en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

依里帆·艾克拜尔江(1998-),硕士研究生,研究方向为植物生理生态研究,(E-mail)2293323651@qq.com。

通讯作者:

庄伟伟,博士,教授,研究方向为干旱区植物生理生态研究,(E-mail)zww8611@sina.com。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2023)12-2256-13

DOI:10.11931/guihaia.gxzw202210002

参考文献
ALLEN ON, ALLEN EK, 1981. The Leguminosae — a source book of characteristics uses and nodulation [M] . Madison: University of Wisconsia Press: 156-172.
参考文献
AN H, 2008. Regulating mechanism of nitrogen of typical plants growth in Zi Wu Ling forest region [D]. Yangling: Northwest A & F University. [安慧, 2008. 子午岭林区典型植物生长的氮素调控机理 [D]. 杨凌: 西北农林科技大学. ]
参考文献
ARNDT SK, KAHMEN A, ARAMPATSIS C, 2004. Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert [J]. Oecologia, 141(3): 385-394.
参考文献
BOL R, PFLIEGER C, 2002. Stable isotope (13C, 15N and 34S) analysis of the hair of modern humans and their domestic animals [J]. Rapid Commun Mass Spectrom, 16(23): 2195-2200.
参考文献
CAO XC, LI XY, ZHU LF, et al. , 2015. Effects of different ratios of exogenous glycine, nitrate and ammonium on growth and quality of pakchoi (Brassica chinensis L. ) [J]. J Agric Environ Sci, 34(10): 1846-1852. [曹小闯, 李晓艳, 朱练峰, 等, 2015. 外源甘氨酸态氮、硝态氮和铵态氮的浓度配比对小白菜生长和品质的影响 [J]. 农业环境科学学报, 34(10): 1846-1852. ]
参考文献
CLEMMENSEN KE, SORENSEN PL, MICHELSEN A, et al. , 2008. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi [J]. Oecologia, 155(4): 771-783.
参考文献
DONG YY, ZHAO CY, YU ZT, et al. , 2017. Characteristic curves and models analysis of soil water in interdune at the Southern Edge of Gurbantunggut Desert [J]. J Soil Water Conserv, 31(1): 166-171. [董义阳, 赵成义, 于志同, 等, 2017. 古尔班通古特沙漠南缘丘间地土壤水分特征曲线及模拟 [J]. 水土保持学报, 31(1): 166-171. ]
参考文献
DU LS, 2020. Nitrogen utilization strategies of dominant species from primary succession along Hailuogou Glacier, Mt. Gongga [D]. Beijing: University of Chinese Academy of Sciences. [杜流姗, 2020. 贡嘎山海螺沟冰川退缩区原生演替过程优势植物氮素利用策略研究 [D]. 北京: 中国科学院大学. ]
参考文献
ERFAN AKBERJAN, LI J, ZHUANG WW, 2022. Relationship between habitat soil factor and stoichiometric characteristics of two kinds of desert leguminous plants [J]. Acta Bot Boreal-Occident Sin, 42(8): 1384-1395. [依里帆·艾克拜尔江, 李进, 庄伟伟, 2022. 两种荒漠豆科植物化学计量特征与生境土壤因子的关系 [J]. 西北植物学报, 42(8): 1384-1395. ]
参考文献
FENG YL, 2020. Uptake of soil organic nitrogen by plant species in alpine meadow [D]. Lanzhou: Lanzhou University. [冯彦丽, 2020. 高寒草甸植物吸收土壤有机氮的研究 [D]. 兰州: 兰州大学. ]
参考文献
FRIED M, ZSOLDOS F, VOSE PB, et al. , 1965. Characterizing the NO3- and NH4+uptake process of rice roots by use of 15N labelled NH4NO3 [J]. Physiol Plantarum, 18(2): 313-320.
参考文献
FRESCHET GT, CORNELISSEN JH, VAN LOGTESTIJN RS, et al. , 2010. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? [J]. New Phytologist, 186(4): 879-889.
参考文献
GUO HY, YANG J, GUO JS, et al. , 2005. Ecophysiological responses of Caragana korshinskii and Ammopiptanthus mongolicus in shelter-forest along railway in western Ordos to different management measures [J]. J Desert Res, 25(1): 83-89. [郭宏宇, 杨劼, 郭景山, 等, 2005. 西鄂尔多斯铁路防护林柠条锦鸡儿和沙冬青对不同管护措施的生理生态响应 [J]. 中国沙漠, 25(1): 83-89. ]
参考文献
GAO HH, WANG JJ, ZHOU PS, et al. , 2017. Carbon and nitrogen allocation in organs of Quercus variabilis seedlings by 13C and 15N tracer technique [J]. J Shanghai Jiaotong Univ (Agric Sci), 35(6): 67-73. [高唤唤, 王姣娇, 周丕生, 等, 2017. 利用13C和15N示踪碳、氮在栓皮栎幼苗各器官中的分配 [J]. 上海交通大学学报(农业科学版), 35(6): 67-73. ]
参考文献
HOOPER DU, JOHNSON L, 1999. Nitrogen limitation in dry land ecosystems: responses to geographical and temporal variation in precipitation [J]. Biogeochemistry, 46(1): 247-293.
参考文献
HOU BL, 2022. Nitrogen uptake strategies of herbaceous plants with different life types in Gurbantunggut Desert [D]. Urumqi: Xinjiang Normal University. [侯宝林, 2022. 古尔班通古特沙漠不同生活型草本植物对氮素吸收偏好性研究 [D]. 乌鲁木齐: 新疆师范大学. ]
参考文献
HOU BL, ZHUANG WW, 2021. Nitrogen uptake strategy of annual plants in Gurbantunggut Desert [J]. Chin J Plant Ecol, 45(7): 760-770. [侯宝林, 庄伟伟, 2021. 古尔班通古特沙漠一年生植物的氮吸收策略 [J]. 植物生态学报, 45(7): 760-770. ]
参考文献
JACOB A, LEUSCHNER C, 2015. Complementarity in the use of nitrogen forms in a temperate broad leaved mixed forest [J]. Plant Ecol Divers 8(2): 243-258.
参考文献
KAUR B, KAUR G, ASTHIR B, 2016. Biochemical aspects of nitrogen use efficiency: an overview [J]. J Plant Nutr, 40(4): 506-523.
参考文献
KOU L, GUO DL, YANG H, et al. , 2015. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China [J]. Plant Soil, 391(1): 207-218.
参考文献
LEE JA. 1998. The calcicole-calcifuge problem revisited [M]. Adv Bot Res, 29: 1-30.
参考文献
LI SX, WANG ZH, STEWART BA, 2013. Responses of crop plants to ammonium and nitrate N [J]. Adv Agron, 118: 205-397.
参考文献
LI YJ, SUN DD, LI DD, et al. , 2015. Effects of warming on ectomycorrhizal colonization and nitrogen nutrition of Picea asperata seedlings grown in two contrasting forest ecosystems [J]. Sci Rep, 5(1): 1-10.
参考文献
LI KL, 2018. Interspecific competition modulates nitrogen utilization strategy of an invasive plant, Flaveria bidentis [D]. Beijing: Chinese Academy of Agricultural Sciences. [李科利, 2018. 种间竞争对入侵植物黄顶菊氮素利用策略的影响 [D]. 北京: 中国农业科学院. ]
参考文献
LIU HX, LI N, SHENG JD, 2013. The application of stable15N tracer technique in agricultural nitrogen use [J]. Xinjiang Agric Sci, 50(1): 124-131. [刘焕鲜, 李宁, 盛建东, 2013. 稳定性15N示踪技术在农业氮肥利用中的应用 [J]. 新疆农业科学, 50(1): 124-131. ]
参考文献
LIU XJ, YE F, ZHANG XL, 2015. Effects of exogenous nitrogen forms on root characteristics of alfalfa at different growth stages [J]. Acta Pratac Sin, 24(6): 53-63. [刘晓静, 叶芳, 张晓玲, 2015. 外源氮素形态对紫花苜蓿不同生育期根系特性的影响 [J]. 草业学报, 24(6): 53-63. ]
参考文献
LlU P, ZHOU HK, YANG C et al. , 2018. Ammonia volatilization and N recovery of nitrogen fertilizer on alpine artificialgrassland based on nitrogen isotope labelling technique [J]. Ecol Sci, 37(3): 77-84. [刘攀, 周华坤, 杨冲, 等, 2018.基于氮同位素标记技术的高寒人工草地氮肥氨挥发和氦素回收率研究 [J]. 生态科学, 37(3): 77-84. ]
参考文献
LU RK, SHI ZY, LAI QW, 2000. Nutrient degradation in red soils Ⅲ: nutrient leaching losses from red soils and plants [J]. Chin J Soil Sci, 31(4): 156-158. [鲁如坤, 时正元, 赖庆旺, 2000. 红壤养分退化研究Ⅲ: 土壤和植株的养分淋失 [J]. 土壤通报, 31(4): 156-158. ]
参考文献
MCKANE RB, JOHNSON LC, SHAVER GR, et al. , 2002. Resource-based niches provide a basis for plant species diversity and dominance in Arctic tundra [J]. Nature, 415(6867): 68-71.
参考文献
MENG S, 2016. Nitrogen dynamic uptake and genetic expression of translocator of tree species in fine roots [D]. Yangling: Northwest A & F University. [孟森, 2016. 林木细根氮素吸收动态及氮转运蛋白基因表达 [D]. 杨凌: 西北农林科技大学. ]
参考文献
MO LY, WU LY, TAO QN, 2002. Advances in study of plant organic nitrogen nutrition [J]. Acta Ecol Sin, 22(1): 118-124. [莫良玉, 吴良欢, 陶勤南, 2002. 高等植物对有机氮吸收与利用研究进展 [J]. 生态学报, 22(1): 118-124. ]
参考文献
REN HY, TIAN L, ZHU Y, et al. , 2022. Nitrogen and water addition alter nitrogen uptake preferences of two dominant plant species in a typical Inner Mongolian steppe [J]. Chin Sci Bull, 67(13): 1459-1468. [任海燕, 田磊, 朱毅, 等, 2022. 氮水添加改变内蒙古典型草原两种优势植物的氮吸收偏好 [J]. 科学通报, 67(13): 1459-1468. ]
参考文献
SUN DY, 2019. Effects of nitrogen and water addition on functional plant traits and community structure in atypical temperate steppe [D]. Zhengzhou: Henan University. [孙丹宇, 2019. 氮素和水分添加对温带典型草原植物功能属性和群落结构的影响 [D]. 郑州: 河南大学. ]
参考文献
SUN SM, 2020. Differences in preferential uptake of nitrate and ammonium nitrogen between seven pairs of invasiive and native plants [D]. Shenyang: Shenyang Agricultural University. [孙思邈, 2020. 七对入侵与本地植物对硝氮和铵氮偏好吸收的差异 [D]. 沈阳: 沈阳农业大学. ]
参考文献
SMITH RB, 1950. The role of mechanics in the evolution of the herbaceous plant stem [J]. Bot Gazette, 111(3): 262-286.
参考文献
SCHIMEL JP, BENNETT J, 2004. Nitrogen mineralization: challenges of a changing paradigm [J]. Ecology, 85(3): 591-602.
参考文献
TAO Y, LIU YB, WU GL, et al. , 2016. Regional scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar desert, China [J]. Acta Pratac Sin, 25(7): 13-23. [陶冶, 刘耀斌, 吴甘霖, 等, 2016. 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局 [J]. 草业学报, 25(7): 13-23. ]
参考文献
TEGEDER M, MASCLAUX DC, 2018. Source and sink mechanisms of nitrogen transport and use [J]. New Phytol, 217(1): 35-42.
参考文献
TEMPLER PH, DAWSON TE, 2004. Nitrogen uptake by four tree species of the Catskill Mountains, New York: Implications for forest N dynamics [J]. Plant Soil, 262(1/2): 251-261.
参考文献
WALLANDER H, ARNEBRANT K, OSTRAND F, et al. , 1997. Uptake of 15N-labelled alanine, ammonium and nitrate in Pinus sylvestris L. ectomycorrhiza growing in forest soil treated with nitrogen, sulphur or lime [J]. Plant Soil, 195: 329-338.
参考文献
WANG LX, MACKO SA, 2011. Constrained preferences in nitrogen uptake across plant species and environments [J]. Plant Cell Environ, 34(3): 525-534.
参考文献
WANG R, TIAN Y, OUYANG S, et al. , 2016. Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes [J]. Biol Fert Soils, 52(7): 951-961.
参考文献
WANG WY, LIU JY, 2009. Research advances in organic nitrogen acquisition by plants [J]. Chin J Appl Ecol, 20(5): 1223-1228. [王文颖, 刘俊英, 2009. 植物吸收利用有机氮营养研究进展 [J]. 应用生态学报, 20(5): 1223-1228. ]
参考文献
WANG XQ, JIANG J, WANG YC, et al. , 2006. Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantunggut Desert [J]. Chin Sci Bull, 51(1): 110-116.
参考文献
XIONG YQ, WANG ZQ, 2018. Biodiversity and ecoadaptability of Leguminosae [J]. Chin J Nat, 40(1): 64-70. [熊义勤, 汪自强, 2018. 豆科植物的生物多样性和生态适应性 [J]. 自然杂志, 40(1): 64-70. ]
参考文献
XU LH, YAO BQ, WANG WY, et al. , 2018. Nitrogen absorption and distribution characteristics in different organs of the main plants in Kobresia humilis meadow [J]. Acta Bot Boreal-Occident Sin, 38(5): 957-966. [徐隆华, 姚步青, 王文颖, 等, 2018. 矮嵩草草甸主要植物不同器官对氮素的吸收及分配特征研究 [J]. 西北植物学报, 38(5): 957-966. ]
参考文献
XIAO YX, WANG MM, ZHUANG WW, 2022. Effects of increased water on biomass and absorption of different nitrogen forms of four ephemeral plants in Gurbantunggut Desert [J]. Acta Bot Boreal-Occident Sin, 42(8): 1373-1383. [肖钰鑫, 王明明, 庄伟伟, 2022. 增加水分对古尔班通古特沙漠4种短命植物生物量及氮素形态吸收的影响 [J]. 西北植物学报, 42(8): 1373-1383. ]
参考文献
YE J, GE GB, YING YQ, et al. , 2015. Absorption, accumulation and distribution of bamboo (Bambusa textilis) to the main nutrients [J]. J Plant Nutr Fert, 21(1): 164-170. [叶晶, 葛高波, 应雨骐, 等, 2015. 青皮竹地上部营养元素的吸收、积累和分配特性研究 [J]. 植物营养与肥料学报, 21(1): 164-170. ]
参考文献
ZHANG LY, CHEN CD, 2002. On the general characteristics of plant diversity of Gurbantunggut sandy desert [J]. Acta Ecol Sin, 22(11): 1923-1932. [张立运, 陈昌笃, 2002. 论古尔班通古特沙漠植物多样性的一般特点 [J]. 生态学报, 22(11): 1923-1932. ]
参考文献
ZHANG J, TANG Z, LUO Y, et al. , 2014. Resorption efficiency of leaf nutrients in woody plants on Mt. Dongling of Beijing, North China [J]. J Plant Ecol, 8(5): 530-538.
参考文献
ZHANG YQ, MA Y, WEN T, et al. , 2015. Responses of alpine meadow plants and their parts to nitrogen addition in the eastern Qilian Mountains [J]. Acta Agr Sin, 29(8): 1628-1636. [张玉琪, 马源, 文铜, 等, 2021. 祁连山东缘高寒草甸植物及各部位对氮素添加的响应 [J]. 草地学报, 29(8): 1628-1636. ]
参考文献
ZHAO YY, ZHANG R, JIANG KW, et al. , 2021. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae [J]. Mol Plant, 14(5): 748-773.
参考文献
ZHOU HF, ZHOU BJ, DAI Q, 2010. Observational analysis of rime condensation on plants over the Gurbantunggut Desert in China [J]. Adv Water Sci, 21(1): 56-62. [周宏飞, 周宝佳, 代琼, 2010. 古尔班通古特沙漠植物雾凇凝结特征 [J]. 水科学进展, 21(1): 56-62. ]
参考文献
ZHOU XB, BOWKER MA, TAO Y, et al. , 2018. Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics [J]. Sci Total Environ, 626: 99-108.
参考文献
ZHUANG WW, HOU BL, 2021. Nitrogen uptake strategies of short-lived plants in the Gurbantunggut Desert [J]. Arid Zone Res, 38(5): 1393-1400. [庄伟伟, 侯宝林, 2021. 古尔班通古特沙漠短命植物的氮素吸收策略 [J]. 干旱区研究, 38(5): 1393-1400. ]
参考文献
ZHUANG WW, LI J, YU F, et al. , 2020. Seasonal nitrogen uptake strategies in a temperate desert ecosystem depends on N form and plant species [J]. Plant Biol, 22(3): 386-393.
参考文献
ZHUANG WW, WANG MM, XIAO YX, et al. , 2022. Differential uptake of nitrogen forms by two herbs in the Gurbantunggut desert, Central Asia [J]. Plant Biol, 24: 758-765.
目录contents

    摘要

    豆科植物在氮素缺乏的荒漠生态系统中大量存在,是该生态系统提供有效氮的中心,也是这一区域重要的先锋物种。该文选择古尔班通古特沙漠广泛分布的弯花黄芪(Astragalus flexus)和镰荚黄芪(Astragalus arpilobus)作为研究对象,分别在0~5、5~15 cm土层添加3种不同形态氮(15N-NH4+15N-NO3-15N-glycine),研究两种植物及各器官对不同形态氮素的吸收、分配策略。结果表明:(1)在不同土层中,两种植物均偏好吸收硝态氮,并且弯花黄芪、镰荚黄芪对硝态氮的最高吸收速率均为3.26、2.59 μg·g-1 · h-1。(2)在不同土层中,植物各器官间均对不同氮源吸收及分配有显著性差异(P<0.05),弯花黄芪根的15N吸收量均大于镰荚黄芪的,3种不同形态氮主要分配于叶。(3)在不同土层中,不同氮源对两种植物的贡献率均为15N-NO3-15N-glycine > 15N-NH4+,硝态氮对弯花黄芪氮素吸收的贡献率在37%~41%之间,而对镰荚黄芪氮素吸收的贡献率最高可达45%。(4)植物各器官间均对不同形态氮的回收率存在显著性差异(P<0.05);在0~5 cm土层中,植物各器官对硝态氮的回收率均为叶>茎>根,而在5~15 cm土层中,弯花黄芪表现为叶>根>茎。总体上,在古尔班通古特沙漠生态系统中,不同生活型豆科植物对氮素吸收及分配能力既有一致性也有差异性,并且受到不同土壤深度、氮形态的影响。该研究结果为新疆干旱、半干旱区豆科植物的氮吸收利用及分配提供了理论依据。

    Abstract

    Legumes are abundant in the nitrogen deficient desert ecosystems, which is the center of supplying available nitrogen and the important pioneer species in this region. However, the studies on nitrogen uptake and utilization by legumes in desert ecosystems have rarely been reported so far. In this study Astragalus flexus and A. arpilobus, which are widely distributed in the Gurbantunggut Desert, were selected as the research objects. Three different nitrogen forms (15N-NH4+, 15N-NO3-, 15N-glycine) were added to 0-5 cm and 5-15 cm soil layers, respectively, to study the absorption and distribution strategies of different forms of nitrogen in two plants and their organs. The results were as follows: (1) In different soil layers, both plants preferred to absorb nitrate nitrogen, and the maximum absorption rates of A. flexus and A. arpilobus were 3.26, 2.59 μg·g-1· h-1, respectively. (2) In different soil layers, there were significant differences in the uptake and allocation of different nitrogen sources among plant organs (P<0.05). The uptake of 15N in root of A. flexus was higher than that of A. arpilobus, and the three different nitrogen forms were mainly allocated to leaves. (3) In different soil layers, the contribution rates of different nitrogen sources to both plants were 15N-NO3-15N-glycine > 15N-NH4+, and the contribution rates of nitrate nitrogen to nitrogen absorption of A. flexus ranged from 37% to 41%, while the maximum contribution rate to the nitrogen absorption of A. arpilobus was 45%. (4) There were significant differences in recovery rates of different nitrogen forms between different organs of plants (P<0.05). In the 0-5 cm soil layer, the recovery rate of nitrate nitrogen was leaf > stem > root, while in the 5-15 cm soil layer, the rate was leaf > root > stem. In general, in the Gurbantunggut Desert ecosystem, different life forms legumes had both consistency and difference in nitrogen uptake and allocation capacity, and were affected by different soil depths and nitrogen forms. The results provide theoretical basis for nitrogen uptake, utilization and allocation of legumes in arid and semi-arid regions of Xinjiang.

  • 氮素是植物所有必需营养元素中限制生长的第一元素。氮素的来源和分配既影响氮素利用率又会改变氮素内循环和周转(Hooper &Johnson,1999; Kou et al.,2015; 陶冶等,2016; Zhou et al.,2018)。可被植物吸收利用的氮素形态主要有硝态氮、铵态氮和有机氮(Wang et al.,2016;Kaur et al.,2016)。植物从土壤中吸收氮的形态和多少在全球氮素循环中处于非常重要的地位,但由于植物本身生物特征及生长环境的差异,加上不同形态的氮素对植物生长的有效性不同,因此不同形态氮素对不同植物生长的贡献存在差异(侯宝林和庄伟伟,2021)。不同植物在对氮素营养环境的长期适应过程中形成对不同氮源的偏向性选择,最终形成了不同的氮素利用与分配策略(Tegeder &Masclaux,2018; Zhuang et al.,2022)。根据植物对不同形态氮素的偏好吸收利用,将植物分为喜硝型植物和喜铵型植物(McKane et al.,2002)。一些喜硝植物如尖喙牻牛儿苗(Erodium oxyrrhynchum)、琉苞菊(Hyalea pulchella)、假狼紫草(Nonea caspica)、飘带果(Lactuca undulata)、角果藜(Ceratocarpus arenarius)、碱蓬(Suaeda glauca)等对硝态氮吸收能力强,在硝态氮下生长快且偏好吸收利用(侯宝林,2022)。而喜铵植物如水稻(Oryza sativa)、马尾松(Pinus massoniana)、铁芒其(Dicranopteris linearis)、白云杉(Picea glauca)和苍耳(Xanthium sibiricum)等偏好吸收利用铵态氮(Fried et al.,1965; Wallander et al.,1997; Lee,1998; Li et al.,2013; 孙思邈,2020)。

  • 全世界的豆科植物约765属19 500种,广布于全球(Zhao et al.,2021),中国约有184属1 234种,各省(区)均有分布(熊义勤和汪自强,2018)。豆科植物在荒漠等干旱区生态系统大量存在,既是生态系统提供有效氮的中心也是这一区域重要的先锋物种(Allen &Allen,1981)。20世纪大多研究都认为只有铵态氮和硝态氮(Schimel &Bennett,2004)能够直接被植物吸收利用,随着对植物氮素营养的深入研究,学者们逐渐发现植物可以利用土壤中的可溶性有机氮(莫良玉等,2002;王文颖和刘俊英,2009)。在极受氮素限制的系统如高山、北方和冻原生态系统中,有机氮的吸收是一个非常重要的方式(冯彦丽,2020;杜流姗,2020)。张玉琪等(2021)的研究发现,扁蓿豆(Trigonella ruthenica)各器官对氮积累量大小为茎<花<叶。不同植物功能群的氮素吸收特点、分配及氮在植物体内运输途径等方面都存在差异(叶晶等,2015;孙丹宇,2019)。关于豆科植物氮素吸收利用及氮素分配的研究大多集中于农业生态系统和森林生态系统(安慧,2008;刘焕鲜,2013),但有关荒漠区豆科植物对不同形态氮吸收、分配的研究偏少。

  • Zhuang等(2020)研究发现,在古尔班通古特沙漠中,不同生活型的非豆科草本植物对不同形态氮素的利用具有偏好性,这种偏好性在客观上减少了植物之间资源利用的竞争性。庄伟伟和侯宝林(2021)研究发现,在古尔班通古特沙漠生态系统中,4种短命生活型非豆科草本植物对氮素的吸收能力存在差异和多元化的特点,并且均可吸收土壤中的可溶性的有机态氮源。在氮素匮乏的古尔班通古特沙漠典型温带荒漠生态系统中,豆科植物各器官对不同形态氮素是否具有吸收和分配特征。我们提出假设:该区豆科植物各器官对不同形态氮素具有不同的氮素吸收和分配特征,并对不同氮源有偏好吸收性。因此,本研究选择这一典型的温带荒漠作为实验区,以两种常见豆科植物弯花黄芪(Astragalus flexus)和镰荚黄芪(A. arpilobus)作为研究对象,通过15N同位素示踪技术研究不同形态氮素对不同生活型豆科植物氮素吸收和利用的策略,以期为豆科植物的氮素吸收偏好性提供理论基础,加深对荒漠生态系统氮素循环的认识、维持氮素平衡,为新疆干旱、半干旱区域豆科植物氮素利用和可持续发展提供依据。

  • 1 材料与方法

  • 1.1 研究区域与样地概况

  • 研究区位于欧亚大陆腹地(84°31′—90°00′ E、44°11′—46°20′ N,海拔300~600 m),其面积约为4.88×104km2,是我国最大的固定半固定沙漠。年均降水量79 mm,其春季降水量较高,占全年降水量的47.6%。年均气温7.3℃,年蒸发量达2 607 mm(周宏飞,2010)。降水集中在4月和7月之间,其他月份的降水量少,冬季使沙漠表面通常覆盖20 cm厚的雪,这种降水-温度-时间模式使草本植物在春夏繁茂(Wang et al.,2006)。试验区,0~15 cm土层土壤的pH值范围为8.31±0.04(依里帆·艾克拜尔江等,2022);0~20 cm土层土壤自然含水率为0.061(cm3 ·cm-3)(董义阳等,2017)。该沙漠有30科123属高等植物,共208种。其中,以藜科(Chenopodiaceae)(24属53种)、十字花科(Brassicaceae)(16属22种)、菊科(Asteraceae)(15属20种)、豆科(Fabeceae)(8属18种)、禾本科(Poaceae)(12属13种)、蓼科(Polygonaceae)(3属11种)、蒺藜科(Zygophyllaceae)(4属8种)和柽柳科(Tamaricaceae)(2属8种)最为丰富,共含84属153种,分别约占沙漠植物总属数的68%和总种数的74%(张立运和陈昌笃,2002)。古尔班通古特沙漠中的18种豆科植物对沙地土壤系统养分的稳定和平衡具有重要的生态价值。

  • 本研究依托课题组与中国科学院新疆生态与地理研究所在古尔班通古特沙漠南缘建立的准噶尔荒漠生态系统长期监测样地(86°13′ E、44°40′ N),样地中具有完善的长期气象和土壤理化性质检测体系。2021年4月,选择植被覆盖较均一且地势平坦区,分别设定4个10 m × 10 m的大样方,每个大样方相隔60 m以上,相当于4个重复。表1为5月份实验期间样地土壤的养分状况。

  • 表1 古尔班通古特沙漠样地土壤的养分状况(n=4,平均值±标准差)

  • Table1 Sample area soil nutrient status of Gurbantunggut Desert (n=4, x-±s)

  • 注:同行不同小写字母表示土层间存在显著性差异 (P<0.05)。

  • Note: Different lowercase letters indicate significant differences between the two layers (P<0.05) .

  • 1.2 植物的选择

  • 在选定的大样方内,选取弯花黄芪和镰荚黄芪单一植物群落,每种植物设好32个50 cm × 50 cm的小样方,共取64株植物。按2个土壤深度、4种不同氮素形态添加、设4次重复。根据植物长势,在其最大生物量时期(5月下旬)进行氮同位素添加实验,分别用4种不同氮素处理两种豆科植物,即15N-NH4Cl、15N-KNO3以及15N-glycine(标记氮素均来自上海化工研究院有限公司)和CK(未加标记15N)。由于两种豆科植物此时的根系分布于0~15 cm(依里帆·艾克拜尔江等,2022),因此设置2个土壤深度分别为0~5 cm和5~15 cm,氮注射深度分别选择3、12 cm。氮标记实验中,对每一个50 cm × 50 cm的小样方,按照0.6 g·m-2(丰度99%以上的15N)的标准比例添加3种不同形态氮同位素(各0.2 g·m-2),以添加无标记氮为CK。在添加15N实验中,为区分植物对不同形态氮素的吸收,每个样方内氮素添加时只能有一种带有15N标记,其余两种为无标记氮。因为能被植物直接吸收的土壤氨基酸多为甘氨酸(Bol &Pflieger,2002),所以用甘氨酸代替有机氮。氮同位素氮浓度分别为15N-NH4+(99.14%)、15N-NO3-(99.19%)和15N-glycine(99.04%)。为保证氮素在样方内的均匀分布,将小样方均分成49个小方格,每小格边长约7.1 cm。将氮素混合物完全溶解至去离子水中,在每方格中心用注射器(规格为5 mL)注射等量的溶液(体积为3 mL),氮添加实验参考Wang等(2016)的方法。

  • 1.3 植物的采集和分析

  • 氮施加48 h后,分别采集按对照组样方植物和3种不同15N添加样方植物。在每个规定的大样方中,选择若干个50 cm × 50 cm的小样方,从每个小样方中选择3株植物进行收集,并区分为两种植物。用刈割法收集植物地上生物量,分开茎和叶。通过小样方挖取根的生物量,尽量收集完整的地下部分。取出整株氮同位素添加植物,用去离子水冲洗,去除根表面土壤。在0.5 mol·L-1 CaCl2溶液中浸泡0.5 h,去除吸附在根表面的15N,随后用蒸馏水进行冲刷。将植物样品带到实验室后,对植物细分为根、茎和叶(郭宏宇等,2005)。将植物地上、地下部分分开且用电热鼓风干燥箱(GZX-9076MBE,上海博迅事业有限公司医疗设备厂)在70℃下烘干48 h、恒重及称量。两种植物根、茎、叶分别在德国莱驰盘式震动粉碎研磨仪(Retsch RS200)中研磨成粉末(鲁如坤,2000)。用精度为0.001 g的天平称取2 mg样品,利用不添加同位素氮样方为对照作为植物自然丰度,用稳定同位素质谱仪(MAT253-SN08867G,美国)对N含量及植物15N含量进行分析。按以下公式计算(Clemmensen,et al.,2008; Jacob &Leuschner,2015; Wang et al.,2016; 孟森,2016)。

  • atom %excess = atom %labeled - atom %control
    (1)
  • Ulabeled = atom %excess ×Ncontent ×M
    (2)
  • Uunlabeled =Ulabeled ×munlabeled /mlabeled
    (3)
  • Nuptake =Uunlabeled /MGBG ×H
    (4)
  • T15Nuptake =15Nuptake NH4++15Nuptake NO3-+15Nuptake ( Glycine )
    (5)
  • Recovery plant N(%)=Ulabeled /15Nadded ×100
    (6)
  • RN from (%)=RNH4+/NO3-/glycine /RTN
    (7)
  • 利用15N原子百分超(atom%excess)表示植物的吸收。其中,atom%labeled表示标记15N植物的原子百分浓度;atom%control表示CK植物的原子百分浓度;Ulabeled为植物15N吸收量(μg·m-2);Ncontent指植物氮浓度;M指植物生物量(g);Uunlabeled表示植物N吸收(μg·m-2);munlabeled指对照样地土壤本身的氮浓度(μg·g-1);mlabeled指土壤总的15N添加量(μg·g-1);Nuptake为植物氮的吸收速率(μg·g-1· h-1),利用Uunlabeled除以植物地下生物量MGBG和标记时间H,TNuptake指不同形态氮素速率之和。RecoveryplantN(%)表示植物同位素15N的回收率(%);15Nadded表示每平方米加到土壤中的15N量;RN from(%)表示不同15N贡献率;RNH4+/NO3-/glycine表示单一形态15N的回收率;RTN表示3种不同氮素形态15N的回收率之和。

  • 1.4 数据分析

  • 使用Excel 2021和SPSS 23.0软件分别进行数据整理与统计分析,用单因素方差分析(one-way ANOVA)等进行多重比较不同土层和物种影响下植物各器官氮素吸收相关指标的差异。采用多因素方差分析验证不同因素(物种、氮形态、土壤深度)对不同生活型豆科植物各器官15N吸收及分配的影响,并考虑多因素间的交互影响,用Origin 2021软件进行作图。

  • 2 结果与分析

  • 2.1 两种豆科植物对不同形态氮素的吸收速率

  • 由图1可知,在0~5 cm土层中,从物种对3种不同形态氮的吸收速率来分析,弯花黄芪、镰荚黄芪均对3种不同形态氮的吸收速率呈现显著性差异(P<0.05),并且吸收速率趋势均为硝态氮>甘氨酸>铵态氮。弯花黄芪对铵态氮、硝态氮、甘氨酸的吸收速率分别为2.07、3.06、2.45 μg·g-1· h-1,其对硝态氮的平均吸收速率分别是铵态氮和甘氨酸的1.48和1.25倍;镰荚黄芪对铵态氮、硝态氮、甘氨酸的吸收速率依次为0.88、2.59、1.54 μg·g-1· h-1,其对硝态氮的平均吸收速率分别是铵态氮和甘氨酸的2.95和1.68倍。从两种植株的总15N吸收速率来看,弯花黄芪、镰荚黄芪的总15N吸收速率分别为7.58、5.01 μg·g-1· h-1

  • 在5~15 cm土层中,从物种对3种不同形态氮的吸收速率来分析,弯花黄芪、镰荚黄芪均对3种不同形态氮的吸收速率呈现显著性差异(P<0.05),并且吸收速率趋势均为硝态氮>甘氨酸>铵态氮。弯花黄芪对铵态氮、硝态氮及甘氨酸的吸收速率分别为1.94、3.26、2.23 μg·g-1· h-1,其对硝态氮的平均吸收速率分别是铵态氮和甘氨酸的1.68和1.46倍;镰荚黄芪对铵态氮、硝态氮、甘氨酸的吸收速率分别为0.81、1.90、1.29 μg·g-1· h-1,其对硝态氮的平均吸收速率分别是铵态氮和甘氨酸的2.35和1.47倍。从不同氮素形态来分析,两种植物对硝态氮的吸收速率最高,甘氨酸吸收速率其次,最低为铵态氮吸收速率。从两种植株的总15N吸收速率来看,弯花黄芪、镰荚黄芪的总15N吸收速率分别为7.43、4.00 μg·g-1· h-1

  • 总之,随着施用15N的土壤深度加深,弯花黄芪对铵态氮、甘氨酸吸收速率逐渐降低,而对硝态氮的吸收明显增大。在0~5、5~15 cm土层中,弯花黄芪对铵态氮、硝态氮、甘氨酸的吸收速率范围分别为1.94~2.07、3.06~3.26、2.23~2.45 μg·g-1· h-1;镰荚黄芪对铵态氮、硝态氮、甘氨酸吸收速率随着施用15N的土壤深度加深均逐渐降低,而对硝态氮的吸收速率明显下降。在0~5、5~15 cm土层中,镰荚黄芪对铵态氮、硝态氮、甘氨酸的吸收速率范围分别为0.81~0.88、1.90~2.59、1.29~1.54 μg·g-1· h-1

  • 2.2 两种豆科植物各器官对不同形态氮素的吸收及分配

  • 由图2可知,在0~5 cm土层中,两种植物各器官对3种不同形态氮的吸收及分配量趋势均为硝态氮>甘氨酸>铵态氮,并且积累量显著大于茎和根。在0~5 cm土层中,弯花黄芪对硝态氮的吸收及分配最高,为根(49.54 μg·m-2)<茎(53.29 μg·m-2)<叶(104.66 μg·m-2),其根对硝态氮吸收量分别为铵态氮、甘氨酸的1.34、1.21倍;茎对硝态氮积累量分别为铵态氮、甘氨酸的3.13、1.25倍;叶对硝态氮积累量分别为铵态氮、甘氨酸的1.39、1.06倍。镰荚黄芪对硝态氮的吸收及分配最高,为根(3.03 μg·m-2)<茎(35.73 μg·m-2)<叶(51.46 μg·m-2)。镰荚黄芪的根对硝态氮吸收量分别为铵态氮、甘氨酸的1.91、1.53倍;茎对硝态氮积累量分别为铵态氮、甘氨酸的2.48、1.52倍;叶对硝态氮积累量分别为铵态氮、甘氨酸的1.50、1.14倍。从两种植物各器官的总15N含量来看,弯花黄芪各器官吸收及积累的总15N含量大小为茎(113.07 μg·m-2)<根(127.46 μg·m-2)<叶(278.03 μg·m-2);镰荚黄芪各器官吸收及积累的总15N含量大小为根(6.58 μg·m-2)<茎(73.41 μg·m-2)<叶(171.32 μg·m-2)。

  • 在5~15 cm土层中,弯花黄芪对硝态氮的吸收及分配最高,为茎(47.98 μg·m-2)<根(48.69 μg·m-2)<叶(104.12 μg·m-2),其根对硝态氮吸收量分别为铵态氮、甘氨酸的1.41、1.48倍;茎对硝态氮积累量分别为铵态氮、甘氨酸的2.64、1.03倍;叶对硝态氮积累量分别为铵态氮、甘氨酸的1.55、1.13倍。在同一层土壤中,镰荚黄芪对硝态氮的吸收及分配最高,为根(2.87 μg·m-2)<茎(31.88 μg·m-2)<叶(57.67 μg·m-2)。镰荚黄芪根对硝态氮吸收量分别为铵态氮、甘氨酸的1.89、1.08倍;茎对硝态氮积累量分别为铵态氮、甘氨酸的2.55、1.70倍;叶对硝态氮积累量分别为铵态氮、甘氨酸的1.36、1.03倍。从两种植物各器官总15N含量来看,弯花黄芪各器官吸收及积累的总15N含量大小为根(112.89 μg·m-2)<茎(116.20 μg·m-2)<叶(263.58 μg·m-2);镰荚黄芪各器官吸收及积累的总15N含量大小为根(7.05 μg·m-2)<茎(63.10 μg·m-2)<叶(156.19 μg·m-2)。

  • 总之,弯花黄芪比镰荚黄芪更易吸收和积累氮素,说明不同生活型豆科植物有不同的氮素利用和分配策略。多变量之间的交互作用对氮吸收、分配量有很大的影响(表2),物种×氮形态、物种×器官、器官×氮形态、物种×器官×土层均对各器官氮吸收及分配有显著性差异(P<0.001),说明不同生活型物种对不同形态氮素的吸收及分配存在显著差异。此外,还受不同土壤深度的影响。

  • 图1 古尔班通古特沙漠弯花黄芪和镰荚黄芪的氮吸收速率 (n=4,平均值±标准差)

  • Fig.1 N uptake rate of Astragalus flexus and A. arpilobus in Gurbantunggut Desert (n=4, x-±s)

  • 2.3 两种豆科植物及各器官对不同形态氮素的回收率、贡献率

  • 由图3可知,3种不同形态氮素在两种豆科植物各器官中的回收率。从土壤层面来分析,在0~5 cm土层中,对3种不同形态氮的回收率,弯花黄芪的叶均达到最高,显著大于根和茎(P<0.05)。对铵态氮来说,弯花黄芪各器官的回收率大小为茎(16%)<根(25%)<叶(70%);对硝态氮弯花黄芪各器官的回收率大小为根(35%)<茎(49%)<叶(86%);对甘氨酸弯花黄芪各器官的回收率大小为根(27%)<茎(39%)<叶(81%)。从镰荚黄芪的各器官对不同氮源的回收率来分析,对3种不同形态氮镰荚黄芪各器官的回收率大小为根<茎<叶,并且硝态氮的回收率最大,甘氨酸次之,铵态氮最低。对铵态氮、硝态氮、甘氨酸镰荚黄芪的叶回收率最高,分别为34%、51%、45%。

  • 在5~15 cm土层中,对3种不同形态氮素弯花黄芪各器官的回收率显著大于镰荚黄芪的(P < 0.05)。从弯花黄芪的各器官对不同氮源的回收率来分析,对3种不同形态氮弯花黄芪各器官的回收率大小为茎<根<叶,并且各器官对不同氮源回收率大小为硝态氮>甘氨酸>铵态氮。对铵态氮、硝态氮、甘氨酸弯花黄芪的茎回收率最低,分别为17%、27%、22%。对铵态氮来说,镰荚黄芪各器官的回收率大小为根(1%)<茎(11%)<叶(39%);对硝态氮镰荚黄芪各器官的回收率大小为根(3%)<茎(29%)<叶(52%);对甘氨酸镰荚黄芪各器官的回收率大小为根(2%)<茎(17%)<叶(51%)。

  • 图2 两种豆科植物弯花黄芪(A, B)和镰荚黄芪(C, D)各器官的氮素吸收及分配量 (n=4,平均值±标准差)

  • Fig.2 N uptake and distribution in organs of two legumes Astragalus flexus (A, B) and A. arpilobus (C, D) (n=4, x-±s)

  • 由图4可知,对不同土层施用3种不同15N经48 h后对两种植物的贡献率。在0~5 cm土层中,15N-NH4+15N-NO3-15N-glycine对弯花黄芪的贡献率分别为25%、41%、34%,而对镰荚黄芪的贡献率分别为23%、45%、32%,说明15N-NH4+15N-glycine对弯花黄芪的贡献率比镰荚黄芪高,而15N-NO3-对弯花黄芪的贡献率比镰荚黄芪低。在5~15 cm土层中,15N-NH4+15N-NO3-15N-glycine对弯花黄芪的贡献率分别为30%、37%、33%,说明15N-NH4+随着土层加深对弯花黄芪的贡献率增大,而15N-NO3-15N-glycine随着土层加深对弯花黄芪的贡献率下降。在5~15 cm土层中,15N-NH4+15N-NO3-15N-glycine对镰荚黄芪的贡献率分别为23%、43%、34%,说明15N-NH4+施用的土层深度对镰荚黄芪的贡献率没有影响,而15N-NO3-15N-glycine随着土壤加深对弯花黄芪的贡献率分别为下降、增大趋势。

  • 3 讨论与结论

  • 本研究通过15N同位素示踪标记法,探讨了古尔班通古特沙漠两种不同生活型豆科植物弯花黄芪、镰荚黄芪在不同土壤深度施用3种不同形态15N后48 h的氮吸收速率、贡献率及各器官对氮素的吸收、分配和回收率,从而解释植物氮素利用及偏好吸收策略。在不同土层中,两种植物对3种不同形态氮的吸收速率均为一致,对硝态氮的吸收速率最大,其次为甘氨酸,吸收铵态氮速率最小,说明两种植物均偏好吸收硝态氮。庄伟伟和侯宝林(2021)的研究得出,古尔班通古特沙漠4种短命植物在0~5 cm处土层的硝态氮吸收速率均大于5~10 cm处的,这与本研究结果相似。侯宝林和庄伟伟(2021)的研究发现,植物在0~5 cm处土层的铵态氮、硝态氮、有机态氮吸收速率均大于5~15 cm处的,并且硝态氮吸收速率为最大,这与本研究结果一致。豆科植物株体内往往具有较高浓度的NO3-木质部汁液,有利于吸收N-NO3-(Arndt et al.,2004)。除此之外,硝态氮具备能在土壤中随机游动的潜能,有可能致使植物表现出快速吸收的原因之一(Li et al.,2015)。本研究古尔班通古特沙漠试验区中,在0~5 cm的土层土壤营养含量比较高,两种豆科植物生境土壤含有的有效氮源比例大小为N-NO3->N-glycine>N-NH4+。因此,推测植物擅于吸收硝态氮的重要原因很可能与研究区样地土壤中较高的硝态氮含量有关,并且更倾向于吸收来自0~5 cm土壤中的氮素,这与侯宝林(2022)的结果一致。在孙思邈(2020)白花草木犀(Melilotusalbus)和黄花草木犀(M. officinalis)两种豆科幼苗氮素添加研究中发现,植物对硝态、铵态氮吸收速率是本研究的氮吸收速率的3~4倍,这可能与不同物种、土壤营养环境、施用的氮素含量、生境等因素有关。

  • 表2 物种、氮形态、土壤深度、器官及互作对植物各器官氮吸收、分配量影响的多因素方差分析

  • Table2 Multi-way ANOVA analysis for effects of species, N form, soil depth, organ and their interactions on effects of N uptake and distribution in plant organs

  • 注:显著效果和相互作用的P值以加粗显示 (P<0.001)。

  • Note: P values for significant effects and interactions are shown in bold (P<0.001) .

  • 在不同土层中,两种豆科植物各器官间对3种不同形态氮吸收、分配具有明显的显著性差异(P<0.05)。刘晓静(2015)等研究得出,植物根系主要吸收无机氮,但本研究结果表明,两种植物的有机氮(甘氨酸)吸收量及吸收速率均比铵态氮高,说明在特定的单位时间段内,豆科植物对有机氮有较高的吸收能力,其原因之一是根瘤菌的作用下豆科植物根系形成根瘤,将氮气还原成氨,进而为自身提供氮。根瘤菌根形态对其吸收有机氮具有重要影响。因此,菌根可能提高了豆科植物吸收有机氮的能力(曹小闯等,2015),这与本研究结果一致。大多情况下,植物在吸收硝态氮过程中消耗的ATP会比吸收铵态氮的多(Wang &Macko,2011);土壤中含有的铵态氮被植物根部吸收后开始转化成谷氨酸盐,易被植物各器官直接利用,而植物在吸收硝态氮的过程只有通过耗费较多的ATP才能被植物吸收利用(Templer &Dawson,2004)。本研究发现,两种植物各器官中,不同形态15N积累量主要分配于叶,这主要是跟两种豆科植物叶片的总氮含量、回收率有关,三者可能成正比关系,导致不同器官间的氮素分配差异性,这与高唤唤等(2017)的研究结论一致。侯宝林(2022)研究发现,相对于铵态氮来说,大多数植物偏好吸收土壤中的硝态氮,这与本研究认为的植物偏好吸收和利用土壤硝态氮的观点相同。可能是弯花黄芪、镰荚黄芪此时的有效根系均分布于浅层土壤,弯花黄芪的根比镰荚黄芪的根粗及须根多,茎、叶的数量明显高于镰荚黄芪的茎和叶,正因为是这种特征,所以导致两种豆科植物各器官的氮素吸收、分配的不一致性。总体上,本研究中,不同物种、不同土壤深度、不同氮源都会影响植物各器官的氮吸收及分配。

  • 图3 古尔班通古特沙漠两种豆科植物弯花黄芪(A, B)和镰荚黄芪(C, D) 各器官氮回收率 (n=4,平均值±标准差)

  • Fig.3 RecoveryplantN in organs of two legumes Astragalus flexus (A, B) and A. arpilobus (C, D) in Gurbantunggut Desert (n=4, x-±s)

  • 李科利(2018)研究证明,植物各器官对不同形态15N的回收率高低直接表明该氮素在某器官中的所占比例大小。本研究从植物各器官回收率来看,在不同土层中,两种植物偏好回收硝态氮,各器官回收率大小均为15N-NO3-15N-glycine>15N-NH4+,并且两种植物叶的回收率均高于其他器官。总之,说明植物对不同氮素的回收能力既有差异性也有一致性,这与肖钰鑫等(2022)的研究结果相似。刘攀等(2018)在高寒人工草地的氮素添加研究中发现,在土壤表层(0 cm)处施用氮肥时,植物茎和叶的回收率大于根系,这与本研究结果相似。总之,本研究从不同土层来比较,3种不同形态氮对弯花黄芪回收率大小均为茎<根<叶,镰荚黄芪则是根<茎<叶。徐隆华等(2018)对3种不同15N的回收率均表现为茎叶部分>根﹐并且茎叶部对15N-NH4+15N-NO3-15N-glycine的回收率分别达到22%、44%和29%;各器官对15N-NO3-回收率显著高于15N-NH4+15N-glycine(P<0.05),这与本研究结果相似。Freschet等(2010)在亚北极区采集40种多年生草本植物的根样本中发现,根在衰老过程中能进行氮素回收,并且氮回收率为27%,这与本研究中弯花黄芪根的回收率相似。通常来讲,多年生草本植物的茎含有大量叶绿素,参与地上部分的光合作用(Smith,1950),这能解释弯花黄芪茎的15N回收率比镰荚黄芪茎的15N回收率高的原因。Zhang等(2014)在北京东灵山对木本植物的调查成果证实,固氮植物与非固氮植物的氮回收率无显著性差异,关于此说法,本研究与庄伟伟和侯宝林(2021)之间的结果不一致,这可能是物种及生境间的差异性导致的原因。

  • 图4 硝态氮、铵态氮和甘氨酸对两种豆科植物的贡献率 (单位: %)

  • Fig.4 Contribution rates of nitrate nitrogen, ammonia nitrogen and glycine of two legumes (Unit: %)

  • 在古尔班通古特沙漠同一生境中,施用在同一土层的不同氮源对不同植物物种的贡献率具有一定的差异性(侯宝林和庄伟伟,2021)。从本研究的氮贡献率来看,在0~5 cm、5~15 cm土层中,硝态氮对弯花黄芪的贡献率最大,分别达到41%、37%,而对镰荚黄芪的贡献率分别达到45%和43%。这说明在不同土层中,硝态氮对植物的贡献率大小均为镰荚黄芪>弯花黄芪,并随着土壤加深,铵态氮对弯花黄芪的贡献率和甘氨酸对镰荚黄芪的贡献率逐步增大。两种植物所吸收的硝态氮含量和硝态氮对植物的贡献率成正比,并且有机态氮源都可以从土壤中被吸收贡献于植物的生长;总之,土壤中某形态氮的含量及所占比例值越高,植物对其吸收和偏好及其对植物的氮素贡献率就越高,这与孙思邈(2020)研究结果相似。侯宝林和庄伟伟(2021)比较不同形态氮素对2种非豆科荒漠短命植物贡献率研究中发现,不同形态15N添加24 h后,在5~15 cm处土层的铵态氮、硝态氮、有机态氮对植物贡献率均大于在0~5 cm处土层的3种不同氮对植物的贡献率,这与本研究结果相似;不同之处的是,本研究得出硝态氮对两种豆科植物的贡献率最大,并且甘氨酸对两种植物的贡献率大于铵态氮的,这可能与氮素添加时间、物种类型、土壤深度等因素有关。任海燕等(2022)根据连续10年在内蒙古典型草原开展的氮添加研究结果显示,在自然状态下硝态氮的贡献率为铵的4倍,这与本研究结果不一致,原因可能是两个研究区属于不一样的生态系统,且生境土壤的有效含氮量有差异。

  • 生态位不同的豆科植被不仅减少了物种多样性之间的生存竞争,而且明显提高了对土壤氮资源的有效利用,能合理阐明以氮为第二限制因子的典型温带荒漠生态系统中的豆科植物及各器官是如何高效利用和分配限定氮源。物种与物种之间土壤氮源的竞争关系是限制温带荒漠生态系统生产力的重要因素之一。因此,通过探究植物对不同形态氮素吸收偏好、回收率、分配机制以及不同氮源对植物的贡献率,对优化荒漠生态系统物种配制,指导贫瘠土壤施肥并改善氮素资源有效性具有重要意义。总之,作为多年生类短命豆科植物的弯花黄芪各器官的发达程度均大于一年生短命豆科植物镰荚黄芪各器官发达程度,可能是导致两种植物各器官对不同氮源的吸收及分配策略之间的差别,而荒漠生态系统中的植物各器官对不同形态氮的吸收、分配及利用的影响因素是个未知数,可能是干旱区地理与土壤环境、土壤微生物环境等多种因素有关,需结合土壤温湿度、环境理化因子进一步研究。可见,氮素缺乏是古尔班通古特沙漠荒漠生态系统的特色之处,生活在该区的豆科植物靠土壤氮形态的长期适应性来调节自身对氮素的偏好性吸收及分配到各器官,从而完成生活史。

  • 参考文献

    • ALLEN ON, ALLEN EK, 1981. The Leguminosae — a source book of characteristics uses and nodulation [M] . Madison: University of Wisconsia Press: 156-172.

    • AN H, 2008. Regulating mechanism of nitrogen of typical plants growth in Zi Wu Ling forest region [D]. Yangling: Northwest A & F University. [安慧, 2008. 子午岭林区典型植物生长的氮素调控机理 [D]. 杨凌: 西北农林科技大学. ]

    • ARNDT SK, KAHMEN A, ARAMPATSIS C, 2004. Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert [J]. Oecologia, 141(3): 385-394.

    • BOL R, PFLIEGER C, 2002. Stable isotope (13C, 15N and 34S) analysis of the hair of modern humans and their domestic animals [J]. Rapid Commun Mass Spectrom, 16(23): 2195-2200.

    • CAO XC, LI XY, ZHU LF, et al. , 2015. Effects of different ratios of exogenous glycine, nitrate and ammonium on growth and quality of pakchoi (Brassica chinensis L. ) [J]. J Agric Environ Sci, 34(10): 1846-1852. [曹小闯, 李晓艳, 朱练峰, 等, 2015. 外源甘氨酸态氮、硝态氮和铵态氮的浓度配比对小白菜生长和品质的影响 [J]. 农业环境科学学报, 34(10): 1846-1852. ]

    • CLEMMENSEN KE, SORENSEN PL, MICHELSEN A, et al. , 2008. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi [J]. Oecologia, 155(4): 771-783.

    • DONG YY, ZHAO CY, YU ZT, et al. , 2017. Characteristic curves and models analysis of soil water in interdune at the Southern Edge of Gurbantunggut Desert [J]. J Soil Water Conserv, 31(1): 166-171. [董义阳, 赵成义, 于志同, 等, 2017. 古尔班通古特沙漠南缘丘间地土壤水分特征曲线及模拟 [J]. 水土保持学报, 31(1): 166-171. ]

    • DU LS, 2020. Nitrogen utilization strategies of dominant species from primary succession along Hailuogou Glacier, Mt. Gongga [D]. Beijing: University of Chinese Academy of Sciences. [杜流姗, 2020. 贡嘎山海螺沟冰川退缩区原生演替过程优势植物氮素利用策略研究 [D]. 北京: 中国科学院大学. ]

    • ERFAN AKBERJAN, LI J, ZHUANG WW, 2022. Relationship between habitat soil factor and stoichiometric characteristics of two kinds of desert leguminous plants [J]. Acta Bot Boreal-Occident Sin, 42(8): 1384-1395. [依里帆·艾克拜尔江, 李进, 庄伟伟, 2022. 两种荒漠豆科植物化学计量特征与生境土壤因子的关系 [J]. 西北植物学报, 42(8): 1384-1395. ]

    • FENG YL, 2020. Uptake of soil organic nitrogen by plant species in alpine meadow [D]. Lanzhou: Lanzhou University. [冯彦丽, 2020. 高寒草甸植物吸收土壤有机氮的研究 [D]. 兰州: 兰州大学. ]

    • FRIED M, ZSOLDOS F, VOSE PB, et al. , 1965. Characterizing the NO3- and NH4+uptake process of rice roots by use of 15N labelled NH4NO3 [J]. Physiol Plantarum, 18(2): 313-320.

    • FRESCHET GT, CORNELISSEN JH, VAN LOGTESTIJN RS, et al. , 2010. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? [J]. New Phytologist, 186(4): 879-889.

    • GUO HY, YANG J, GUO JS, et al. , 2005. Ecophysiological responses of Caragana korshinskii and Ammopiptanthus mongolicus in shelter-forest along railway in western Ordos to different management measures [J]. J Desert Res, 25(1): 83-89. [郭宏宇, 杨劼, 郭景山, 等, 2005. 西鄂尔多斯铁路防护林柠条锦鸡儿和沙冬青对不同管护措施的生理生态响应 [J]. 中国沙漠, 25(1): 83-89. ]

    • GAO HH, WANG JJ, ZHOU PS, et al. , 2017. Carbon and nitrogen allocation in organs of Quercus variabilis seedlings by 13C and 15N tracer technique [J]. J Shanghai Jiaotong Univ (Agric Sci), 35(6): 67-73. [高唤唤, 王姣娇, 周丕生, 等, 2017. 利用13C和15N示踪碳、氮在栓皮栎幼苗各器官中的分配 [J]. 上海交通大学学报(农业科学版), 35(6): 67-73. ]

    • HOOPER DU, JOHNSON L, 1999. Nitrogen limitation in dry land ecosystems: responses to geographical and temporal variation in precipitation [J]. Biogeochemistry, 46(1): 247-293.

    • HOU BL, 2022. Nitrogen uptake strategies of herbaceous plants with different life types in Gurbantunggut Desert [D]. Urumqi: Xinjiang Normal University. [侯宝林, 2022. 古尔班通古特沙漠不同生活型草本植物对氮素吸收偏好性研究 [D]. 乌鲁木齐: 新疆师范大学. ]

    • HOU BL, ZHUANG WW, 2021. Nitrogen uptake strategy of annual plants in Gurbantunggut Desert [J]. Chin J Plant Ecol, 45(7): 760-770. [侯宝林, 庄伟伟, 2021. 古尔班通古特沙漠一年生植物的氮吸收策略 [J]. 植物生态学报, 45(7): 760-770. ]

    • JACOB A, LEUSCHNER C, 2015. Complementarity in the use of nitrogen forms in a temperate broad leaved mixed forest [J]. Plant Ecol Divers 8(2): 243-258.

    • KAUR B, KAUR G, ASTHIR B, 2016. Biochemical aspects of nitrogen use efficiency: an overview [J]. J Plant Nutr, 40(4): 506-523.

    • KOU L, GUO DL, YANG H, et al. , 2015. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China [J]. Plant Soil, 391(1): 207-218.

    • LEE JA. 1998. The calcicole-calcifuge problem revisited [M]. Adv Bot Res, 29: 1-30.

    • LI SX, WANG ZH, STEWART BA, 2013. Responses of crop plants to ammonium and nitrate N [J]. Adv Agron, 118: 205-397.

    • LI YJ, SUN DD, LI DD, et al. , 2015. Effects of warming on ectomycorrhizal colonization and nitrogen nutrition of Picea asperata seedlings grown in two contrasting forest ecosystems [J]. Sci Rep, 5(1): 1-10.

    • LI KL, 2018. Interspecific competition modulates nitrogen utilization strategy of an invasive plant, Flaveria bidentis [D]. Beijing: Chinese Academy of Agricultural Sciences. [李科利, 2018. 种间竞争对入侵植物黄顶菊氮素利用策略的影响 [D]. 北京: 中国农业科学院. ]

    • LIU HX, LI N, SHENG JD, 2013. The application of stable15N tracer technique in agricultural nitrogen use [J]. Xinjiang Agric Sci, 50(1): 124-131. [刘焕鲜, 李宁, 盛建东, 2013. 稳定性15N示踪技术在农业氮肥利用中的应用 [J]. 新疆农业科学, 50(1): 124-131. ]

    • LIU XJ, YE F, ZHANG XL, 2015. Effects of exogenous nitrogen forms on root characteristics of alfalfa at different growth stages [J]. Acta Pratac Sin, 24(6): 53-63. [刘晓静, 叶芳, 张晓玲, 2015. 外源氮素形态对紫花苜蓿不同生育期根系特性的影响 [J]. 草业学报, 24(6): 53-63. ]

    • LlU P, ZHOU HK, YANG C et al. , 2018. Ammonia volatilization and N recovery of nitrogen fertilizer on alpine artificialgrassland based on nitrogen isotope labelling technique [J]. Ecol Sci, 37(3): 77-84. [刘攀, 周华坤, 杨冲, 等, 2018.基于氮同位素标记技术的高寒人工草地氮肥氨挥发和氦素回收率研究 [J]. 生态科学, 37(3): 77-84. ]

    • LU RK, SHI ZY, LAI QW, 2000. Nutrient degradation in red soils Ⅲ: nutrient leaching losses from red soils and plants [J]. Chin J Soil Sci, 31(4): 156-158. [鲁如坤, 时正元, 赖庆旺, 2000. 红壤养分退化研究Ⅲ: 土壤和植株的养分淋失 [J]. 土壤通报, 31(4): 156-158. ]

    • MCKANE RB, JOHNSON LC, SHAVER GR, et al. , 2002. Resource-based niches provide a basis for plant species diversity and dominance in Arctic tundra [J]. Nature, 415(6867): 68-71.

    • MENG S, 2016. Nitrogen dynamic uptake and genetic expression of translocator of tree species in fine roots [D]. Yangling: Northwest A & F University. [孟森, 2016. 林木细根氮素吸收动态及氮转运蛋白基因表达 [D]. 杨凌: 西北农林科技大学. ]

    • MO LY, WU LY, TAO QN, 2002. Advances in study of plant organic nitrogen nutrition [J]. Acta Ecol Sin, 22(1): 118-124. [莫良玉, 吴良欢, 陶勤南, 2002. 高等植物对有机氮吸收与利用研究进展 [J]. 生态学报, 22(1): 118-124. ]

    • REN HY, TIAN L, ZHU Y, et al. , 2022. Nitrogen and water addition alter nitrogen uptake preferences of two dominant plant species in a typical Inner Mongolian steppe [J]. Chin Sci Bull, 67(13): 1459-1468. [任海燕, 田磊, 朱毅, 等, 2022. 氮水添加改变内蒙古典型草原两种优势植物的氮吸收偏好 [J]. 科学通报, 67(13): 1459-1468. ]

    • SUN DY, 2019. Effects of nitrogen and water addition on functional plant traits and community structure in atypical temperate steppe [D]. Zhengzhou: Henan University. [孙丹宇, 2019. 氮素和水分添加对温带典型草原植物功能属性和群落结构的影响 [D]. 郑州: 河南大学. ]

    • SUN SM, 2020. Differences in preferential uptake of nitrate and ammonium nitrogen between seven pairs of invasiive and native plants [D]. Shenyang: Shenyang Agricultural University. [孙思邈, 2020. 七对入侵与本地植物对硝氮和铵氮偏好吸收的差异 [D]. 沈阳: 沈阳农业大学. ]

    • SMITH RB, 1950. The role of mechanics in the evolution of the herbaceous plant stem [J]. Bot Gazette, 111(3): 262-286.

    • SCHIMEL JP, BENNETT J, 2004. Nitrogen mineralization: challenges of a changing paradigm [J]. Ecology, 85(3): 591-602.

    • TAO Y, LIU YB, WU GL, et al. , 2016. Regional scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar desert, China [J]. Acta Pratac Sin, 25(7): 13-23. [陶冶, 刘耀斌, 吴甘霖, 等, 2016. 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局 [J]. 草业学报, 25(7): 13-23. ]

    • TEGEDER M, MASCLAUX DC, 2018. Source and sink mechanisms of nitrogen transport and use [J]. New Phytol, 217(1): 35-42.

    • TEMPLER PH, DAWSON TE, 2004. Nitrogen uptake by four tree species of the Catskill Mountains, New York: Implications for forest N dynamics [J]. Plant Soil, 262(1/2): 251-261.

    • WALLANDER H, ARNEBRANT K, OSTRAND F, et al. , 1997. Uptake of 15N-labelled alanine, ammonium and nitrate in Pinus sylvestris L. ectomycorrhiza growing in forest soil treated with nitrogen, sulphur or lime [J]. Plant Soil, 195: 329-338.

    • WANG LX, MACKO SA, 2011. Constrained preferences in nitrogen uptake across plant species and environments [J]. Plant Cell Environ, 34(3): 525-534.

    • WANG R, TIAN Y, OUYANG S, et al. , 2016. Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes [J]. Biol Fert Soils, 52(7): 951-961.

    • WANG WY, LIU JY, 2009. Research advances in organic nitrogen acquisition by plants [J]. Chin J Appl Ecol, 20(5): 1223-1228. [王文颖, 刘俊英, 2009. 植物吸收利用有机氮营养研究进展 [J]. 应用生态学报, 20(5): 1223-1228. ]

    • WANG XQ, JIANG J, WANG YC, et al. , 2006. Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantunggut Desert [J]. Chin Sci Bull, 51(1): 110-116.

    • XIONG YQ, WANG ZQ, 2018. Biodiversity and ecoadaptability of Leguminosae [J]. Chin J Nat, 40(1): 64-70. [熊义勤, 汪自强, 2018. 豆科植物的生物多样性和生态适应性 [J]. 自然杂志, 40(1): 64-70. ]

    • XU LH, YAO BQ, WANG WY, et al. , 2018. Nitrogen absorption and distribution characteristics in different organs of the main plants in Kobresia humilis meadow [J]. Acta Bot Boreal-Occident Sin, 38(5): 957-966. [徐隆华, 姚步青, 王文颖, 等, 2018. 矮嵩草草甸主要植物不同器官对氮素的吸收及分配特征研究 [J]. 西北植物学报, 38(5): 957-966. ]

    • XIAO YX, WANG MM, ZHUANG WW, 2022. Effects of increased water on biomass and absorption of different nitrogen forms of four ephemeral plants in Gurbantunggut Desert [J]. Acta Bot Boreal-Occident Sin, 42(8): 1373-1383. [肖钰鑫, 王明明, 庄伟伟, 2022. 增加水分对古尔班通古特沙漠4种短命植物生物量及氮素形态吸收的影响 [J]. 西北植物学报, 42(8): 1373-1383. ]

    • YE J, GE GB, YING YQ, et al. , 2015. Absorption, accumulation and distribution of bamboo (Bambusa textilis) to the main nutrients [J]. J Plant Nutr Fert, 21(1): 164-170. [叶晶, 葛高波, 应雨骐, 等, 2015. 青皮竹地上部营养元素的吸收、积累和分配特性研究 [J]. 植物营养与肥料学报, 21(1): 164-170. ]

    • ZHANG LY, CHEN CD, 2002. On the general characteristics of plant diversity of Gurbantunggut sandy desert [J]. Acta Ecol Sin, 22(11): 1923-1932. [张立运, 陈昌笃, 2002. 论古尔班通古特沙漠植物多样性的一般特点 [J]. 生态学报, 22(11): 1923-1932. ]

    • ZHANG J, TANG Z, LUO Y, et al. , 2014. Resorption efficiency of leaf nutrients in woody plants on Mt. Dongling of Beijing, North China [J]. J Plant Ecol, 8(5): 530-538.

    • ZHANG YQ, MA Y, WEN T, et al. , 2015. Responses of alpine meadow plants and their parts to nitrogen addition in the eastern Qilian Mountains [J]. Acta Agr Sin, 29(8): 1628-1636. [张玉琪, 马源, 文铜, 等, 2021. 祁连山东缘高寒草甸植物及各部位对氮素添加的响应 [J]. 草地学报, 29(8): 1628-1636. ]

    • ZHAO YY, ZHANG R, JIANG KW, et al. , 2021. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae [J]. Mol Plant, 14(5): 748-773.

    • ZHOU HF, ZHOU BJ, DAI Q, 2010. Observational analysis of rime condensation on plants over the Gurbantunggut Desert in China [J]. Adv Water Sci, 21(1): 56-62. [周宏飞, 周宝佳, 代琼, 2010. 古尔班通古特沙漠植物雾凇凝结特征 [J]. 水科学进展, 21(1): 56-62. ]

    • ZHOU XB, BOWKER MA, TAO Y, et al. , 2018. Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics [J]. Sci Total Environ, 626: 99-108.

    • ZHUANG WW, HOU BL, 2021. Nitrogen uptake strategies of short-lived plants in the Gurbantunggut Desert [J]. Arid Zone Res, 38(5): 1393-1400. [庄伟伟, 侯宝林, 2021. 古尔班通古特沙漠短命植物的氮素吸收策略 [J]. 干旱区研究, 38(5): 1393-1400. ]

    • ZHUANG WW, LI J, YU F, et al. , 2020. Seasonal nitrogen uptake strategies in a temperate desert ecosystem depends on N form and plant species [J]. Plant Biol, 22(3): 386-393.

    • ZHUANG WW, WANG MM, XIAO YX, et al. , 2022. Differential uptake of nitrogen forms by two herbs in the Gurbantunggut desert, Central Asia [J]. Plant Biol, 24: 758-765.

  • 参考文献

    • ALLEN ON, ALLEN EK, 1981. The Leguminosae — a source book of characteristics uses and nodulation [M] . Madison: University of Wisconsia Press: 156-172.

    • AN H, 2008. Regulating mechanism of nitrogen of typical plants growth in Zi Wu Ling forest region [D]. Yangling: Northwest A & F University. [安慧, 2008. 子午岭林区典型植物生长的氮素调控机理 [D]. 杨凌: 西北农林科技大学. ]

    • ARNDT SK, KAHMEN A, ARAMPATSIS C, 2004. Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert [J]. Oecologia, 141(3): 385-394.

    • BOL R, PFLIEGER C, 2002. Stable isotope (13C, 15N and 34S) analysis of the hair of modern humans and their domestic animals [J]. Rapid Commun Mass Spectrom, 16(23): 2195-2200.

    • CAO XC, LI XY, ZHU LF, et al. , 2015. Effects of different ratios of exogenous glycine, nitrate and ammonium on growth and quality of pakchoi (Brassica chinensis L. ) [J]. J Agric Environ Sci, 34(10): 1846-1852. [曹小闯, 李晓艳, 朱练峰, 等, 2015. 外源甘氨酸态氮、硝态氮和铵态氮的浓度配比对小白菜生长和品质的影响 [J]. 农业环境科学学报, 34(10): 1846-1852. ]

    • CLEMMENSEN KE, SORENSEN PL, MICHELSEN A, et al. , 2008. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi [J]. Oecologia, 155(4): 771-783.

    • DONG YY, ZHAO CY, YU ZT, et al. , 2017. Characteristic curves and models analysis of soil water in interdune at the Southern Edge of Gurbantunggut Desert [J]. J Soil Water Conserv, 31(1): 166-171. [董义阳, 赵成义, 于志同, 等, 2017. 古尔班通古特沙漠南缘丘间地土壤水分特征曲线及模拟 [J]. 水土保持学报, 31(1): 166-171. ]

    • DU LS, 2020. Nitrogen utilization strategies of dominant species from primary succession along Hailuogou Glacier, Mt. Gongga [D]. Beijing: University of Chinese Academy of Sciences. [杜流姗, 2020. 贡嘎山海螺沟冰川退缩区原生演替过程优势植物氮素利用策略研究 [D]. 北京: 中国科学院大学. ]

    • ERFAN AKBERJAN, LI J, ZHUANG WW, 2022. Relationship between habitat soil factor and stoichiometric characteristics of two kinds of desert leguminous plants [J]. Acta Bot Boreal-Occident Sin, 42(8): 1384-1395. [依里帆·艾克拜尔江, 李进, 庄伟伟, 2022. 两种荒漠豆科植物化学计量特征与生境土壤因子的关系 [J]. 西北植物学报, 42(8): 1384-1395. ]

    • FENG YL, 2020. Uptake of soil organic nitrogen by plant species in alpine meadow [D]. Lanzhou: Lanzhou University. [冯彦丽, 2020. 高寒草甸植物吸收土壤有机氮的研究 [D]. 兰州: 兰州大学. ]

    • FRIED M, ZSOLDOS F, VOSE PB, et al. , 1965. Characterizing the NO3- and NH4+uptake process of rice roots by use of 15N labelled NH4NO3 [J]. Physiol Plantarum, 18(2): 313-320.

    • FRESCHET GT, CORNELISSEN JH, VAN LOGTESTIJN RS, et al. , 2010. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? [J]. New Phytologist, 186(4): 879-889.

    • GUO HY, YANG J, GUO JS, et al. , 2005. Ecophysiological responses of Caragana korshinskii and Ammopiptanthus mongolicus in shelter-forest along railway in western Ordos to different management measures [J]. J Desert Res, 25(1): 83-89. [郭宏宇, 杨劼, 郭景山, 等, 2005. 西鄂尔多斯铁路防护林柠条锦鸡儿和沙冬青对不同管护措施的生理生态响应 [J]. 中国沙漠, 25(1): 83-89. ]

    • GAO HH, WANG JJ, ZHOU PS, et al. , 2017. Carbon and nitrogen allocation in organs of Quercus variabilis seedlings by 13C and 15N tracer technique [J]. J Shanghai Jiaotong Univ (Agric Sci), 35(6): 67-73. [高唤唤, 王姣娇, 周丕生, 等, 2017. 利用13C和15N示踪碳、氮在栓皮栎幼苗各器官中的分配 [J]. 上海交通大学学报(农业科学版), 35(6): 67-73. ]

    • HOOPER DU, JOHNSON L, 1999. Nitrogen limitation in dry land ecosystems: responses to geographical and temporal variation in precipitation [J]. Biogeochemistry, 46(1): 247-293.

    • HOU BL, 2022. Nitrogen uptake strategies of herbaceous plants with different life types in Gurbantunggut Desert [D]. Urumqi: Xinjiang Normal University. [侯宝林, 2022. 古尔班通古特沙漠不同生活型草本植物对氮素吸收偏好性研究 [D]. 乌鲁木齐: 新疆师范大学. ]

    • HOU BL, ZHUANG WW, 2021. Nitrogen uptake strategy of annual plants in Gurbantunggut Desert [J]. Chin J Plant Ecol, 45(7): 760-770. [侯宝林, 庄伟伟, 2021. 古尔班通古特沙漠一年生植物的氮吸收策略 [J]. 植物生态学报, 45(7): 760-770. ]

    • JACOB A, LEUSCHNER C, 2015. Complementarity in the use of nitrogen forms in a temperate broad leaved mixed forest [J]. Plant Ecol Divers 8(2): 243-258.

    • KAUR B, KAUR G, ASTHIR B, 2016. Biochemical aspects of nitrogen use efficiency: an overview [J]. J Plant Nutr, 40(4): 506-523.

    • KOU L, GUO DL, YANG H, et al. , 2015. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China [J]. Plant Soil, 391(1): 207-218.

    • LEE JA. 1998. The calcicole-calcifuge problem revisited [M]. Adv Bot Res, 29: 1-30.

    • LI SX, WANG ZH, STEWART BA, 2013. Responses of crop plants to ammonium and nitrate N [J]. Adv Agron, 118: 205-397.

    • LI YJ, SUN DD, LI DD, et al. , 2015. Effects of warming on ectomycorrhizal colonization and nitrogen nutrition of Picea asperata seedlings grown in two contrasting forest ecosystems [J]. Sci Rep, 5(1): 1-10.

    • LI KL, 2018. Interspecific competition modulates nitrogen utilization strategy of an invasive plant, Flaveria bidentis [D]. Beijing: Chinese Academy of Agricultural Sciences. [李科利, 2018. 种间竞争对入侵植物黄顶菊氮素利用策略的影响 [D]. 北京: 中国农业科学院. ]

    • LIU HX, LI N, SHENG JD, 2013. The application of stable15N tracer technique in agricultural nitrogen use [J]. Xinjiang Agric Sci, 50(1): 124-131. [刘焕鲜, 李宁, 盛建东, 2013. 稳定性15N示踪技术在农业氮肥利用中的应用 [J]. 新疆农业科学, 50(1): 124-131. ]

    • LIU XJ, YE F, ZHANG XL, 2015. Effects of exogenous nitrogen forms on root characteristics of alfalfa at different growth stages [J]. Acta Pratac Sin, 24(6): 53-63. [刘晓静, 叶芳, 张晓玲, 2015. 外源氮素形态对紫花苜蓿不同生育期根系特性的影响 [J]. 草业学报, 24(6): 53-63. ]

    • LlU P, ZHOU HK, YANG C et al. , 2018. Ammonia volatilization and N recovery of nitrogen fertilizer on alpine artificialgrassland based on nitrogen isotope labelling technique [J]. Ecol Sci, 37(3): 77-84. [刘攀, 周华坤, 杨冲, 等, 2018.基于氮同位素标记技术的高寒人工草地氮肥氨挥发和氦素回收率研究 [J]. 生态科学, 37(3): 77-84. ]

    • LU RK, SHI ZY, LAI QW, 2000. Nutrient degradation in red soils Ⅲ: nutrient leaching losses from red soils and plants [J]. Chin J Soil Sci, 31(4): 156-158. [鲁如坤, 时正元, 赖庆旺, 2000. 红壤养分退化研究Ⅲ: 土壤和植株的养分淋失 [J]. 土壤通报, 31(4): 156-158. ]

    • MCKANE RB, JOHNSON LC, SHAVER GR, et al. , 2002. Resource-based niches provide a basis for plant species diversity and dominance in Arctic tundra [J]. Nature, 415(6867): 68-71.

    • MENG S, 2016. Nitrogen dynamic uptake and genetic expression of translocator of tree species in fine roots [D]. Yangling: Northwest A & F University. [孟森, 2016. 林木细根氮素吸收动态及氮转运蛋白基因表达 [D]. 杨凌: 西北农林科技大学. ]

    • MO LY, WU LY, TAO QN, 2002. Advances in study of plant organic nitrogen nutrition [J]. Acta Ecol Sin, 22(1): 118-124. [莫良玉, 吴良欢, 陶勤南, 2002. 高等植物对有机氮吸收与利用研究进展 [J]. 生态学报, 22(1): 118-124. ]

    • REN HY, TIAN L, ZHU Y, et al. , 2022. Nitrogen and water addition alter nitrogen uptake preferences of two dominant plant species in a typical Inner Mongolian steppe [J]. Chin Sci Bull, 67(13): 1459-1468. [任海燕, 田磊, 朱毅, 等, 2022. 氮水添加改变内蒙古典型草原两种优势植物的氮吸收偏好 [J]. 科学通报, 67(13): 1459-1468. ]

    • SUN DY, 2019. Effects of nitrogen and water addition on functional plant traits and community structure in atypical temperate steppe [D]. Zhengzhou: Henan University. [孙丹宇, 2019. 氮素和水分添加对温带典型草原植物功能属性和群落结构的影响 [D]. 郑州: 河南大学. ]

    • SUN SM, 2020. Differences in preferential uptake of nitrate and ammonium nitrogen between seven pairs of invasiive and native plants [D]. Shenyang: Shenyang Agricultural University. [孙思邈, 2020. 七对入侵与本地植物对硝氮和铵氮偏好吸收的差异 [D]. 沈阳: 沈阳农业大学. ]

    • SMITH RB, 1950. The role of mechanics in the evolution of the herbaceous plant stem [J]. Bot Gazette, 111(3): 262-286.

    • SCHIMEL JP, BENNETT J, 2004. Nitrogen mineralization: challenges of a changing paradigm [J]. Ecology, 85(3): 591-602.

    • TAO Y, LIU YB, WU GL, et al. , 2016. Regional scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar desert, China [J]. Acta Pratac Sin, 25(7): 13-23. [陶冶, 刘耀斌, 吴甘霖, 等, 2016. 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局 [J]. 草业学报, 25(7): 13-23. ]

    • TEGEDER M, MASCLAUX DC, 2018. Source and sink mechanisms of nitrogen transport and use [J]. New Phytol, 217(1): 35-42.

    • TEMPLER PH, DAWSON TE, 2004. Nitrogen uptake by four tree species of the Catskill Mountains, New York: Implications for forest N dynamics [J]. Plant Soil, 262(1/2): 251-261.

    • WALLANDER H, ARNEBRANT K, OSTRAND F, et al. , 1997. Uptake of 15N-labelled alanine, ammonium and nitrate in Pinus sylvestris L. ectomycorrhiza growing in forest soil treated with nitrogen, sulphur or lime [J]. Plant Soil, 195: 329-338.

    • WANG LX, MACKO SA, 2011. Constrained preferences in nitrogen uptake across plant species and environments [J]. Plant Cell Environ, 34(3): 525-534.

    • WANG R, TIAN Y, OUYANG S, et al. , 2016. Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes [J]. Biol Fert Soils, 52(7): 951-961.

    • WANG WY, LIU JY, 2009. Research advances in organic nitrogen acquisition by plants [J]. Chin J Appl Ecol, 20(5): 1223-1228. [王文颖, 刘俊英, 2009. 植物吸收利用有机氮营养研究进展 [J]. 应用生态学报, 20(5): 1223-1228. ]

    • WANG XQ, JIANG J, WANG YC, et al. , 2006. Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantunggut Desert [J]. Chin Sci Bull, 51(1): 110-116.

    • XIONG YQ, WANG ZQ, 2018. Biodiversity and ecoadaptability of Leguminosae [J]. Chin J Nat, 40(1): 64-70. [熊义勤, 汪自强, 2018. 豆科植物的生物多样性和生态适应性 [J]. 自然杂志, 40(1): 64-70. ]

    • XU LH, YAO BQ, WANG WY, et al. , 2018. Nitrogen absorption and distribution characteristics in different organs of the main plants in Kobresia humilis meadow [J]. Acta Bot Boreal-Occident Sin, 38(5): 957-966. [徐隆华, 姚步青, 王文颖, 等, 2018. 矮嵩草草甸主要植物不同器官对氮素的吸收及分配特征研究 [J]. 西北植物学报, 38(5): 957-966. ]

    • XIAO YX, WANG MM, ZHUANG WW, 2022. Effects of increased water on biomass and absorption of different nitrogen forms of four ephemeral plants in Gurbantunggut Desert [J]. Acta Bot Boreal-Occident Sin, 42(8): 1373-1383. [肖钰鑫, 王明明, 庄伟伟, 2022. 增加水分对古尔班通古特沙漠4种短命植物生物量及氮素形态吸收的影响 [J]. 西北植物学报, 42(8): 1373-1383. ]

    • YE J, GE GB, YING YQ, et al. , 2015. Absorption, accumulation and distribution of bamboo (Bambusa textilis) to the main nutrients [J]. J Plant Nutr Fert, 21(1): 164-170. [叶晶, 葛高波, 应雨骐, 等, 2015. 青皮竹地上部营养元素的吸收、积累和分配特性研究 [J]. 植物营养与肥料学报, 21(1): 164-170. ]

    • ZHANG LY, CHEN CD, 2002. On the general characteristics of plant diversity of Gurbantunggut sandy desert [J]. Acta Ecol Sin, 22(11): 1923-1932. [张立运, 陈昌笃, 2002. 论古尔班通古特沙漠植物多样性的一般特点 [J]. 生态学报, 22(11): 1923-1932. ]

    • ZHANG J, TANG Z, LUO Y, et al. , 2014. Resorption efficiency of leaf nutrients in woody plants on Mt. Dongling of Beijing, North China [J]. J Plant Ecol, 8(5): 530-538.

    • ZHANG YQ, MA Y, WEN T, et al. , 2015. Responses of alpine meadow plants and their parts to nitrogen addition in the eastern Qilian Mountains [J]. Acta Agr Sin, 29(8): 1628-1636. [张玉琪, 马源, 文铜, 等, 2021. 祁连山东缘高寒草甸植物及各部位对氮素添加的响应 [J]. 草地学报, 29(8): 1628-1636. ]

    • ZHAO YY, ZHANG R, JIANG KW, et al. , 2021. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae [J]. Mol Plant, 14(5): 748-773.

    • ZHOU HF, ZHOU BJ, DAI Q, 2010. Observational analysis of rime condensation on plants over the Gurbantunggut Desert in China [J]. Adv Water Sci, 21(1): 56-62. [周宏飞, 周宝佳, 代琼, 2010. 古尔班通古特沙漠植物雾凇凝结特征 [J]. 水科学进展, 21(1): 56-62. ]

    • ZHOU XB, BOWKER MA, TAO Y, et al. , 2018. Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics [J]. Sci Total Environ, 626: 99-108.

    • ZHUANG WW, HOU BL, 2021. Nitrogen uptake strategies of short-lived plants in the Gurbantunggut Desert [J]. Arid Zone Res, 38(5): 1393-1400. [庄伟伟, 侯宝林, 2021. 古尔班通古特沙漠短命植物的氮素吸收策略 [J]. 干旱区研究, 38(5): 1393-1400. ]

    • ZHUANG WW, LI J, YU F, et al. , 2020. Seasonal nitrogen uptake strategies in a temperate desert ecosystem depends on N form and plant species [J]. Plant Biol, 22(3): 386-393.

    • ZHUANG WW, WANG MM, XIAO YX, et al. , 2022. Differential uptake of nitrogen forms by two herbs in the Gurbantunggut desert, Central Asia [J]. Plant Biol, 24: 758-765.