是通过表皮蒸腾散失水分以降温的方式维持植物体正常的生理活动,体现了地上茎对增温具有较强的适应调节能力。

  • 与地上茎相比,茭草的地下茎对增温更为敏感。增温2℃时,茭草地下茎对增温的响应方式仍然是通过表皮蒸腾失水降温维持生理代谢;而增温4℃时,其地下茎对增温的响应方式则转变为维管束生理调节。较大的导管因容易受到环境胁迫而造成导管栓塞,从而引起导水率的快速下降(Cai &Tyree,2010; Sperry,2000);较小的导管和筛管虽然减少了一次性对水分和光合产物的运输能力,但同时提高了植物的抗气穴化能力,保证了维管束结构的运输安全(Willigen et al.,2000; Pittermann &Sperry,2003)。因此,维管束结构的减小往往是植物遭受逆境的表现。温度升高到一定程度,植物快速的蒸腾失水可能会导致其维管束结构的供水不足,引起植物体内生理缺水,进而增加维管束气穴化的风险。茭草地下茎在增温4℃条件下导管和筛管的减小就是防止其植物体因过度失水导致维管束结构堵塞的重要措施。植物在适当的高温或干旱所导致的水分胁迫环境下往往通过增大自身导管直径或截面积来提高水分利用效率(张志亮等,2014; 李荣等,2015)。茭草地下茎对增温处理的响应方式表明,增温4℃已经超过了其地下茎对温度的耐受范围,从而对植物造成一定程度的生理损伤,最直接的表现就是植物输送水和光合能力的降低。与增温2℃条件下相比,茭草地下茎在增温4℃条件下表皮结构厚度的下降,与其植物的输水功能下降直接相关。

  • 表2 茭草茎解剖结构性状

  • Table2 Stem anatomical structural traits of Zizania latifolia

  • 表3 基于逐步回归模型的茭草茎解剖结构性状与环境因子的相关性

  • Table3 Correlations between stem anatomical structural traits of Zizania latifolia and environmental factors based on stepwise regression models

  • 注: Constant. 截距。

  • Note: Constant. Intercept.

  • 图4 茭草茎解剖结构性状(平均值±标准差)在3组不同生长温度间的差异

  • Fig.4 Differences of the stem anatomical structural traits (x-±s) of Zizania latifolia among three different growth temperature treatments

  • 图5 基于茭草地上茎(a)和地下茎(b)解剖性状以及温度变量的主成分分析

  • Fig.5 Principle component analysis based on aboveground (a) and underground (b) stem anatomical structural traits of Zizania latifolia, and temperature variables

  • 3.2 茭草茎解剖结构性状与温度间的关系

  • 本研究中,年最高温度和夜间积温是影响茭草茎解剖结构性状的主要温度因子。年最高温度代表着植物生长环境的极端高温(Goraya et al.,2017; Skinner et al.,2018)。一般来说,年最高温持续时间越长,对植物解剖结构的抑制作用会随之增强(Zhen et al.,2020; Li et al.,2020; García-Cervigón et al.,2021),进而引起一系列代谢过程的变化来影响植物的光合速率以及产物的累积和分配(Hendrickson et al.,2008; Djanaguiraman et al.,2011)。由于温度变化引起的有机物在地上茎和地下茎的分配变化可能直接导致地上和地下茎性状的差异,因此年最高温度同时影响了茭草地上茎和地下茎的组织结构性状。对同为禾本科的莎草(Cyperus rotundus)地上、地下生物量循环分配所进行的相关研究,在一定程度上证明了上述观点(Zeh et al.,2019; Bao et al.,2022)。而夜间积温则与植物的呼吸能力密切相关,并且是作物能否增产的关键(Chen et al.,2002; 马雅菲,2020)。茭草作为一种根茎作物,适度的夜间低温有利于营养物质的积累和呼吸消耗的减少,能够提高植株的生长速率(冯玉龙等,1995; 宋敏丽等,2010; 张玉屏等,2020)。因此,叶间积温是影响茭草解剖的重要温度因子之一。本研究基于温度数据发现,增温处理组相比于对照组,其夜间积温呈现出倍数增长趋势,并且对地下茎筛管表现出极显著的负影响,筛管作为植物体内有机物输送的主要结构,地下筛管更是关系到茭草底部块根果实的产量与品质。因此,夜间高温对茭草的负面影响需要认真对待。

  • 表4 茭草茎解剖性状与主成分分析(PCA)前两轴的相关性(r

  • Table4 Correlations (r) of stem anatomical structural traits with the first two axes of principle component analysis (PCA)

  • 注:显著相关性用加粗字体表示; *. P<0.05,**. P<0.001.

  • Note: Significant correlations are indicated by bolded fonts; *. P<0.05, **. P<0.001.

  • 本研究中,地上茎表皮结构厚度、地下茎维管束导管和筛管大小是响应温度变化的主要性状。在增温2℃的轻度条件下,茭草地上茎和地下茎的内部生理结构均未发生显著的改变,这表明此温度环境尚在茭草的最适温度范围内;而增温4℃的条件引起地下茎内部生理结构的改变,表明此温度环境对茭草地下茎来说已经超过了其耐受范围,这进一步证明茭草地下茎对于温度的敏感度高于地上茎。同时,地上茎表皮结构厚度与温度呈正相关关系也表明4℃以内的增温仍然在地上茎的可调节范围内,并且地上茎在应对4℃以内的增温时主要通过增加其表皮结构厚度来权衡蒸腾失水与保水之间的关系,从而保证植株正常生理活动。而茭草地下茎维管组织与温度变量均呈显著负相关,说明4℃增温环境可能对茭草地下茎产生了抑制作用,植物维管结构随之缩小,其物质运输能力可能受到限制。这与草本植物马铃薯(Solanum tuberosum)、水葱(Schoenoplectus tabernaemontani)以及小麦(Triticum aestivum)对增温的响应策略存在一定相似性。马铃薯在高出自然环境2~4℃的培养环境中,其导管细胞会增大变形,对韧皮部细胞施加机械压力,最终对整个维管结构造成负面影响;而将昼夜温度从24℃增加30℃时,将直接导致底部块茎干物质分配减少65%(Manrique &Bartholomew 1991; Paul et al.,2017; Qaderi et al.,2019; Chen &Setter,2021)。而水葱在增温2℃处理下便出现了维管束大小显著下降趋势,抑制了水葱输导组织的传输能力(冯春慧等,2020)。小麦在增温2.37℃处理下,其茎秆维管束的数量、面积以及茎壁面积等维管束性状均出现显著减小(高文娟等,2011)。但与之相反的是,杉叶藻(Hippuris vulgaris)在增温4℃环境下,其导管、筛管的大小以及数量却逐渐增大,从而促进了植株的传输能力(管东旭等,2018)。因此,植物对增温作出的适应性策略可能取决于不同物种与环境差异。

  • 4 结论

  • 茭草地下茎对增温的敏感度大于地上茎。其地上茎在增温4℃以内都是通过增加表皮结构厚度进行响应。茭草地下茎在增温2℃的轻度增温下,对增温的响应策略与地上茎相同;而在增温4℃处理下,则转变为减小维管束结构的大小来响应增温。年最高温度与夜间积温是影响茭草植株茎解剖性状的关键温度因子,二者通过影响植物一系列代谢过程来限制植物的生长。茭草地上茎表皮结构与地下茎维管组织结构是响应温度变化的主要性状,并且增温4℃对茭草地下茎维管组织产生了抑制作用,导致茭草维管组织供输能力的削弱以及形态的减小,进而影响到整株植物的生理活动。本研究结果进一步补充了高原地区湿地植物响应气候变化的研究案例,为高原湿地应对气候变化提供了科学依据。基于现今气候变暖背景,未来我们仍会针对更多高原湿地植物,加大其研究的广度与深度,延长实验的观测时间,以此来减少实验的误差,以确保研究的精确度。

  • 参考文献

    • BAKER RL, YARKHUNOVA Y, VIDAL K, et al. , 2017. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica [J]. BMC Plant Biol, 17(1): 1-12.

    • BAO T, JIA G, XU X, 2022. Warming enhances dominance of vascular plants over cryptogams across northern wetlands [J]. Glob Change Biol. https: //doi. org/10. 1111/gcb. 16182.

    • CAI J, TYREE MT, 2010. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx [J]. Plant Cell Environ, 33(7): 1059-1069.

    • CHEN CT, SETTER TL, 2021. Role of tuber developmental processes in response of potato to high temperature and elevated CO2 [J]. Plants, 10(5): 871.

    • CHEN TB, HUANG Q, et al. , 2002. Accumulated temperature as an indicator to predict the stabilizing process in sewage sludge composting [J]. Acta Ecol Sin, 22(6): 911-915.

    • DANG L, ZHAO L, LI Y, et al. , 2021. Bolothrips bicolor (Heeger) (Thysanoptera: Idolothripinae): a genus and species newly recorded from China [J]. Zool Syst, 46(3): 264-268.

    • DIFFENBAUGH NS, GIORGI F, 2012. Climate change hotspots in the CMIP5 global climate model ensemble [J]. Clim Change, 114(3): 813-822.

    • DJANAGUIRAMAN M, PRASAD PVV, BOYLE DL, et al. , 2011. High-temperature stress and soybean leaves: Leaf anatomy and photosynthesis [J]. Crop Sci, 51(5): 2125-2131.

    • DONG Y, 2013. Research progress on the impact of climate change on wetland ecosystems [J]. Subtrop Soil Water Conserv, 25(2): 37-40. [董瑜, 2013. 气候变化对湿地生态系统影响的研究进展 [J]. 亚热带水土保持, 25(2): 37-40. ]

    • ERWIN K L, 2009. Wetlands and global climate change: the role of wetland restoration in a changing world [J]. Wetl Ecol Manag, 17(1): 71-84.

    • FANG MY, ZHANG M, DAI D, et al. , 2017. Study on leaf anatomical structure and resistance of air pineapple [J]. JNA, 45(1): 98-101. [方敏彦, 章明, 戴丹, 等, 2017. 空气凤梨叶片解剖结构与抗逆性研究 [J]. 北方农业学报, 45(1): 98-101. ]

    • FENG CH, SUN M, TIAN K, et al. , 2020. Effect of conducting tissue of Scirpus validus to simulated warming [J]. J N For, 48(4): 24-28. [冯春慧, 孙梅, 田昆, 等, 2020. 模拟增温对水葱(Scirpus validus)输导组织的影响 [J]. 东北林业大学学报, 48(4): 24-28. ]

    • FENG YL, LIU EJ, SUN GB, 1995. Influence of temperature of root system on plant (Ⅰ) ─ Influence of root temperature on plant growth and photosynthesis [J]. J N For Univ, 1995(3): 63-69. [冯玉龙, 刘恩举, 孙国斌, 1995. 根系温度对植物的影响(Ⅰ)──根温对植物生长及光合作用的影响 [J]. 东北林业大学学报, 1995(3): 63-69. ]

    • GAO WJ, 2011. The initial response of leaf stomatal and stem vascular bundle of wheat and rice to simulated warming [D]. Hunan Agric Univ, 2012(4): 10-30. [高文娟, 2011. 小麦水稻叶面气孔和茎秆维管束对模拟增温的初期响应 [D]. 湖南农业大学, 2012(4): 10-30. ]

    • GARCÍA-CERVIGÓN A I, GARCÍA-LÓPEZ M A, PISTÓN N, et al. , 2021. Co-ordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant [J]. Ann Bot, 127(7): 919-929.

    • GORAYA GK, KAUR B, ASTHIR B, 2017. Rapid injuries of high temperature in plants [J]. J Plant Biol, 60(4): 298-305.

    • GUAN DX, FENG CH, TIAN K, et al. , 2019. Responses of stem anatomical structure of a lakeside dominant plant Hippuris vulgaris to simulated warming in Napahai wetland [J]. Chin J Ecol, 38(6): 1620-1628. [管东旭, 冯春慧, 田昆, 等, 2019. 纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris)茎解剖结构对模拟增温的响应 [J]. 生态学杂志, 38(6): 1620-1628. ]

    • GUAN DX, TIAN K, WANG ZB, et al. , 2018. Response of vascular structure of a lakeside dominant plant species Hippuris vulgaris L. to simulated warming in Napahai wetland of Northwestern Yunnan [J]. Chin J Ecol, 37(9): 2611-2618. [管东旭, 田昆, 王志保, 等, 2018. 滇西北纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris L. )维管结构对模拟增温的响应 [J]. 生态学杂志, 37(9): 2611-2618. ]

    • HAN G, LI Y, QIAO Z, et al. , 2021. Advances in the regulation of epidermal cell development by C2H2 zinc finger proteins in plants [J]. Front Plant Sci, 12: 754512.

    • HENDRICKSON L, SHARWOOD R, LUDWIG M, et al. , 2008. The effects of rubisco activase on C4 photosynthesis and metabolism at high temperature [J]. J Exp Bot, 59(7): 1789-1798.

    • HEREDIA-GUERRERO JA, GUZMAN-PUYOL S, BENÍTEZ JJ, et al. , 2018. Plant cuticle under global change: biophysical implications [J]. Glob Change Biol, 24(7): 2749-2751.

    • HODSON R, 2017. Climate change [J]. Nature, 550: S53.

    • IPCC, 2013. Working group I contribution to the IPCC fifth assessment report, climate change 2013: The physical science basis: Summary for Policymakers [M]. Cambridge: Cambridge University Press.

    • KENNEDY J, CHRISTIDIS N, DUNN R, et al. , 2022. Global and regional climate in 2021 [J]. Weather. DOI: 10. 1002/wea. 4256.

    • KIM YX, STUMPF B, SUNG J, et al. , 2018. The relationship between turgor pressure change and cell hydraulics of midrib parenchyma cells in the leaves of Zea mays [J]. Cell, 7(10): 180.

    • LI R, JIANG ZM, ZHANG SX, et al. , 2015. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plant Ecol, 39(8): 838-848. [李荣, 姜在民, 张硕新, 等, 2015. 木本植物木质部栓塞脆弱性研究新进展 [J]. 植物生态学报, 39(8): 838-848. ]

    • LI WD, LIU YG, TIAN K, et al. , 2010. Research on purification effect of Jian Lake Z. latifolia wetland lakeside zone in Northwest of Yunnan plateau on nitrogen and phosphorus of agricultural non-point source [J]. J Anhui Agric Sci, 38(32): 18294-18296. [李卫东, 刘云根, 田昆, 等, 2010. 滇西北高原剑湖茭草湿地湖滨带对农业面源N·P污染净化效果研究 [J]. 安徽农业科学, 38(32): 18294-18296. ]

    • LI Y, LIANG W, ZHAO B, 2020. Physiological and microstructural responses of two Rhododendron cultivars to high temperature and low light [J]. Hortic Environ Biotechnol, 61(3): 445-458.

    • LIU CG, LIU FX, SONG XF, et al. , 2012. Growth adaptabilities of Z. latifolia in different artificial wetlands [J]. J Lake Sci, 24(1): 75-82. [刘长娥, 刘福兴, 宋祥甫, 等, 2012. 茭草(Z. latifolia)在不同人工湿地中的生长适应性 [J]. 湖泊科学, 24(1): 75-82. ]

    • LIU ZY, ZHANG XN, LI LP, et al. , 2017. Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan [J]. Acta Ecol Sin, 37(23): 7821-7832. [刘振亚, 张晓宁, 李丽萍, 等, 2017. 大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响 [J]. 生态学报, 37(23): 7821-7832. ]

    • MA YF, 2020. Effect of increased precipitation and nighttime warming on cotton yield in North China Plain [D]. Kaifeng: Henan University: 3-6. [马雅菲, 2020. 增雨和夜间增温对华北平原棉花产量的影响 [D]. 开封: 河南大学: 3-6. ]

    • MANRIQUE LA, BARTHOLOMEW DP, 1991. Growth and yield performance of Potato grown at three elevations in Hawaii: II. dry matter production and efficiency of partitioning [J]. Crop Sci, 31: 367-372.

    • MENG H, WANG L, ZHANG ZS, et al. , 2016. Researches on the impacts of climate change on spatial distribution and main ecological functions of inland wetland ecosystem in China [J]. Wetland Sci, 14(5): 710-716. [孟焕, 王琳, 张仲胜, 等, 2016. 气候变化对中国内陆湿地空间分布和主要生态功能的影响研究 [J]. 湿地科学, 14(5): 710-716. ]

    • MIROSŁAW-ŚWIĄTEK D, MARCINKOWSKI P, KOCHANEK K, et al. , 2020. The impact of climate change on flow conditions and wetland ecosystems in the Lower Biebrza River (Poland) [J]. PeerJ, 8: e9778.

    • PAUL S, DAS MK, BAISHYA P, et al. , 2017. Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars [J]. Sci Hortic, 225: 134-140.

    • PITTERMANN J, SPERRY J, 2003. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers [J]. Tree Physiol, 23(13): 907-914.

    • QADERI MM, MARTEL AB, DIXON SL, 2019. Environmental factors influence plant vascular system and water regulation [J]. Plants, 8(3): 65.

    • RISTIC Z, JENKS MA, 2002. Leaf cuticle and water loss in maize lines differing in dehydration avoidance [J]. J Plant Physiol, 159(6): 645-651.

    • SHANG W, YANG YX, 2012. Degradation characteristics, patterns, and processes of lakeside wetland in Napahai of northwest Yunnan plateau, Southwest China [J]. Chin J Appl Ecol, 23(12): 3257-3265. [尚文, 杨永兴, 2012. 滇西北高原纳帕海湖滨湿地退化特征、规律与过程 [J]. 应用生态学报23(12): 3257-3265. ]

    • SKINNER CB, POULSEN CJ, MANKIN JS, 2018. Amplification of heat extremes by plant CO2 physiological forcing [J]. Nat Commun, 9(1): 1-11.

    • SONG ML, WEN XZ, LI YL, 2010. Effects of high rhizosphere temperature on plant growth and metabolism: a review [J]. Chin J Ecol, 29(11): 2258-2264. [宋敏丽, 温祥珍, 李亚灵, 2010. 根际高温对植物生长和代谢的影响综述 [J]. 生态学杂志, 29(11): 2258-2264. ]

    • SPERRY JS, 2000. Hydraulic constraints on plant gas exchange [J]. Agric For Meteorol, 104(1): 13-23.

    • SUN M, TIAN K, ZHANG Y, et al. , 2017. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 35(6): 940-949. [孙梅, 田昆, 张贇, 等, 2017. 植物叶片功能性状及其环境适应研究 [J]. 植物科学学报, 35(6): 940-949. ]

    • TIAN K, LIU G, XIAO D, et al. , 2015. Ecological effects of dam impoundment on closed and half-closed wetlands in China [J]. Wetlands, 35(5): 889-898.

    • TYREE MT, ZIMMERMANN MH, 2002. Xylem structure and the ascent of sap [M]//TYREE MT. The Vessel Network in the Stem. Berlin, Heidelberg: Springer-Verlag: 28-48.

    • WANG TX, LI JY, HU ZH, 2003. Correlation between the structure of vascular bundle and the content of aloin in Aloe [J]. Guihaia, 23(5): 436-439+483-484. [王太霞, 李景原, 胡正海, 2003. 芦荟维管束的结构与芦荟素积累的相关性 [J]. 广西植物, 23(5): 436-439+483-484. ]

    • WILLIGEN CV, SHERWIN HW, PAMMENTER NW, 2000. Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions [J]. New Phytol, 145(1): 51-59.

    • XIAO DR, 2007. The plant communities distribution patterns and its driving force of typical wetland in Northwestern Yunnan plateau, China [D]. Kunming: Southwest Forest University: 13-48. [肖德荣, 2007. 滇西北高原典型湿地植物群落分布格局及驱动力 [D]. 昆明: 西南林学院: 13-48. ]

    • YIN QL, 2015. Anatomical structure of main plants and its environmental adaptations in the hilly-gullied loess plateau region [D]. Yangling: Northwest A & F University: 1-7. [尹秋龙, 2015. 黄土丘陵沟壑区主要植物叶解剖结构及其环境适应性研究 [D]. 杨陵: 西北农林科技大学: 1-7. ]

    • YANG SJ, SUN M, ZHANG YJ, 2014. Strong leaf morphological, anatomical, and physiological responses of a subtropical woody bamboo (Sinarundinaria nitida) to contrasting light environments [J]. Plant Ecol, 215(1): 97-109.

    • YU HY, SUN M, FENG CH, et al. , 2023. Responses of leaf economic traits of Scirpus validus and Typhaorientalis to simulated warming and CO2 concentration multiplication [J]. Guihaia, 43(9): 1588-1599. [余洪艳, 孙梅, 冯春慧, 等, 2023. 水葱和香蒲叶经济性状对模拟增温和CO2浓度倍增的响应 [J]. 广西植物, 43(9): 1588-1599. ]

    • ZEH L, LIMPENS J, ERHAGEN B, et al. , 2019. Plant functional types and temperature control carbon input via roots in peatland soils [J]. Plant Soil, 438(1): 19-38.

    • ZHANG F, PI XQ, WANG XE, et al. , 2019. Anatomy and apoplastic barrier histochemistry characteristics of Z. latifolia adapted to wetland environment [J]. Guihaia, 39(5): 615-623. [张梵, 皮秀权, 王晓娥, 等, 2019. 菰适应湿地环境的解剖和屏障结构特征研究 [J]. 广西植物, 39(5): 615-623. ]

    • ZHANG X, LI ZF, ZHAO HL, et al. , 2016. Diurnal variation of photosynthetic characteristics of five kinds of arbor dominant species in Napahai [J]. Guihaia, 36(5): 515-522. [张曦, 栗忠飞, 赵慧丽, 等, 2016. 纳帕海流域五种优势乔木树种光合速率日变化特征 [J]. 广西植物, 36(5): 515-522. ]

    • ZHANG YP, WANG YL, WANG YL, et al. , 2020. Response of rice starch synthesis to night temperature changes [J]. Chin J Rice Sci, 34(6): 525-538. [张玉屏, 王军可, 王亚梁, 等, 2020. 水稻淀粉合成对夜温变化的响应 [J]. 中国水稻科学, 34(6): 525-538. ]

    • ZHANG ZL, LIU GD, ZHANG FC, et al. , 2014 Research progress of plant leaf hydraulic conductivity [J]. Chin J Ecol, 33(6): 1663-1670. [张志亮, 刘国东, 张富仓, 等, 2014. 植物叶片导水率的研究进展 [J]. 生态学杂志, 33(6): 1663-1670. ]

    • ZHAO C, LIU Q, 2009. Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization [J]. Acta Physiol Plant, 31(1): 163-173.

    • ZHAO Y, SUN M, GUO H, et al. , 2022. Responses of leaf hydraulic traits of Schoenoplectus tabernaemontani to increasing temperature and CO2 concentrations [J]. Bot Stud, 63(1): 1-10.

    • ZHEN B, LI H, NIU Q, et al. , 2020. Effects of combined high temperature and waterlogging stress at booting stage on root anatomy of rice (Oryza sativa L. ) [J]. Water, 12(9): 2524.

    • ZHU LQ, WANG BC, FU X, et al. , 2013. Turgor pressure in plant cell growth [J]. Acta Biophys Sin, 29(8): 583-593. [朱蠡庆, 王伯初, 付雪, 等, 2013. 膨压在植物细胞生长中的作用 [J]. 生物物理学报, 29(8): 583-593. ]

  • 参考文献

    • BAKER RL, YARKHUNOVA Y, VIDAL K, et al. , 2017. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica [J]. BMC Plant Biol, 17(1): 1-12.

    • BAO T, JIA G, XU X, 2022. Warming enhances dominance of vascular plants over cryptogams across northern wetlands [J]. Glob Change Biol. https: //doi. org/10. 1111/gcb. 16182.

    • CAI J, TYREE MT, 2010. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx [J]. Plant Cell Environ, 33(7): 1059-1069.

    • CHEN CT, SETTER TL, 2021. Role of tuber developmental processes in response of potato to high temperature and elevated CO2 [J]. Plants, 10(5): 871.

    • CHEN TB, HUANG Q, et al. , 2002. Accumulated temperature as an indicator to predict the stabilizing process in sewage sludge composting [J]. Acta Ecol Sin, 22(6): 911-915.

    • DANG L, ZHAO L, LI Y, et al. , 2021. Bolothrips bicolor (Heeger) (Thysanoptera: Idolothripinae): a genus and species newly recorded from China [J]. Zool Syst, 46(3): 264-268.

    • DIFFENBAUGH NS, GIORGI F, 2012. Climate change hotspots in the CMIP5 global climate model ensemble [J]. Clim Change, 114(3): 813-822.

    • DJANAGUIRAMAN M, PRASAD PVV, BOYLE DL, et al. , 2011. High-temperature stress and soybean leaves: Leaf anatomy and photosynthesis [J]. Crop Sci, 51(5): 2125-2131.

    • DONG Y, 2013. Research progress on the impact of climate change on wetland ecosystems [J]. Subtrop Soil Water Conserv, 25(2): 37-40. [董瑜, 2013. 气候变化对湿地生态系统影响的研究进展 [J]. 亚热带水土保持, 25(2): 37-40. ]

    • ERWIN K L, 2009. Wetlands and global climate change: the role of wetland restoration in a changing world [J]. Wetl Ecol Manag, 17(1): 71-84.

    • FANG MY, ZHANG M, DAI D, et al. , 2017. Study on leaf anatomical structure and resistance of air pineapple [J]. JNA, 45(1): 98-101. [方敏彦, 章明, 戴丹, 等, 2017. 空气凤梨叶片解剖结构与抗逆性研究 [J]. 北方农业学报, 45(1): 98-101. ]

    • FENG CH, SUN M, TIAN K, et al. , 2020. Effect of conducting tissue of Scirpus validus to simulated warming [J]. J N For, 48(4): 24-28. [冯春慧, 孙梅, 田昆, 等, 2020. 模拟增温对水葱(Scirpus validus)输导组织的影响 [J]. 东北林业大学学报, 48(4): 24-28. ]

    • FENG YL, LIU EJ, SUN GB, 1995. Influence of temperature of root system on plant (Ⅰ) ─ Influence of root temperature on plant growth and photosynthesis [J]. J N For Univ, 1995(3): 63-69. [冯玉龙, 刘恩举, 孙国斌, 1995. 根系温度对植物的影响(Ⅰ)──根温对植物生长及光合作用的影响 [J]. 东北林业大学学报, 1995(3): 63-69. ]

    • GAO WJ, 2011. The initial response of leaf stomatal and stem vascular bundle of wheat and rice to simulated warming [D]. Hunan Agric Univ, 2012(4): 10-30. [高文娟, 2011. 小麦水稻叶面气孔和茎秆维管束对模拟增温的初期响应 [D]. 湖南农业大学, 2012(4): 10-30. ]

    • GARCÍA-CERVIGÓN A I, GARCÍA-LÓPEZ M A, PISTÓN N, et al. , 2021. Co-ordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant [J]. Ann Bot, 127(7): 919-929.

    • GORAYA GK, KAUR B, ASTHIR B, 2017. Rapid injuries of high temperature in plants [J]. J Plant Biol, 60(4): 298-305.

    • GUAN DX, FENG CH, TIAN K, et al. , 2019. Responses of stem anatomical structure of a lakeside dominant plant Hippuris vulgaris to simulated warming in Napahai wetland [J]. Chin J Ecol, 38(6): 1620-1628. [管东旭, 冯春慧, 田昆, 等, 2019. 纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris)茎解剖结构对模拟增温的响应 [J]. 生态学杂志, 38(6): 1620-1628. ]

    • GUAN DX, TIAN K, WANG ZB, et al. , 2018. Response of vascular structure of a lakeside dominant plant species Hippuris vulgaris L. to simulated warming in Napahai wetland of Northwestern Yunnan [J]. Chin J Ecol, 37(9): 2611-2618. [管东旭, 田昆, 王志保, 等, 2018. 滇西北纳帕海湖滨带优势植物杉叶藻(Hippuris vulgaris L. )维管结构对模拟增温的响应 [J]. 生态学杂志, 37(9): 2611-2618. ]

    • HAN G, LI Y, QIAO Z, et al. , 2021. Advances in the regulation of epidermal cell development by C2H2 zinc finger proteins in plants [J]. Front Plant Sci, 12: 754512.

    • HENDRICKSON L, SHARWOOD R, LUDWIG M, et al. , 2008. The effects of rubisco activase on C4 photosynthesis and metabolism at high temperature [J]. J Exp Bot, 59(7): 1789-1798.

    • HEREDIA-GUERRERO JA, GUZMAN-PUYOL S, BENÍTEZ JJ, et al. , 2018. Plant cuticle under global change: biophysical implications [J]. Glob Change Biol, 24(7): 2749-2751.

    • HODSON R, 2017. Climate change [J]. Nature, 550: S53.

    • IPCC, 2013. Working group I contribution to the IPCC fifth assessment report, climate change 2013: The physical science basis: Summary for Policymakers [M]. Cambridge: Cambridge University Press.

    • KENNEDY J, CHRISTIDIS N, DUNN R, et al. , 2022. Global and regional climate in 2021 [J]. Weather. DOI: 10. 1002/wea. 4256.

    • KIM YX, STUMPF B, SUNG J, et al. , 2018. The relationship between turgor pressure change and cell hydraulics of midrib parenchyma cells in the leaves of Zea mays [J]. Cell, 7(10): 180.

    • LI R, JIANG ZM, ZHANG SX, et al. , 2015. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plant Ecol, 39(8): 838-848. [李荣, 姜在民, 张硕新, 等, 2015. 木本植物木质部栓塞脆弱性研究新进展 [J]. 植物生态学报, 39(8): 838-848. ]

    • LI WD, LIU YG, TIAN K, et al. , 2010. Research on purification effect of Jian Lake Z. latifolia wetland lakeside zone in Northwest of Yunnan plateau on nitrogen and phosphorus of agricultural non-point source [J]. J Anhui Agric Sci, 38(32): 18294-18296. [李卫东, 刘云根, 田昆, 等, 2010. 滇西北高原剑湖茭草湿地湖滨带对农业面源N·P污染净化效果研究 [J]. 安徽农业科学, 38(32): 18294-18296. ]

    • LI Y, LIANG W, ZHAO B, 2020. Physiological and microstructural responses of two Rhododendron cultivars to high temperature and low light [J]. Hortic Environ Biotechnol, 61(3): 445-458.

    • LIU CG, LIU FX, SONG XF, et al. , 2012. Growth adaptabilities of Z. latifolia in different artificial wetlands [J]. J Lake Sci, 24(1): 75-82. [刘长娥, 刘福兴, 宋祥甫, 等, 2012. 茭草(Z. latifolia)在不同人工湿地中的生长适应性 [J]. 湖泊科学, 24(1): 75-82. ]

    • LIU ZY, ZHANG XN, LI LP, et al. , 2017. Influence of simulated warming on light and CO2 utilization capacities of lakeside dominant plants in a typical plateau wetland in northwestern Yunnan [J]. Acta Ecol Sin, 37(23): 7821-7832. [刘振亚, 张晓宁, 李丽萍, 等, 2017. 大气增温对滇西北高原典型湿地湖滨带优势植物的光和CO2利用能力的影响 [J]. 生态学报, 37(23): 7821-7832. ]

    • MA YF, 2020. Effect of increased precipitation and nighttime warming on cotton yield in North China Plain [D]. Kaifeng: Henan University: 3-6. [马雅菲, 2020. 增雨和夜间增温对华北平原棉花产量的影响 [D]. 开封: 河南大学: 3-6. ]

    • MANRIQUE LA, BARTHOLOMEW DP, 1991. Growth and yield performance of Potato grown at three elevations in Hawaii: II. dry matter production and efficiency of partitioning [J]. Crop Sci, 31: 367-372.

    • MENG H, WANG L, ZHANG ZS, et al. , 2016. Researches on the impacts of climate change on spatial distribution and main ecological functions of inland wetland ecosystem in China [J]. Wetland Sci, 14(5): 710-716. [孟焕, 王琳, 张仲胜, 等, 2016. 气候变化对中国内陆湿地空间分布和主要生态功能的影响研究 [J]. 湿地科学, 14(5): 710-716. ]

    • MIROSŁAW-ŚWIĄTEK D, MARCINKOWSKI P, KOCHANEK K, et al. , 2020. The impact of climate change on flow conditions and wetland ecosystems in the Lower Biebrza River (Poland) [J]. PeerJ, 8: e9778.

    • PAUL S, DAS MK, BAISHYA P, et al. , 2017. Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars [J]. Sci Hortic, 225: 134-140.

    • PITTERMANN J, SPERRY J, 2003. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers [J]. Tree Physiol, 23(13): 907-914.

    • QADERI MM, MARTEL AB, DIXON SL, 2019. Environmental factors influence plant vascular system and water regulation [J]. Plants, 8(3): 65.

    • RISTIC Z, JENKS MA, 2002. Leaf cuticle and water loss in maize lines differing in dehydration avoidance [J]. J Plant Physiol, 159(6): 645-651.

    • SHANG W, YANG YX, 2012. Degradation characteristics, patterns, and processes of lakeside wetland in Napahai of northwest Yunnan plateau, Southwest China [J]. Chin J Appl Ecol, 23(12): 3257-3265. [尚文, 杨永兴, 2012. 滇西北高原纳帕海湖滨湿地退化特征、规律与过程 [J]. 应用生态学报23(12): 3257-3265. ]

    • SKINNER CB, POULSEN CJ, MANKIN JS, 2018. Amplification of heat extremes by plant CO2 physiological forcing [J]. Nat Commun, 9(1): 1-11.

    • SONG ML, WEN XZ, LI YL, 2010. Effects of high rhizosphere temperature on plant growth and metabolism: a review [J]. Chin J Ecol, 29(11): 2258-2264. [宋敏丽, 温祥珍, 李亚灵, 2010. 根际高温对植物生长和代谢的影响综述 [J]. 生态学杂志, 29(11): 2258-2264. ]

    • SPERRY JS, 2000. Hydraulic constraints on plant gas exchange [J]. Agric For Meteorol, 104(1): 13-23.

    • SUN M, TIAN K, ZHANG Y, et al. , 2017. Research on leaf functional traits and their environmental adaptation [J]. Plant Sci J, 35(6): 940-949. [孙梅, 田昆, 张贇, 等, 2017. 植物叶片功能性状及其环境适应研究 [J]. 植物科学学报, 35(6): 940-949. ]

    • TIAN K, LIU G, XIAO D, et al. , 2015. Ecological effects of dam impoundment on closed and half-closed wetlands in China [J]. Wetlands, 35(5): 889-898.

    • TYREE MT, ZIMMERMANN MH, 2002. Xylem structure and the ascent of sap [M]//TYREE MT. The Vessel Network in the Stem. Berlin, Heidelberg: Springer-Verlag: 28-48.

    • WANG TX, LI JY, HU ZH, 2003. Correlation between the structure of vascular bundle and the content of aloin in Aloe [J]. Guihaia, 23(5): 436-439+483-484. [王太霞, 李景原, 胡正海, 2003. 芦荟维管束的结构与芦荟素积累的相关性 [J]. 广西植物, 23(5): 436-439+483-484. ]

    • WILLIGEN CV, SHERWIN HW, PAMMENTER NW, 2000. Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions [J]. New Phytol, 145(1): 51-59.

    • XIAO DR, 2007. The plant communities distribution patterns and its driving force of typical wetland in Northwestern Yunnan plateau, China [D]. Kunming: Southwest Forest University: 13-48. [肖德荣, 2007. 滇西北高原典型湿地植物群落分布格局及驱动力 [D]. 昆明: 西南林学院: 13-48. ]

    • YIN QL, 2015. Anatomical structure of main plants and its environmental adaptations in the hilly-gullied loess plateau region [D]. Yangling: Northwest A & F University: 1-7. [尹秋龙, 2015. 黄土丘陵沟壑区主要植物叶解剖结构及其环境适应性研究 [D]. 杨陵: 西北农林科技大学: 1-7. ]

    • YANG SJ, SUN M, ZHANG YJ, 2014. Strong leaf morphological, anatomical, and physiological responses of a subtropical woody bamboo (Sinarundinaria nitida) to contrasting light environments [J]. Plant Ecol, 215(1): 97-109.

    • YU HY, SUN M, FENG CH, et al. , 2023. Responses of leaf economic traits of Scirpus validus and Typhaorientalis to simulated warming and CO2 concentration multiplication [J]. Guihaia, 43(9): 1588-1599. [余洪艳, 孙梅, 冯春慧, 等, 2023. 水葱和香蒲叶经济性状对模拟增温和CO2浓度倍增的响应 [J]. 广西植物, 43(9): 1588-1599. ]

    • ZEH L, LIMPENS J, ERHAGEN B, et al. , 2019. Plant functional types and temperature control carbon input via roots in peatland soils [J]. Plant Soil, 438(1): 19-38.

    • ZHANG F, PI XQ, WANG XE, et al. , 2019. Anatomy and apoplastic barrier histochemistry characteristics of Z. latifolia adapted to wetland environment [J]. Guihaia, 39(5): 615-623. [张梵, 皮秀权, 王晓娥, 等, 2019. 菰适应湿地环境的解剖和屏障结构特征研究 [J]. 广西植物, 39(5): 615-623. ]

    • ZHANG X, LI ZF, ZHAO HL, et al. , 2016. Diurnal variation of photosynthetic characteristics of five kinds of arbor dominant species in Napahai [J]. Guihaia, 36(5): 515-522. [张曦, 栗忠飞, 赵慧丽, 等, 2016. 纳帕海流域五种优势乔木树种光合速率日变化特征 [J]. 广西植物, 36(5): 515-522. ]

    • ZHANG YP, WANG YL, WANG YL, et al. , 2020. Response of rice starch synthesis to night temperature changes [J]. Chin J Rice Sci, 34(6): 525-538. [张玉屏, 王军可, 王亚梁, 等, 2020. 水稻淀粉合成对夜温变化的响应 [J]. 中国水稻科学, 34(6): 525-538. ]

    • ZHANG ZL, LIU GD, ZHANG FC, et al. , 2014 Research progress of plant leaf hydraulic conductivity [J]. Chin J Ecol, 33(6): 1663-1670. [张志亮, 刘国东, 张富仓, 等, 2014. 植物叶片导水率的研究进展 [J]. 生态学杂志, 33(6): 1663-1670. ]

    • ZHAO C, LIU Q, 2009. Growth and physiological responses of Picea asperata seedlings to elevated temperature and to nitrogen fertilization [J]. Acta Physiol Plant, 31(1): 163-173.

    • ZHAO Y, SUN M, GUO H, et al. , 2022. Responses of leaf hydraulic traits of Schoenoplectus tabernaemontani to increasing temperature and CO2 concentrations [J]. Bot Stud, 63(1): 1-10.

    • ZHEN B, LI H, NIU Q, et al. , 2020. Effects of combined high temperature and waterlogging stress at booting stage on root anatomy of rice (Oryza sativa L. ) [J]. Water, 12(9): 2524.

    • ZHU LQ, WANG BC, FU X, et al. , 2013. Turgor pressure in plant cell growth [J]. Acta Biophys Sin, 29(8): 583-593. [朱蠡庆, 王伯初, 付雪, 等, 2013. 膨压在植物细胞生长中的作用 [J]. 生物物理学报, 29(8): 583-593. ]