en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李雪(2001-),研究方向为植物生理生化,(E-mail)1974708257@qq.com。

通讯作者:

俞超,高级实验师,研究方向为植物生理生化,(E-mail)32897949@qq.com。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2023)12-2309-10

DOI:10.11931/guihaia.gxzw202211016

参考文献
AGHDAM MS, LUO Z, JANNATIZADEH A, et al. , 2019. Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity [J]. Food Chem, 275(13): 549-556.
参考文献
BERNARD A, JOUBÈS J, 2013. Arabidopsis cuticular waxes: advances in synthesis, export and regulation [J]. Prog Lipid Res, 52(1): 110-129.
参考文献
CAO QY, JIN L, WANG WY, et al. , 2022. Effects of low temperature stress on leaf physiology of ‘Fengjian 1’ [J/OL]. Mol Plant Breed: 1-8 [2022-11-09]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220328. 1519. 012. html. [曹群阳, 金亮, 王炜勇, 等, 2022. 低温胁迫对‘凤剑1号’叶片生理的影响 [J/OL]. 分子植物育种: 1-8 [2022-11-09]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220328. 1519. 012. html. ]
参考文献
CHENG QR, LIU ZF, ZENG XH, et al. , 2022. Physiological Response under low temperature stress and evaluation on cold tolerance in inbreding F1 group of oil palm (Elaeis guineensis Jacq. ) in Dali, Yunnan pronvince [J]. Chin J Trop Crops, 43(2): 328-336. [程秋如, 刘子凡, 曾宪海, 等, 2022. 云南大理油棕自交子一代对低温胁迫的生理响应及抗寒性评价 [J]. 热带作物学报, 43(2): 328-336. ]
参考文献
CHEN MH, CHENG SP, TONG WS, et al. , 2017. Effects of SA on root activity and antioxidant enzyme activity of dendrobium officinale seedlings under low temperature stress [J]. N Hortic, 397(22): 83-87. [陈明辉, 程世平, 佟伟霜, 等, 2017. 水杨酸对低温胁迫下铁皮石斛幼苗根系活力及抗氧化酶活性的影响 [J]. 北方园艺, 397(22): 83-87. ]
参考文献
DENG RJ, FAN JX, WANG YQ, et al. , 2018. Radiation mutagenesis of pitaya(Hylocereus undulatus Britt)seedlings in vitro and its physiological responces to the low temperature stress [J]. Chin J Trop Crops, 39(2): 260-266. [邓仁菊, 范建新, 王永清, 等, 2018. 火龙果幼苗离体辐射诱变及其对低温胁迫的生理响应 [J]. 热带作物学报, 39(2): 260-266. ]
参考文献
ELSAYED AI, EL-HAMAHMY MAM, RAFUDEEN MS, et al. , 2019. The impact of drought stress on antioxidant responses and accumulation of flavonolignans in milk thistle (Silybum marianum (L. ) Gaertn) [J]. Plants, 8(12): 611.
参考文献
GILL SS, TUTEJA N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem, 48(12): 909-930.
参考文献
HASANUZZAMAN M, BORHANNUDDIN BHUYAN MHM, ZULFIQAR F, et al. , 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator [J]. Antioxidants, 9(8): 1-52.
参考文献
HE JP, ZHU JC, WANG JP, et al. , 2017. The relationship between seedling microtructure and cold resistance of Brassica napus [J]. Jiangsu J Agric Sci, 33(1): 19-26. [何俊平, 朱家成, 王建平, 等, 2017. 甘蓝型油菜幼苗显微组织结构与抗寒性的关系 [J]. 江苏农业学报, 33(1): 19-26. ]
参考文献
KHAN MIR, IQBAL N, MASOOD A, et al. , 2013. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation [J]. Plant Sig Behav, 8(11): e26374.
参考文献
LI B, WANG WT, 2021. Salicylic acid induces tolerance of Vitis riparia×V. labrusca to chilling stress by altered photosynthetic, antioxidant mechanisms and expression of cold stress responsive genes [J]. Plant Sig Behav, 16(11): 1973711.
参考文献
LI D, HUANG YJ, ZHU N, et al. , 2019. A study on the phenotypical, physiological and biochemical characteristics of the cold resistant sanming wild banana (Musa itinerans) [J]. J Fruit Sci, 36(1): 76-85. [李丹, 黄玉吉, 朱宁, 等, 2019. 三明野生蕉抗寒特性的形态学与生理生化研究 [J]. 果树学报, 36(1): 76-85. ]
参考文献
LI HS, 2000. Principles and techniques of plant physiological biochemical experiment [M]. Beijing: Higher Education Press: 195-197. [李合生, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 195-197. ]
参考文献
LIU T, YANG LN, YING JP, et al. , 2016. Effects of low temperature on plantation of Hylocereus undatus and its defense measures [J]. J Anhui Agric Sci, 44(10): 40-42. [刘涛, 杨丽娜, 应建平, 等, 2016. 低温对火龙果种植的影响及其防御措施 [J]. 安徽农业科学, 44(10): 40-42. ]
参考文献
LONG HY, DENG LX, 2019. Response and adaptation of plant morphology to drought stress [J]. Hubei Agric Sci, 58(8): 5-7. [龙海燕, 邓伦秀, 2019. 植物形态对干旱胁迫的反应与适应性研究 [J]. 湖北农业科学, 58(8): 5-7. ]
参考文献
MA LF, HE SL, LI FR, et al. , 2016. Effects imposed by exogenous salicylic acid on the physiological conditions and membrane damage of Rhodiola algida seedling under stress of low temperature [J]. Oxid Commun, 39(2): 1300-1308.
参考文献
MIURA K, TADA Y, 2014. Regulation of water, salinity, and cold stress responses by salicylic acid [J]. Front Plant Sci, 5: 4-16.
参考文献
NING XL, WANG XH, CUI Y, et al. , 2022. Chilling resistance of corn and cold stress responses of salicylic acid-treated corn [J]. Sci Asia, 48(2): 144-155.
参考文献
QIAO Q, YU Y, WANG JY, et al. , 2020. Hylocereus undulates: research progress and introduction feasibility in north China [J]. Chin Agric Sci Bull, 36(25): 53-59. [乔谦, 于泳, 王江勇, 等, 2020. 火龙果研究进展及北方引种可行性分析 [J]. 中国农学通报, 36(25): 53-59. ]
参考文献
SHIN H, MIN K, ARORA R, 2018. Exogenous salicylic acid improves freezing tolerance of spinach ( Spinacia oleracea L. ) leaves [J]. Cryobiology, 81(4): 192-200.
参考文献
SUN YJ, QIN DL, YI F, et al. , 2018. Effects of salicylic acid on growth and physiological property of maize seedling under low temperature stress [J]. Jiangsu J Agric Sci, 34(4): 726-734. [孙玉珺, 秦东玲, 伊凡, 等, 2018. 外源水杨酸对低温胁迫下玉米幼苗生长及生理特性的影响 [J]. 江苏农业学报, 34(4): 726-734. ]
参考文献
TANG CN, XIE JM, LV J, et al. , 2021. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L. ) seedlings [J]. Plant Physiol Biochem, 162(23): 395-409.
参考文献
WANG LJ, WANG HL, XIE P, et al. , 2021. Effect of different concentrations of calcium nitrate on physiological and biochemical index of pitaya seedling [J]. S Chin Fruits, 50(2): 91-97. [王立娟, 王红林, 解璞, 等, 2021. 不同浓度硝酸钙处理对火龙果幼苗生理生化指标的影响 [J]. 中国南方果树, 50(2): 91-97. ]
参考文献
WANG L, ZHANG X, CHEN WL, et al. , 2018. Shading reduced the injury caused by winter chill on pitaya plant [J]. Not Bot Horti Agrobot Cluj-Napoca, 47(2): 470-477.
参考文献
WANG WL, WANG X, HUANG M, et al. , 2021. Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid [J]. J Plant Growth Regul, 40(2): 811-823.
参考文献
WANG XM, TANG WZ, REN H, et al. , 2016. Effects of salicylic acid on physiological index and tissue structure of Carica papaya L. seedling under cold stress [J]. J S Agric, 47(8): 1290-1296. [王小媚, 唐文忠, 任惠, 等, 2016. 水杨酸对低温胁迫番木瓜幼苗生理指标及叶片组织结构的影响 [J]. 南方农业学报, 47(8): 1290-1296. ]
参考文献
WEI XQ, XU L, ZHANG XJ, et al. , 2016. Physiological responses of wax apple to low temperatures and its cold resistance [J]. J Fruit Sci, 33(1): 73-80. [魏秀清, 许玲, 章希娟, 等, 2016. 莲雾对低温胁迫的生理响应及抗寒性分析 [J]. 果树学报, 33(1): 73-80. ]
参考文献
WU BD, FAN R, HU LS, et al. , 2018. Effect of cold stress on the leaf physiological, biochemical variation and anatomical structure in Piper L. [J]. Chin J Trop Crops, 39(8): 1519-1525. [伍宝朵, 范睿, 胡丽松, 等, 2018. 低温胁迫对胡椒叶片生理生化及显微结构的影响 [J]. 热带作物学报, 39(8): 1519-1525. ]
参考文献
YU LL, HE TY, CHEN LY, et al. , 2014. Study on the effect of salicylic acid on cold resistance of seedlings of Rhododendron [J]. Fujian J Agric Sci, 29(3): 220-226. [余丽玲, 何天友, 陈凌艳, 等, 2014. 水杨酸对西洋杜鹃幼苗抗寒性的影响 [J]. 福建农业学报, 29(3): 220-226. ]
参考文献
ZHANG HJ, LIANG YL, 2017. Study on cold resistance of pitaya [J]. Genomic Appl Biol, 36(5): 2088-2093. [张慧君, 梁亚灵, 2017. 火龙果抗寒性研究 [J]. 基因组学与应用生物学, 36(5): 2088-2093. ]
参考文献
ZHANG Q, LI DM, WANG Q, et al. , 2021. Exogenous salicylic acid improves chilling tolerance in maize seedlings by improving plant growth and physiological characteristics [J]. Agronomy, 11(7): 1341-1356.
参考文献
ZHANG X, TAO L, QIAO S, et al. , 2017. Roles of glutathione S-transferase in plant tolerance to abiotic stresses [J]. Chin Biotechnol, 37(3): 92-98. [张雪, 陶磊, 乔晟, 等, 2017. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色 [J]. 中国生物工程杂志, 37(3): 92-98. ]
参考文献
ZHANG X, YANG Y, LIU XY, et al. , 2020. Effect of exogenous salicylic acid on the antioxidant enzyme activities and fatty acid profiles in seashore paspalum under low temperature stress [J]. Acta Pratac Sin, 29(1): 117-124. [张翔, 杨勇, 刘学勇, 等, 2020. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响 [J]. 草业学报, 29(1): 117-124. ]
参考文献
ZHANG ZL, QU WJ, 2003. The experimental guide for plant physiology [M]. Beijing: Higher Education Press: 158-160. [张志良, 瞿伟菁, 2003. 植物生理学实验指导 [M]. 北京: 高等教育出版社: 158-160. ]
参考文献
ZHANG ZZ, ZHANG X, ZHANG Y, et al. , 2021. Study on effects of low temperature stress on leaf structure of eggplant seedlings [J]. J Sci Teach Coll Univ, 41(3): 43-47. [张珍珠, 张旭, 张迎, 等, 2021. 低温胁迫对茄子幼苗叶片结构的影响研究 [J]. 高师理科学刊, 41(3): 43-47. ]
参考文献
ZHAO X, MENG DY, CANG J, et al. , 2022. Effect of exogenous SA on glycolytic metabolism of winter wheat (Triticum aestivum L. ) under low temperature stress [J]. J Tritic Crops, 42(8): 1-8. [赵欣, 孟德义, 苍晶, 等, 2022. 外源SA对低温胁迫下冬小麦糖酵解代谢的影响 [J]. 麦类作物学报, 42(8): 1-8. ]
参考文献
ZHOU JL, WANG LJ, XIAO TJ, et al. , 2021. Physiological responses and proteomic analysis on the cold stress responses of annual pitaya (Hylocereus spp. ) branches [J]. J Chem, 2021(6): 1416925.
目录contents

    摘要

    为探究外源水杨酸(SA)对低温胁迫下火龙果幼苗形态及生理的影响,该研究以‘紫红龙’火龙果幼苗为材料,将4个不同浓度的SA(0.1、0.3、0.5、0.7 mmol·L-1)喷施叶片,48 h后4 ℃低温培养,于第0、第3、第6、第9天观察火龙果幼苗形态及叶片组织结构的变化,并测定叶片相对电导率、丙二醛含量、渗透调节物(可溶性糖、可溶性蛋白、脯氨酸)含量及抗氧化酶(超氧化物歧化酶、过氧化物酶、过氧化氢酶、谷胱甘肽S-转移酶)活性等生理指标。结果表明:(1)低温胁迫下,火龙果幼苗呈现0级、Ⅰ级和Ⅱ级3个冷害等级,SA处理后的火龙果幼苗出现Ⅰ级冷害和Ⅱ级冷害的株数百分率均明显降低。(2)与低温对照相比,SA处理能降低火龙果幼苗叶片相对电导率和丙二醛含量并提高渗透调节物含量和抗氧化酶活性。(3)通过对不同SA处理结果进行比较分析,发现缓解冷害症状、降低相对电导率和丙二醛含量、提高可溶性糖和脯氨酸的含量、提高超氧化物歧化酶和谷胱甘肽S-转移酶的活性均以0.3 mmol·L-1 SA效果最好,提高可溶性蛋白含量、过氧化物酶活性、过氧化氢酶活性分别以0.7、0.1、0.5 mmol·L-1 的SA效果最好。综上表明,外源SA处理能缓解4 ℃低温胁迫下火龙果幼苗的冷害症状,对于提高幼苗抗冷性有正向生理效应,并且0.3 mmol·L-1 浓度较适宜。

    Abstract

    Pitaya (Hylocereus undatus) is a typical tropical cash crop that is not chilling-tolerant. Low temperature stress seriously affects the quality and yield of pitaya. It is an efficient and safe method to apply exogenous natural substances to improve the chilling tolerance of plants. Salicylic acid (SA) not only regulates many physiological and biochemical processes such as seed germination, growth, fruiting and senescence, but also helps plants to cope with biotic and abiotic stresses. However, the role of exogenous SA in chilling tolerance of pitaya has not been reported. To explore the effect of exogenous SA on the morphology structure and physiology of pitaya seedlings under low temperature, the leaves of ‘Zihonglong’ seedlings were sprayed with SA at four concentrations (0.1, 0.3, 0.5, 0.7 mmol·L-1). after spraying for 48 h, seedlings were incubated at 4 ℃. The change in the morphology and leaf tissue structure of pitaya seedlings were observed on 0, 3, 6, 9 d. Physiological indexes such as relative electrical conductivity, contents of malondialdehyde, contents of osmotic regulators (soluble sugar, soluble protein, proline) and antioxidant enzyme (superoxide dismutase, peroxidase, catalase, glutathione S-transferase) activities in leaves were measured. The results were as follows: (1) Under low temperature stress, pitaya seedlings showed chilling injury of Grade 0, Grade Ⅰ and Grade Ⅱ. The leaf shape, color and cell structure of pitaya with different chilling injury symptoms were quite different. The percentages of Grade Ⅰ and Grade Ⅱ chilling injury of pitaya seedlings treated with SA were significantly reduced. (2) Compared with the low temperature control, SA treatment could reduce the relative conductivity and malondialdehyde contents of pitaya leaves, and increase the contents of osmotic regulators and antioxidant enzyme activities. (3) After comparing with different SA treatments, SA at 0.3 mmol·L-1 had the best effects on relieving chilling injury symptoms, reducing the relative conductivity and malondialdehyde content, increasing the soluble sugar and proline content, and increasing the activities of superoxide dismutase and glutathione S-transferase. The optimal SA concentrations for increasing soluble protein content, peroxidase activity and catalase activity were 0.7, 0.1 and 0.5 mmol·L-1, respectively. In summary, exogenous SA could alleviate chilling injury of pitaya seedlings under 4 ℃, and has a positive physiological effect on improving chilling tolerance of seedlings, and exogenous SA at 0.3 mmol·L-1 is more suitable.

    关键词

    水杨酸低温胁迫火龙果幼苗形态生理

  • 火龙果(Hylocereus undatus)是仙人掌科量天尺属植物,果实富含植物性蛋白、膳食纤维和维生素等营养物质,具有润肠通便、降血糖血压、预防肿瘤等药用功效,深受广大消费者和种植者的喜爱。火龙果原产于中美洲地区,广泛引种于我国广西、广东、浙江等多个地区(乔谦等,2020)。每年冬春季节,我国火龙果、香蕉、莲雾等(魏秀清等,2016;Wang et al.,2018;李丹等,2019)冷敏感果树种植区常会遭受寒潮侵袭,低温冷害或冻害导致果实减产,果农经济损失惨重。近年来,异常低温情况常有发生,温度限制了火龙果种植区域向北方拓展的趋势(刘涛等,2016)。因此,如何提高火龙果抗寒性是目前理论研究和生产实践上亟待解决的问题。

  • 植物的抗寒性与细胞膜透性、细胞中渗透调节物含量、抗氧化酶活性密切相关。低温会引起植物细胞活性氧代谢紊乱,细胞膜脂过氧化加剧,细胞内电解质大量外渗,造成植物低温伤害。目前,火龙果缺乏耐低温的品种,提高火龙果现有品种的抗寒性大都采用“低温驯化”的方式,利用人工逐级降温进行火龙果低温适应锻炼,慢慢增强其抗性,并测定渗透调节物含量、抗氧化酶活性等相关生理指标判断其抗寒性是否提高。有研究发现,将火龙果幼苗或一年枝条逐级降温处理后,细胞中水分和叶绿素的含量降低,过氧化物酶、超氧化物酶的活性增强,可溶性蛋白以及脯氨酸的含量均呈现升高的趋势,抗寒性提升效果明显(张慧君和梁亚灵,2017;Zhou et al.,2021)。此外,也有学者尝试了物理方法,用38.5~42.4 Gy 剂量的60Co γ 辐照离体火龙果幼苗,其相对电导率和丙二醛含量均减少,抗氧化酶活性与可溶性糖等渗透调节物质含量均增加,火龙果抗寒性得以提高(邓仁菊等,2018)。

  • 施加外源天然物质能提高抗氧化酶活性和渗透调节物含量,缓解细胞氧化损伤,是提高植物抗寒性较为高效且安全的方法(Aghdam et al.,2019;Tang et al.,2021)。水杨酸(salicylic acid,SA)作为植物内的一种酚类化合物,不仅参与调节植物的种子萌发、生长、结果和衰老等多种生理生化过程,而且作为启动植物体防御机制的信号分子,能激活植物免疫机制、抵抗外源病原体,缓解生物和非生物胁迫引起的伤害(Miura &Tada,2014)。0.5、1 mmol·L-1 SA处理能够通过提高玉米植株的光合作用和抗氧化酶活性,从而提高其抗寒性(Ning et al.,2022)。0.5 mmol·L-1外源SA喷施处理提高了低温胁迫下铁皮石斛幼苗超氧化物歧化酶、过氧化氢酶、过氧化物酶和抗坏血酸过氧化物酶的活性及根系活力(陈明辉等,2017)。0.1~0.3 mg·L-1外源SA处理有利于提高低温下红景天幼苗叶片叶绿体膜的Ca2+-ATP酶和Mg2+-ATP酶的活性,增强植株光合作用,同时,SA通过提高植株抗氧化酶活性,有效缓解膜脂过氧化,降低丙二醛含量,减轻低温胁迫对植物细胞的伤害(Ma et al.,2016)。

  • 在浙江及更高纬度的地区,如何让火龙果安全越冬是栽培成功的关键。以浙江省宁波市为例,12—1月的平均气温为3.8℃,5℃以下冷害会造成火龙果嫩枝发黄干枯直至整株死亡,极大地影响火龙果的品质及产量。寻找低成本、安全有效、操作方便的外源诱导剂,是缓解低温胁迫、提高火龙果的抗冷性的解决途径。外源物质与火龙果抗冷性相关的研究较少,仅有1篇外源喷施硝酸钙可以提高火龙果幼苗抗低温能力(王立娟等,2021)的报道,而外源SA处理是否可以提高火龙果抗冷性以及不同SA浓度的效果是否存在差异等尚不清楚。本研究以火龙果幼苗为材料,开展4℃低温胁迫处理,分析外源 SA对火龙果幼苗冷害症状的调节效果,阐明不同浓度外源 SA对低温胁迫下火龙果幼苗的抗氧化酶活性、渗透调节物等生理指标的影响,以期获得提高火龙果幼苗抗冷性的外源 SA适宜浓度,为火龙果抗冷性栽培提供技术参考。

  • 1 材料与方法

  • 1.1 材料

  • 火龙果品种为‘紫红龙’,来源于宁波绿苑火龙果种植基地,结果枝为3年生枝条,生长状况良好,枝条平直、粗壮、呈深绿色,自然成熟果实呈圆形,果皮和鳞片呈红色,果肉紫红色,平均单果重330 kg,种子黑色。

  • 1.2 实验方法

  • 1.2.1 低温胁迫试验

  • 参考孙玉珺等(2018)的方法。火龙果种子经0.5%次氯酸钠溶液消毒5 min后,无菌水洗净,25℃催芽7 d,将萌发(以种子露白,胚根长度≥2 mm为准)时间一致的幼苗播种至基质(营养土和蛭石配比为1∶1)中进行光照培养,培养温度25℃,光照时间12 h,光照强度250 μmol·m-2·s-1,相对湿度80%~85%。每个育苗盆种15株幼苗。待火龙果幼苗光照生长至38 d时,开始以下处理,每种处理各25盆。

  • (1)SA处理组:对幼苗叶面及叶背分别喷施浓度为0.1、0.3、0.5、0.7 mmol·L-1的SA溶液(组号分别为SA1、SA2、SA3、SA4),每隔12 h喷施1次,共喷施4次,每株每次喷施量为1 mL,处理48 h后,于4℃低温胁迫12 d,其间,0、3、6、9、12 d 时各取5盆,观察、统计并测定各项生理生化指标。

  • (2)低温对照(CS)组:喷施等量蒸馏水,其他同SA处理组。

  • (3)常温对照(CK)组:喷施等量蒸馏水,于25℃常温培养,其他同SA处理组。

  • 1.2.2 生理生化指标测定

  • 相对电导率(relative electrical conductivity,REC)、可溶性糖(soluble sugar,SS)和可溶性蛋白(soluble protein,SP)的含量测定分别采用浸泡法(曹群阳等,2022)、蒽酮比色法(李合生,2000)、考马斯亮蓝G-250染色法(张志良和瞿伟菁,2003)进行;丙二醛(malondialdehyde,MDA)、脯氨酸(proline,Pro)的含量和超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)、谷胱甘肽 S-转移酶(glutathipne S-transferase,GST)的活性测定参照试剂盒说明书。每个处理各项指标均重复3次,各项生理指标重量单位均以鲜重(g)表示。

  • 1.2.3 石蜡切片制作及形态观察

  • 幼苗形态及叶片表面显微结构观察:分别于低温胁迫第0、第3、第6、第9、第12天上午8:00对幼苗形态进行拍照记录,并使用光学显微镜观察叶片表面显微结构,每个处理重复3次。

  • 叶片横切面显微结构观察:分别于低温胁迫第0、第3、第6、第9、第12天上午8:00取样,在距火龙果幼苗茎部2 mm处用手术刀切取叶片,立即投入FAA固定液(90 mL 70%乙醇+5 mL冰醋酸+5 mL福尔马林)中,参考张珍珠等(2021)的方法进行石蜡切片制作,每个处理重复3次。

  • 1.2.4 数据分析

  • 采用Excel 2019统计软件对试验数据进行整理,SPSS 25.0软件(Duncan法)进行方差分析,Origin 9.0 软件绘图,不同字母表示各试验差异显著(P<0.05)。

  • 2 结果与分析

  • 2.1 外源SA对低温胁迫下火龙果幼苗寒害症状的影响

  • 由图1可知,按叶片表观及细胞形态将火龙果幼苗叶片低温冷害症状的等级划分为0级、Ⅰ级和Ⅱ级。0级症状的叶片肥厚、饱满、光滑、呈现绿色(图1:A);叶绿素均匀分布、细胞边缘清晰、气孔明显(图1:D);角质层完整、细胞排列紧密、水分充足(图1:G)。Ⅰ级症状的叶片发软下垂、水化、失绿发黄(图1:B);少量叶绿素被分解、细胞边缘较模糊、表皮皱缩不明显(图1:E);角质层变薄、部分角质层破损、细胞轻微失水(图1:H)。Ⅱ级症状的叶片发蔫发软、干瘪下垂、失绿变白、表皮皱缩(图1:C);大量叶绿素被分解、细胞边缘极其模糊、表皮皱缩严重(图1:F);角质层严重破损、细胞失水变形破损严重、排列紊乱、细胞间隙变大(图1:I)。低温胁迫期间,SA处理组幼苗出现Ⅰ级冷害症状和Ⅱ级冷害症状的株数百分率均明显少于CS组;SA处理组中,SA2出现Ⅰ级冷害症状和Ⅱ级冷害症状的株数百分率最少(图2)。低温胁迫第6、第9、第12天,与CS组相比,SA2处理组0级冷害症状幼苗株数百分率分别增加了26.76%、92.65%、284.76%。这表明SA喷施处理能有效缓解火龙果幼苗的冷害症状,SA2处理浓度效果最好。

  • 2.2 外源SA对低温胁迫下火龙果幼苗叶片REC和MDA含量的影响

  • 由图3可知,低温胁迫3~12 d的CS组叶片中REC和MDA含量均显著高于常温培养CK组,并且低温胁迫时间越长,CS组叶片中REC和MDA的含量越高。低温胁迫3 d后,SA处理组叶片中REC和MDA含量均低于CS组,并且随着SA浓度的增加先降后升;SA2组叶片中REC和MDA含量均显著低于其他SA处理组。这表明SA喷施处理能显著降低低温胁迫下火龙果幼苗叶片的REC和MDA含量,SA2处理效果最好。

  • 2.3 外源SA对低温胁迫下火龙果幼苗叶片抗氧化酶活性的影响

  • 由图4可知,CS组叶片中CAT、GST、SOD的活性分别在低温胁迫3、6、9 d开始显著低于常温培养CK组;CS组叶片中POD活性在胁迫第3、第12天显著低于CK组。随着低温胁迫时间的延长,CS组火龙果幼苗叶片中SOD、POD、GST的活性先升后降,CAT活性一直下降。

  • 低温胁迫3 d后,SA处理组叶片中SOD、POD、CAT和GST的活性均高于CS组,并且随着SA浓度的增加均先升后降;SA2组SOD、GST的活性均显著高于其他SA处理组,SA1组POD活性显著高于其他SA处理组,SA3组CAT活性显著高于其他SA处理组。这表明SA喷施处理能显著提高低温胁迫下火龙果幼苗叶片的SOD、POD、CAT和GST的活性,SA2处理对提高SOD和GST的活性效果最好,SA1与SA3处理分别对提高POD与CAT的活性效果最好。

  • 2.4 外源SA对低温胁迫下火龙果幼苗叶片渗透调节物质含量的影响

  • 由图5可知,低温胁迫3~9 d,CS组叶片中SS、Pro的含量均显著高于常温培养CK组;低温胁迫3~12 d,CS组SP含量均显著低于CS组。随着低温胁迫时间的延长,火龙果幼苗叶片中SS和Pro的含量均先升后降,SP含量呈“N”型变化。

  • 低温胁迫3 d后,SA处理组叶片中SS、SP和Pro的含量均高于CS组,并且随着SA浓度的增加,SS和Pro的含量均先升后降,SP含量一直上升;SA2组SS、Pro的含量均显著高于其他SA处理组;SA4组SP含量均显著高于其他SA处理组。这表明SA喷施处理能显著提高低温胁迫下火龙果幼苗叶片中SS、Pro和SP的含量,SA2处理对提高SS和Pro的含量效果最好,SA4处理对提高SP含量效果最好。

  • 3 讨论

  • 火龙果种子萌发后,在茎发育完全之前的幼苗期,叶为植株提供营养和水分,是感受温度、光照等环境条件变化的重要器官(龙海燕和邓伦秀,2019)。叶横切面显微结构显示,火龙果幼苗叶片由角质层、表皮细胞、维管组织、储水组织构成。角质层是疏水性脂质保水层,在植物响应和适应各胁迫中起关键作用(Bernard &Joubès,2013)。本研究低温胁迫导致火龙果幼苗叶片的角质层变薄,细胞失水大于吸水,叶肉各组织结构受损,叶片出现发软下垂等现象;随冷害程度加深,细胞膜选择透性增加,内容物大量外渗,各组织细胞边界不清晰,叶绿体严重破坏、叶绿素含量下降,叶片出现明显发软下垂、皱缩变白等现象,这与胡椒(伍宝朵等,2018)、番木瓜(王小媚等,2016)、油菜(何俊平等,2017)等的研究结果相一致。适宜浓度的外源SA可以缓解冷害引起的火龙果幼苗叶片细胞损伤,减少Ⅰ级和Ⅱ级冷害症状火龙果幼苗的百分率,其原因可能是SA通过增强细胞壁机械强度、改变细胞膜流动性、调节细胞内渗透压等途径维持细胞结构完整,其作用机理需要进一步深入研究。

  • 图1 低温胁迫下3个冷害症状等级的火龙果幼苗形态和叶片显微结构

  • Fig.1 Morphology and leaf microstructure of pitaya seedlings with three chilling injury grades under low temperature stress

  • 图2 低温胁迫下火龙果幼苗出现3个冷害症状等级的株数百分率

  • Fig.2 Percentage of pitaya seedling plants with three chilling injury grades under low temperature stress

  • 图3 SA对低温胁迫下火龙果幼苗叶片相对电导率和丙二醛含量的影响

  • Fig.3 Effects of SA on REC and MDA content in leaves of pitaya seedlings under low temperature stress

  • 各种非生物胁迫会导致植物细胞内积累大量活性氧,如O2-和H2O2,活性氧易引起膜脂过氧化、蛋白质氧化和DNA损伤,从而影响许多细胞功能(Gill &Tuteja,2010)。MDA是膜脂过氧化的产物之一,可作为反映质膜伤害程度的重要指标(程秋如等,2022)。本研究低温胁迫下火龙果幼苗叶片中MDA大量积累,细胞内电解质大量外渗,REC显著上升,而外源SA喷施处理可降低叶片MDA含量和REC,与Zhang等(2021)的研究结果相似。原因可能在于,低温胁迫打破了细胞代谢过程中氧自由基反应和脂质过氧化反应之间的平衡导致质膜受损,质膜由弹性液晶态转变为固体凝胶态,流动性和通透性下降,细胞内电解质渗出。而外源SA能提高质膜中不饱和脂肪酸的含量和脂肪酸不饱和指数,显著缓解低温导致的质膜损伤,以保持细胞的整体结构(张翔等,2020)。需注意的是,要选择合适浓度的外源SA,才能达到较好的抗冷效果,低浓度SA能清除活性氧,抑制膜脂过氧化,保证细胞膜代谢的稳定性和结构的完整性,而高浓度SA可能会影响细胞膜的正常功能,对细胞产生毒害作用。

  • 为了减少细胞受到的氧化损伤,植物具有调控活性氧代谢平衡的抗氧化防御系统,包括抗氧化酶和非酶类抗氧化物,以提高植物的抗逆性(Hasanuzzaman et al.,2020)。与植物抗逆性相关的抗氧化酶类有SOD、POD、CAT、GST等,SOD是植物细胞抗氧化酶防御系统的第一道防线,将O2-转化为H2O2,CAT和POD把H2O2分解为H2O和O2,GST则催化H2O2生成氧化型谷胱甘肽和H2O (张雪等,2017;Elsayed et al.,2019)。本研究发现,低温胁迫对火龙果幼苗叶片CAT活性抑制作用最明显,而SOD、POD、GST的活性则出现先扬后抑的现象。原因可能在于4℃低温胁迫并不能激发火龙果幼苗叶片中所有抗氧化酶的防御功能,只有SOD、POD、GST能正响应低温信号,增加其活性以抵御氧化损伤;但长时间的低温会造成大量活性氧不能被及时清除,体内抗氧化系统发生紊乱,激发的酶活性又被逐渐抑制,植株只能表现出短期的抗冷性。本研究中,较低浓度的外源SA处理促进SOD、POD、CAT和GST的活性,但较高浓度的SA促进效果不明显,且增强这4种酶活的最佳SA浓度不同,这与冬小麦的研究结果相似(Wang et al.,2021)。这说明SA浓度对抗氧化酶活性的影响较大,推测与抗氧化酶的活性调节机制有关,低温胁迫下SA诱导抗氧化系统是一种级联反应,脱落酸(ABA)、细胞溶质Ca2+、活性氧(ROS)等第二信使参与其中,其作用可能具有组织特异性和剂量依赖性。

  • 图4 SA对低温胁迫下火龙果幼苗叶片SOD、POD、CAT和GST活性的影响

  • Fig.4 Effects of SA on SOD, POD, CAT and GST activities in leaves of pitaya seedlings under low temperature stress

  • SS、SP和Pro是植物体内重要的渗透调节物质,在植物响应逆境胁迫时迅速积累,以增大细胞液浓度,维持细胞膜的渗透平衡,增强细胞的保水能力,缓解逆境胁迫对植物的损伤。SS、SP和Pro的积累可以提高植物的抗寒性,如葡萄幼苗、菠菜和西洋杜鹃等(余丽玲等,2014;Shin et al.,2018;Li &Wang,2021),是衡量植株抗寒能力的重要指标。有研究发现,SA通过酶促反应促进植物体内SS和Pro含量的积累(Khan et al.,2013;赵欣等,2022)。本研究中,外源SA均提高了火龙果幼苗叶片SS和Pro的含量,可能与糖代谢酶、Pro生物合成酶的活性增强有关;SS和Pro的含量随着SA浓度的增加呈先上升后下降趋势,说明SA浓度可能会影响两种物质的相关酶促反应,低浓度SA更利于加快酶促反应、增加SS和Pro的含量,可能与SA信号转导途径中的转录因子、基因表达调控有关。

  • 图5 SA对低温胁迫下火龙果幼苗叶片 SS、Pro和SP含量的影响

  • Fig.5 Effects of SA on SS, Pro and SP contents in leaves of pitaya seedlings under low temperature stress

  • 浙江地区冬季经常出现大幅降温之后的快速升温,火龙果植株可能会对低温冷害的反应表现出滞后性,受到低温冷害几天内植株形态并无异样,但在温度升高时,枝条水渍状、发黄等冷害特征就会逐渐显现。因此,在实际栽培过程中,外施水杨酸对于火龙果在低温时及回暖后的抗冷性均需进一步验证评价,同时,可配合覆膜、水肥管理等措施,以达到更好的御冷效果。

  • 4 结论

  • 4℃低温胁迫下外源SA处理能减少火龙果幼苗呈现Ⅰ级和Ⅱ级冷害症状的百分率,降低MDA含量和REC,提高叶片渗透调节物质含量和抗氧化酶活性,缓解幼苗受到的氧化损伤,增强植株的抗寒能力。SA浓度对低温胁迫下火龙果幼苗不同理化指标的影响明显,4℃低温胁迫下火龙果幼苗抗冷性的较适宜SA浓度为0.3 mmol·L-1,可在火龙果越冬育苗中推广应用。

  • 参考文献

    • AGHDAM MS, LUO Z, JANNATIZADEH A, et al. , 2019. Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity [J]. Food Chem, 275(13): 549-556.

    • BERNARD A, JOUBÈS J, 2013. Arabidopsis cuticular waxes: advances in synthesis, export and regulation [J]. Prog Lipid Res, 52(1): 110-129.

    • CAO QY, JIN L, WANG WY, et al. , 2022. Effects of low temperature stress on leaf physiology of ‘Fengjian 1’ [J/OL]. Mol Plant Breed: 1-8 [2022-11-09]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220328. 1519. 012. html. [曹群阳, 金亮, 王炜勇, 等, 2022. 低温胁迫对‘凤剑1号’叶片生理的影响 [J/OL]. 分子植物育种: 1-8 [2022-11-09]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220328. 1519. 012. html. ]

    • CHENG QR, LIU ZF, ZENG XH, et al. , 2022. Physiological Response under low temperature stress and evaluation on cold tolerance in inbreding F1 group of oil palm (Elaeis guineensis Jacq. ) in Dali, Yunnan pronvince [J]. Chin J Trop Crops, 43(2): 328-336. [程秋如, 刘子凡, 曾宪海, 等, 2022. 云南大理油棕自交子一代对低温胁迫的生理响应及抗寒性评价 [J]. 热带作物学报, 43(2): 328-336. ]

    • CHEN MH, CHENG SP, TONG WS, et al. , 2017. Effects of SA on root activity and antioxidant enzyme activity of dendrobium officinale seedlings under low temperature stress [J]. N Hortic, 397(22): 83-87. [陈明辉, 程世平, 佟伟霜, 等, 2017. 水杨酸对低温胁迫下铁皮石斛幼苗根系活力及抗氧化酶活性的影响 [J]. 北方园艺, 397(22): 83-87. ]

    • DENG RJ, FAN JX, WANG YQ, et al. , 2018. Radiation mutagenesis of pitaya(Hylocereus undulatus Britt)seedlings in vitro and its physiological responces to the low temperature stress [J]. Chin J Trop Crops, 39(2): 260-266. [邓仁菊, 范建新, 王永清, 等, 2018. 火龙果幼苗离体辐射诱变及其对低温胁迫的生理响应 [J]. 热带作物学报, 39(2): 260-266. ]

    • ELSAYED AI, EL-HAMAHMY MAM, RAFUDEEN MS, et al. , 2019. The impact of drought stress on antioxidant responses and accumulation of flavonolignans in milk thistle (Silybum marianum (L. ) Gaertn) [J]. Plants, 8(12): 611.

    • GILL SS, TUTEJA N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem, 48(12): 909-930.

    • HASANUZZAMAN M, BORHANNUDDIN BHUYAN MHM, ZULFIQAR F, et al. , 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator [J]. Antioxidants, 9(8): 1-52.

    • HE JP, ZHU JC, WANG JP, et al. , 2017. The relationship between seedling microtructure and cold resistance of Brassica napus [J]. Jiangsu J Agric Sci, 33(1): 19-26. [何俊平, 朱家成, 王建平, 等, 2017. 甘蓝型油菜幼苗显微组织结构与抗寒性的关系 [J]. 江苏农业学报, 33(1): 19-26. ]

    • KHAN MIR, IQBAL N, MASOOD A, et al. , 2013. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation [J]. Plant Sig Behav, 8(11): e26374.

    • LI B, WANG WT, 2021. Salicylic acid induces tolerance of Vitis riparia×V. labrusca to chilling stress by altered photosynthetic, antioxidant mechanisms and expression of cold stress responsive genes [J]. Plant Sig Behav, 16(11): 1973711.

    • LI D, HUANG YJ, ZHU N, et al. , 2019. A study on the phenotypical, physiological and biochemical characteristics of the cold resistant sanming wild banana (Musa itinerans) [J]. J Fruit Sci, 36(1): 76-85. [李丹, 黄玉吉, 朱宁, 等, 2019. 三明野生蕉抗寒特性的形态学与生理生化研究 [J]. 果树学报, 36(1): 76-85. ]

    • LI HS, 2000. Principles and techniques of plant physiological biochemical experiment [M]. Beijing: Higher Education Press: 195-197. [李合生, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 195-197. ]

    • LIU T, YANG LN, YING JP, et al. , 2016. Effects of low temperature on plantation of Hylocereus undatus and its defense measures [J]. J Anhui Agric Sci, 44(10): 40-42. [刘涛, 杨丽娜, 应建平, 等, 2016. 低温对火龙果种植的影响及其防御措施 [J]. 安徽农业科学, 44(10): 40-42. ]

    • LONG HY, DENG LX, 2019. Response and adaptation of plant morphology to drought stress [J]. Hubei Agric Sci, 58(8): 5-7. [龙海燕, 邓伦秀, 2019. 植物形态对干旱胁迫的反应与适应性研究 [J]. 湖北农业科学, 58(8): 5-7. ]

    • MA LF, HE SL, LI FR, et al. , 2016. Effects imposed by exogenous salicylic acid on the physiological conditions and membrane damage of Rhodiola algida seedling under stress of low temperature [J]. Oxid Commun, 39(2): 1300-1308.

    • MIURA K, TADA Y, 2014. Regulation of water, salinity, and cold stress responses by salicylic acid [J]. Front Plant Sci, 5: 4-16.

    • NING XL, WANG XH, CUI Y, et al. , 2022. Chilling resistance of corn and cold stress responses of salicylic acid-treated corn [J]. Sci Asia, 48(2): 144-155.

    • QIAO Q, YU Y, WANG JY, et al. , 2020. Hylocereus undulates: research progress and introduction feasibility in north China [J]. Chin Agric Sci Bull, 36(25): 53-59. [乔谦, 于泳, 王江勇, 等, 2020. 火龙果研究进展及北方引种可行性分析 [J]. 中国农学通报, 36(25): 53-59. ]

    • SHIN H, MIN K, ARORA R, 2018. Exogenous salicylic acid improves freezing tolerance of spinach ( Spinacia oleracea L. ) leaves [J]. Cryobiology, 81(4): 192-200.

    • SUN YJ, QIN DL, YI F, et al. , 2018. Effects of salicylic acid on growth and physiological property of maize seedling under low temperature stress [J]. Jiangsu J Agric Sci, 34(4): 726-734. [孙玉珺, 秦东玲, 伊凡, 等, 2018. 外源水杨酸对低温胁迫下玉米幼苗生长及生理特性的影响 [J]. 江苏农业学报, 34(4): 726-734. ]

    • TANG CN, XIE JM, LV J, et al. , 2021. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L. ) seedlings [J]. Plant Physiol Biochem, 162(23): 395-409.

    • WANG LJ, WANG HL, XIE P, et al. , 2021. Effect of different concentrations of calcium nitrate on physiological and biochemical index of pitaya seedling [J]. S Chin Fruits, 50(2): 91-97. [王立娟, 王红林, 解璞, 等, 2021. 不同浓度硝酸钙处理对火龙果幼苗生理生化指标的影响 [J]. 中国南方果树, 50(2): 91-97. ]

    • WANG L, ZHANG X, CHEN WL, et al. , 2018. Shading reduced the injury caused by winter chill on pitaya plant [J]. Not Bot Horti Agrobot Cluj-Napoca, 47(2): 470-477.

    • WANG WL, WANG X, HUANG M, et al. , 2021. Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid [J]. J Plant Growth Regul, 40(2): 811-823.

    • WANG XM, TANG WZ, REN H, et al. , 2016. Effects of salicylic acid on physiological index and tissue structure of Carica papaya L. seedling under cold stress [J]. J S Agric, 47(8): 1290-1296. [王小媚, 唐文忠, 任惠, 等, 2016. 水杨酸对低温胁迫番木瓜幼苗生理指标及叶片组织结构的影响 [J]. 南方农业学报, 47(8): 1290-1296. ]

    • WEI XQ, XU L, ZHANG XJ, et al. , 2016. Physiological responses of wax apple to low temperatures and its cold resistance [J]. J Fruit Sci, 33(1): 73-80. [魏秀清, 许玲, 章希娟, 等, 2016. 莲雾对低温胁迫的生理响应及抗寒性分析 [J]. 果树学报, 33(1): 73-80. ]

    • WU BD, FAN R, HU LS, et al. , 2018. Effect of cold stress on the leaf physiological, biochemical variation and anatomical structure in Piper L. [J]. Chin J Trop Crops, 39(8): 1519-1525. [伍宝朵, 范睿, 胡丽松, 等, 2018. 低温胁迫对胡椒叶片生理生化及显微结构的影响 [J]. 热带作物学报, 39(8): 1519-1525. ]

    • YU LL, HE TY, CHEN LY, et al. , 2014. Study on the effect of salicylic acid on cold resistance of seedlings of Rhododendron [J]. Fujian J Agric Sci, 29(3): 220-226. [余丽玲, 何天友, 陈凌艳, 等, 2014. 水杨酸对西洋杜鹃幼苗抗寒性的影响 [J]. 福建农业学报, 29(3): 220-226. ]

    • ZHANG HJ, LIANG YL, 2017. Study on cold resistance of pitaya [J]. Genomic Appl Biol, 36(5): 2088-2093. [张慧君, 梁亚灵, 2017. 火龙果抗寒性研究 [J]. 基因组学与应用生物学, 36(5): 2088-2093. ]

    • ZHANG Q, LI DM, WANG Q, et al. , 2021. Exogenous salicylic acid improves chilling tolerance in maize seedlings by improving plant growth and physiological characteristics [J]. Agronomy, 11(7): 1341-1356.

    • ZHANG X, TAO L, QIAO S, et al. , 2017. Roles of glutathione S-transferase in plant tolerance to abiotic stresses [J]. Chin Biotechnol, 37(3): 92-98. [张雪, 陶磊, 乔晟, 等, 2017. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色 [J]. 中国生物工程杂志, 37(3): 92-98. ]

    • ZHANG X, YANG Y, LIU XY, et al. , 2020. Effect of exogenous salicylic acid on the antioxidant enzyme activities and fatty acid profiles in seashore paspalum under low temperature stress [J]. Acta Pratac Sin, 29(1): 117-124. [张翔, 杨勇, 刘学勇, 等, 2020. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响 [J]. 草业学报, 29(1): 117-124. ]

    • ZHANG ZL, QU WJ, 2003. The experimental guide for plant physiology [M]. Beijing: Higher Education Press: 158-160. [张志良, 瞿伟菁, 2003. 植物生理学实验指导 [M]. 北京: 高等教育出版社: 158-160. ]

    • ZHANG ZZ, ZHANG X, ZHANG Y, et al. , 2021. Study on effects of low temperature stress on leaf structure of eggplant seedlings [J]. J Sci Teach Coll Univ, 41(3): 43-47. [张珍珠, 张旭, 张迎, 等, 2021. 低温胁迫对茄子幼苗叶片结构的影响研究 [J]. 高师理科学刊, 41(3): 43-47. ]

    • ZHAO X, MENG DY, CANG J, et al. , 2022. Effect of exogenous SA on glycolytic metabolism of winter wheat (Triticum aestivum L. ) under low temperature stress [J]. J Tritic Crops, 42(8): 1-8. [赵欣, 孟德义, 苍晶, 等, 2022. 外源SA对低温胁迫下冬小麦糖酵解代谢的影响 [J]. 麦类作物学报, 42(8): 1-8. ]

    • ZHOU JL, WANG LJ, XIAO TJ, et al. , 2021. Physiological responses and proteomic analysis on the cold stress responses of annual pitaya (Hylocereus spp. ) branches [J]. J Chem, 2021(6): 1416925.

  • 参考文献

    • AGHDAM MS, LUO Z, JANNATIZADEH A, et al. , 2019. Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity [J]. Food Chem, 275(13): 549-556.

    • BERNARD A, JOUBÈS J, 2013. Arabidopsis cuticular waxes: advances in synthesis, export and regulation [J]. Prog Lipid Res, 52(1): 110-129.

    • CAO QY, JIN L, WANG WY, et al. , 2022. Effects of low temperature stress on leaf physiology of ‘Fengjian 1’ [J/OL]. Mol Plant Breed: 1-8 [2022-11-09]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220328. 1519. 012. html. [曹群阳, 金亮, 王炜勇, 等, 2022. 低温胁迫对‘凤剑1号’叶片生理的影响 [J/OL]. 分子植物育种: 1-8 [2022-11-09]. http: //kns. cnki. net/kcms/detail/46. 1068. S. 20220328. 1519. 012. html. ]

    • CHENG QR, LIU ZF, ZENG XH, et al. , 2022. Physiological Response under low temperature stress and evaluation on cold tolerance in inbreding F1 group of oil palm (Elaeis guineensis Jacq. ) in Dali, Yunnan pronvince [J]. Chin J Trop Crops, 43(2): 328-336. [程秋如, 刘子凡, 曾宪海, 等, 2022. 云南大理油棕自交子一代对低温胁迫的生理响应及抗寒性评价 [J]. 热带作物学报, 43(2): 328-336. ]

    • CHEN MH, CHENG SP, TONG WS, et al. , 2017. Effects of SA on root activity and antioxidant enzyme activity of dendrobium officinale seedlings under low temperature stress [J]. N Hortic, 397(22): 83-87. [陈明辉, 程世平, 佟伟霜, 等, 2017. 水杨酸对低温胁迫下铁皮石斛幼苗根系活力及抗氧化酶活性的影响 [J]. 北方园艺, 397(22): 83-87. ]

    • DENG RJ, FAN JX, WANG YQ, et al. , 2018. Radiation mutagenesis of pitaya(Hylocereus undulatus Britt)seedlings in vitro and its physiological responces to the low temperature stress [J]. Chin J Trop Crops, 39(2): 260-266. [邓仁菊, 范建新, 王永清, 等, 2018. 火龙果幼苗离体辐射诱变及其对低温胁迫的生理响应 [J]. 热带作物学报, 39(2): 260-266. ]

    • ELSAYED AI, EL-HAMAHMY MAM, RAFUDEEN MS, et al. , 2019. The impact of drought stress on antioxidant responses and accumulation of flavonolignans in milk thistle (Silybum marianum (L. ) Gaertn) [J]. Plants, 8(12): 611.

    • GILL SS, TUTEJA N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem, 48(12): 909-930.

    • HASANUZZAMAN M, BORHANNUDDIN BHUYAN MHM, ZULFIQAR F, et al. , 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator [J]. Antioxidants, 9(8): 1-52.

    • HE JP, ZHU JC, WANG JP, et al. , 2017. The relationship between seedling microtructure and cold resistance of Brassica napus [J]. Jiangsu J Agric Sci, 33(1): 19-26. [何俊平, 朱家成, 王建平, 等, 2017. 甘蓝型油菜幼苗显微组织结构与抗寒性的关系 [J]. 江苏农业学报, 33(1): 19-26. ]

    • KHAN MIR, IQBAL N, MASOOD A, et al. , 2013. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation [J]. Plant Sig Behav, 8(11): e26374.

    • LI B, WANG WT, 2021. Salicylic acid induces tolerance of Vitis riparia×V. labrusca to chilling stress by altered photosynthetic, antioxidant mechanisms and expression of cold stress responsive genes [J]. Plant Sig Behav, 16(11): 1973711.

    • LI D, HUANG YJ, ZHU N, et al. , 2019. A study on the phenotypical, physiological and biochemical characteristics of the cold resistant sanming wild banana (Musa itinerans) [J]. J Fruit Sci, 36(1): 76-85. [李丹, 黄玉吉, 朱宁, 等, 2019. 三明野生蕉抗寒特性的形态学与生理生化研究 [J]. 果树学报, 36(1): 76-85. ]

    • LI HS, 2000. Principles and techniques of plant physiological biochemical experiment [M]. Beijing: Higher Education Press: 195-197. [李合生, 2000. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社: 195-197. ]

    • LIU T, YANG LN, YING JP, et al. , 2016. Effects of low temperature on plantation of Hylocereus undatus and its defense measures [J]. J Anhui Agric Sci, 44(10): 40-42. [刘涛, 杨丽娜, 应建平, 等, 2016. 低温对火龙果种植的影响及其防御措施 [J]. 安徽农业科学, 44(10): 40-42. ]

    • LONG HY, DENG LX, 2019. Response and adaptation of plant morphology to drought stress [J]. Hubei Agric Sci, 58(8): 5-7. [龙海燕, 邓伦秀, 2019. 植物形态对干旱胁迫的反应与适应性研究 [J]. 湖北农业科学, 58(8): 5-7. ]

    • MA LF, HE SL, LI FR, et al. , 2016. Effects imposed by exogenous salicylic acid on the physiological conditions and membrane damage of Rhodiola algida seedling under stress of low temperature [J]. Oxid Commun, 39(2): 1300-1308.

    • MIURA K, TADA Y, 2014. Regulation of water, salinity, and cold stress responses by salicylic acid [J]. Front Plant Sci, 5: 4-16.

    • NING XL, WANG XH, CUI Y, et al. , 2022. Chilling resistance of corn and cold stress responses of salicylic acid-treated corn [J]. Sci Asia, 48(2): 144-155.

    • QIAO Q, YU Y, WANG JY, et al. , 2020. Hylocereus undulates: research progress and introduction feasibility in north China [J]. Chin Agric Sci Bull, 36(25): 53-59. [乔谦, 于泳, 王江勇, 等, 2020. 火龙果研究进展及北方引种可行性分析 [J]. 中国农学通报, 36(25): 53-59. ]

    • SHIN H, MIN K, ARORA R, 2018. Exogenous salicylic acid improves freezing tolerance of spinach ( Spinacia oleracea L. ) leaves [J]. Cryobiology, 81(4): 192-200.

    • SUN YJ, QIN DL, YI F, et al. , 2018. Effects of salicylic acid on growth and physiological property of maize seedling under low temperature stress [J]. Jiangsu J Agric Sci, 34(4): 726-734. [孙玉珺, 秦东玲, 伊凡, 等, 2018. 外源水杨酸对低温胁迫下玉米幼苗生长及生理特性的影响 [J]. 江苏农业学报, 34(4): 726-734. ]

    • TANG CN, XIE JM, LV J, et al. , 2021. Alleviating damage of photosystem and oxidative stress from chilling stress with exogenous zeaxanthin in pepper (Capsicum annuum L. ) seedlings [J]. Plant Physiol Biochem, 162(23): 395-409.

    • WANG LJ, WANG HL, XIE P, et al. , 2021. Effect of different concentrations of calcium nitrate on physiological and biochemical index of pitaya seedling [J]. S Chin Fruits, 50(2): 91-97. [王立娟, 王红林, 解璞, 等, 2021. 不同浓度硝酸钙处理对火龙果幼苗生理生化指标的影响 [J]. 中国南方果树, 50(2): 91-97. ]

    • WANG L, ZHANG X, CHEN WL, et al. , 2018. Shading reduced the injury caused by winter chill on pitaya plant [J]. Not Bot Horti Agrobot Cluj-Napoca, 47(2): 470-477.

    • WANG WL, WANG X, HUANG M, et al. , 2021. Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid [J]. J Plant Growth Regul, 40(2): 811-823.

    • WANG XM, TANG WZ, REN H, et al. , 2016. Effects of salicylic acid on physiological index and tissue structure of Carica papaya L. seedling under cold stress [J]. J S Agric, 47(8): 1290-1296. [王小媚, 唐文忠, 任惠, 等, 2016. 水杨酸对低温胁迫番木瓜幼苗生理指标及叶片组织结构的影响 [J]. 南方农业学报, 47(8): 1290-1296. ]

    • WEI XQ, XU L, ZHANG XJ, et al. , 2016. Physiological responses of wax apple to low temperatures and its cold resistance [J]. J Fruit Sci, 33(1): 73-80. [魏秀清, 许玲, 章希娟, 等, 2016. 莲雾对低温胁迫的生理响应及抗寒性分析 [J]. 果树学报, 33(1): 73-80. ]

    • WU BD, FAN R, HU LS, et al. , 2018. Effect of cold stress on the leaf physiological, biochemical variation and anatomical structure in Piper L. [J]. Chin J Trop Crops, 39(8): 1519-1525. [伍宝朵, 范睿, 胡丽松, 等, 2018. 低温胁迫对胡椒叶片生理生化及显微结构的影响 [J]. 热带作物学报, 39(8): 1519-1525. ]

    • YU LL, HE TY, CHEN LY, et al. , 2014. Study on the effect of salicylic acid on cold resistance of seedlings of Rhododendron [J]. Fujian J Agric Sci, 29(3): 220-226. [余丽玲, 何天友, 陈凌艳, 等, 2014. 水杨酸对西洋杜鹃幼苗抗寒性的影响 [J]. 福建农业学报, 29(3): 220-226. ]

    • ZHANG HJ, LIANG YL, 2017. Study on cold resistance of pitaya [J]. Genomic Appl Biol, 36(5): 2088-2093. [张慧君, 梁亚灵, 2017. 火龙果抗寒性研究 [J]. 基因组学与应用生物学, 36(5): 2088-2093. ]

    • ZHANG Q, LI DM, WANG Q, et al. , 2021. Exogenous salicylic acid improves chilling tolerance in maize seedlings by improving plant growth and physiological characteristics [J]. Agronomy, 11(7): 1341-1356.

    • ZHANG X, TAO L, QIAO S, et al. , 2017. Roles of glutathione S-transferase in plant tolerance to abiotic stresses [J]. Chin Biotechnol, 37(3): 92-98. [张雪, 陶磊, 乔晟, 等, 2017. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色 [J]. 中国生物工程杂志, 37(3): 92-98. ]

    • ZHANG X, YANG Y, LIU XY, et al. , 2020. Effect of exogenous salicylic acid on the antioxidant enzyme activities and fatty acid profiles in seashore paspalum under low temperature stress [J]. Acta Pratac Sin, 29(1): 117-124. [张翔, 杨勇, 刘学勇, 等, 2020. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响 [J]. 草业学报, 29(1): 117-124. ]

    • ZHANG ZL, QU WJ, 2003. The experimental guide for plant physiology [M]. Beijing: Higher Education Press: 158-160. [张志良, 瞿伟菁, 2003. 植物生理学实验指导 [M]. 北京: 高等教育出版社: 158-160. ]

    • ZHANG ZZ, ZHANG X, ZHANG Y, et al. , 2021. Study on effects of low temperature stress on leaf structure of eggplant seedlings [J]. J Sci Teach Coll Univ, 41(3): 43-47. [张珍珠, 张旭, 张迎, 等, 2021. 低温胁迫对茄子幼苗叶片结构的影响研究 [J]. 高师理科学刊, 41(3): 43-47. ]

    • ZHAO X, MENG DY, CANG J, et al. , 2022. Effect of exogenous SA on glycolytic metabolism of winter wheat (Triticum aestivum L. ) under low temperature stress [J]. J Tritic Crops, 42(8): 1-8. [赵欣, 孟德义, 苍晶, 等, 2022. 外源SA对低温胁迫下冬小麦糖酵解代谢的影响 [J]. 麦类作物学报, 42(8): 1-8. ]

    • ZHOU JL, WANG LJ, XIAO TJ, et al. , 2021. Physiological responses and proteomic analysis on the cold stress responses of annual pitaya (Hylocereus spp. ) branches [J]. J Chem, 2021(6): 1416925.