en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

林欣琪(1997-),硕士研究生,研究方向为热带园艺作物栽培生理,(E-mail)13411952564@163.com。

通讯作者:

李映志,博士,教授,研究方向为热带园艺植物栽培与育种,(E-mail)liyz@gdou.edu.cn。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2023)12-2338-14

DOI:10.11931/guihaia.gxzw202211003

参考文献
ABDEL LATEF AAH, HE CX, 2014. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? [J]. J Plant Growth Regul, 33(3): 644-653.
参考文献
ABDEL LATEF AAH, MOSTOFA MG, RAHMAN M, et al. , 2019. Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants [J]. J Plant Growth Regul, 38(3): 966-979.
参考文献
ADHIKARI B, OLORUNWA OJ, BARICKMAN TC, 2022. Seed priming enhances seed germination and morphological traits of Lactuca sativa L. under salt stress [J]. Seed, 1(2): 74-86.
参考文献
AFZAL I, RAUF S, BASRA S, et al. , 2008. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress [J]. Plant Soil Environ, 54(9): 382-388.
参考文献
AKASHI K, NISHIMURA N, ISHIDA Y, et al. , 2004. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon [J]. Biochem Biophys Res Commun, 323(1): 72-78.
参考文献
BAI MY, LÜ SS, XIA XY, 2022. Effects of γ-aminobutyric acid on the growth and related physiological characteristics of Vaccinium plantlets in vitro [J]. Plant Physiol J, 58(3): 577-586. [白明月, 吕爽爽, 夏秀英, 2022. γ-氨基丁酸对越橘试管苗生长及相关生理代谢的影响 [J]. 植物生理学报, 58(3): 577-586. ]
参考文献
BAO SD, 2000. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agricultural Press. [鲍士旦, 2000. 土壤农化分析 [M]. 第三版. 北京: 中国农业出版社. ]
参考文献
BHANUPRAKASH K, YOGEESHA HS, 2016. Seed priming for abiotic stress tolerance: an overview [J]. Abiotic Stress Physiol Hortic Crops: 103-117. DOI: 10. 1007/978-81-322-2725-0_6.
参考文献
BRADFORD MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 72(1/2): 248-254.
参考文献
BRUGNOLI E, LAUTERI M, 1991. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L. ) and salt-sensitive (Phaseolus vulgaris L. ) C3 non-halophytes [J]. Plant Physiol, 95(2): 628-635.
参考文献
CHEN XF, ZHANG RD, XING YF, et al. , 2021. The efficacy of different seed priming agents for promoting sorghum germination under salt stress [J]. PLoS ONE, 16(1): e0245505.
参考文献
CHENG BZ, LI Z, LIANG LL, et al. , 2018. The γ-aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation, dehydrins accumulation, and stress-related genes expression in white clover [J]. Int J Mol Sci, 19(9): 2520.
参考文献
CUARTERO J, BOLARIN MC, ASINS MJ, et al. , 2006. Increasing salt tolerance in the tomato [J]. J Exp Bot, 57(5): 1045-1058.
参考文献
DENG Y, XU LJ, ZENG X, et al. , 2010. New perspective of GABA as an inhibitor of formation of advanced lipoxidation end-products: it’s interaction with malondiadehyde [J]. J Biomed Nanotechnol, 6(4): 318-324.
参考文献
ELBADRI AM, BATOOL M, WANG CY, et al. , 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress [J]. Ecotoxicol Environ Saf, 225: 112695.
参考文献
FLOWERS TJ, COLMER TD, 2015. Plant salt tolerance: adaptations in halophytes [J]. Ann Bot, 115(3): 327-331.
参考文献
GAMMOUDI N, KARMOUS I, ZERRIA K, et al. , 2020. Efficiency of pepper seed invigoration through hydrogen peroxide priming to improve in vitro salt and drought stress tolerance [J]. Hortic Environ Biotechnol, 61(4): 703-714.
参考文献
GAO AJ, LIU TT, ZHOU ML, et al. , 2021. Effects of exogenous melatonin on growth and physiological characteristics of tartary buckwheat seedlings under drought stress [J]. J S Agric, 52(11): 3003-3012. [高安静, 刘婷婷, 周美亮, 等, 2021. 外源褪黑素对干旱胁迫下苦荞幼苗生长及生理特性的影响 [J]. 南方农业学报, 52(11): 3003-3012. ]
参考文献
GARG AK, KIM JK, OWENS TG, et al. , 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J]. Proc Natl Acad Sci USA, 99(25): 15898-15903.
参考文献
HU HR, DU L, ZHANG RH, et al. , 2022. Research progress in the adaptation of hot pepper(Capsicum annuum L. )to abiotic stress [J]. Biotechnol Bull, 38(12): 1-15. [胡华冉, 杜磊, 张芮豪, 等, 2022. 辣椒适应非生物胁迫的研究进展 [J]. 生物技术通报, 38(12): 1-15. ]
参考文献
JIA Y, ZHAO HW, WANG JG, et al. , 2014. Research progress on γ-aminobulyric acid metabolism and function of crops under stress [J]. Crops, (5): 9-15. [贾琰, 赵宏伟, 王敬国, 等, 2014. 逆境胁迫下作物中γ-氨基丁酸代谢及作用的研究进展 [J]. 作物杂志, (5): 9-15. ]
参考文献
KASPAL M, KANAPADDALAGAMAGE MH, RAMESH SA, 2021. Emerging roles of γ-aminobutyric acid (GABA) gated channels in plant stress tolerance [J]. Plants, 10(10): 2178.
参考文献
KORKMAZ A, KORKMAZ Y, 2009. Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress [J]. Sci Hortic, 119(2): 98-102.
参考文献
KRISHNAN S, LASKOWSKI K, SHUKLA V, et al. , 2013. Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass [J]. J Am Soc Hortic Sci, 138(5): 358-366.
参考文献
LI HY, TANG XQ, YANG XY, et al. , 2021. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress [J]. Sci Rep, 11(1): 1-19.
参考文献
LI HS, 2012. Modern plant physiology [M]. 3rd ed. Beijing: Higher Education Press. [李合生, 2012. 现代植物生理学 [M]. 第3版. 北京: 高等教育出版社. ]
参考文献
LI J, XU JG, LIN C, et al. , 2016. Effect of priming on germination and physiological characteristics of different types of corn seeds under low-temperature stress [J]. Plant Physiol J, 52(2): 157-166. [李洁, 徐军桂, 林程, 等, 2016. 引发对低温胁迫下不同类型玉米种子萌发及幼苗生理特性的影响 [J]. 植物生理学报, 52(2): 157-166. ]
参考文献
LI MF, GUO SJ, YANG XH, et al. , 2016. Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes [J]. Biol Plant, 60(1): 123-131.
参考文献
LI SW, XUE LG, FENG HY, et al. , 2007. Hydrogen peroxide signaling and its biological importance in plants [J]. Chin J Biochem Mol Biol, 23(10): 804-810. [李师翁, 薛林贵, 冯虎元, 等, 2007. 植物中的H2O2信号及其功能 [J]. 中国生物化学与分子生物学报, 23(10): 804-810. ]
参考文献
LI YF, FAN Y, MA Y, et al. , 2017. Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L. ) seedlings under low light stress [J]. Plant Growth Regul, 36: 1-14.
参考文献
LI Z, YU JJ, PENG Y, et al. , 2016. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera) [J]. Sci Rep, 6(1): 1-16.
参考文献
LI Z, CHENG BZ, PENG Y, et al. , 2020. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass [J]. Plant Physiol Biochem, 157: 185-194.
参考文献
LI ZQ, LI JX, ZHANG GF, 2013. Expression regulation of plant ascorbate peroxidase and its tolerance to abiotic stresses [J]. Hereditas, 35(1): 45-54. [李泽琴, 李静晓, 张根发, 2013. 植物抗坏血酸过氧化物酶的表达调控以及对非生物胁迫的耐受作用 [J]. 遗传, 35(1): 45-54. ]
参考文献
LIU CL, ZHAO L, YU GH, 2011. The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity [J]. J Integr Plant Biol, 53(8): 608-618.
参考文献
LUO HY, 2011. Effects of three kinds of exogenous substances on reactive oxygen species metabolism and chlorophy II fluorescence in tomato seedlings under NaCl stress [D]. Baoding: Agricultural University of Hebei. [罗黄颖, 2011. 三种外源物质对盐胁迫下番茄活性氧代谢及叶绿素荧光的影响 [D]. 保定: 河北农业大学. ]
参考文献
LUO HY, GAO HB, XIA QP, et al. , 2011. Effects of exogenous GABA on reactive oxygen species metabolism and chlorophyll fluorescence parameters in tomato under NaCl stress [J]. Sci Agric Sin, 44(4): 753-761. [罗黄颖, 高洪波, 夏庆平, 等, 2011. γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响 [J]. 中国农业科学, 44(4): 753-761. ]
参考文献
MARGARETE B, ANDRAS B, ANDREAS P, et al. , 2019. Preparing plants for improved cold tolerance by priming [J]. Plant Cell Environ, 42(3): 782-800.
参考文献
MIGAHID MM, ELGHOBASHY RM, BIDAK LM, et al. , 2019. Priming of Silybum marianum (L. ) Gaertn seeds with H2O2 and magnetic field ameliorates seawater stress [J]. Heliyon, 5(6): e01886.
参考文献
NAKANO Y, ASADA K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 22(5): 867-880.
参考文献
NAYYAR H, KAUR R, KAUR S, et al. , 2014. γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants [J]. J Plant Growth Regul, 33(2): 408-419.
参考文献
NETO ADDA, PRISCO JT, ENAS-FILHO J, et al. , 2005. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes [J]. Environ Exp Bot, 56(1): 87-94.
参考文献
NIU ML, HUANG Y, SUN ST, et al. , 2018. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure [J]. J Exp Bot, 69(14): 3465-3476.
参考文献
NOUMAN W, BASRA SMA, YASMEEN A, et al. , 2014. Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions [J]. Plant Growth Regul, 73(3): 267-278.
参考文献
RAMESH SA, TYERMAN SD, GILLIHAM M, et al. , 2017. γ-aminobutyric acid (GABA) signalling in plants [J]. Cell Mol Life Sci, 74(9): 1577-1603.
参考文献
RINEZ I, GHEZAL N, RINEZ A, et al. , 2018. Improving salt tolerance in pepper by bio-priming with Padina pavonica and Jania rubens aqueous extracts [J]. Int J Agric Biol, 20(3): 513-523.
参考文献
SHABALA L, ZHANG JY, POTTOSIN I, et al. , 2016. Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress [J]. Plant Physiol, 172(4): 2445-2458.
参考文献
SHETEIWY MS, SHAO H, QI W, et al. , 2019. GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice [J]. Int J Mol Sci, 20(22): 5709.
参考文献
SHOMALI A, ALINIAEIFARD S, DIDARAN F, et al. , 2021. Synergistic effects of melatonin and gamma-aminobutyric acid on protection of photosynthesis system in response to multiple abiotic stressors [J]. Cells, 10(7): 1631.
参考文献
SOLICHATUN S, PUTRI TA, MUDYANTINI W, et al. , 2022. Effect of seed priming using KCl on the growth and proline accumulation of paprika (Capsicum annuum) growing at different water availability [J]. Asian J Trop Biotechnol, 19(1): 1-6.
参考文献
VIJAYAKUMARI K, PUTHUR JT, 2016. γ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress [J]. Plant Growth Regul, 78(1): 57-67.
参考文献
WAKIYAMA Y, 2016. The relationship between SPAD values and leaf blade chlorophyll content throughout the rice development cycle [J]. Jpn Agric Res Q JARQ, 50: 329-334.
参考文献
WANG CY, FAN LQ, GAO HB, et al. , 2014. Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots [J]. Plant Physiol Biochem, 82: 17-26.
参考文献
WANG H, 2021. Regulatory effects of exogenous GABA on polyamines and proline metabolisms, and GABA shunt in Nitraria sibirica Pall. under salt stress [D]. Harbin: Northeast Agricultural University. [王贺, 2021. 外源GABA对盐胁迫下西伯利亚白刺多胺、脯氨酸代谢和GABA支路的调控作用 [D]. 哈尔滨: 东北农业大学. ]
参考文献
WANG X, YAN YQ, YIN Y, et al. , 2019. Effect of exogenous γ-aminobutyric acid (GABA) on photosynthetic characteristics of Nitraria sibirica Pall under salt stress [J]. Jiangsu J Agric Sci, 35(5): 1032-1039. [王馨, 闫永庆, 殷媛, 等, 2019. 外源γ-氨基丁酸(GABA)对盐胁迫下西伯利亚白刺光合特性的影响 [J]. 江苏农业学报, 35(5): 1032-1039. ]
参考文献
WANG YC, 2016. Mechanism of aminobutyric acid (GABA) regulating maize seed germination and seeding growth under salt stress [D]. Harbin: Northeast Agricultural University. [王泳超, 2016. γ-氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制 [D]. 哈尔滨: 东北农业大学. ]
参考文献
WU GQ, LI H, LEI CR, et al. , 2019. Effects of additional KCl on growth and physiological characteristics of sainfoin (Onobrychis viciaefoia) under high salt stress [J]. Acta Pratac Sin, 28(6): 45-55. [伍国强, 李辉, 雷彩荣, 等, 2019. 添加KCl对高盐胁迫下红豆草生长及生理特性的影响 [J]. 草业学报, 28(6): 45-55. ]
参考文献
WU LY, LI M, YAO DW, 2017. Effects of seed priming on seed germination and emergence of pepper and eggplant at different temperature [J]. Acta Agric Shanghai, 33(3): 37-40. [吴凌云, 李明, 姚东伟, 2017. 种子引发对辣椒和茄子种子在不同温度下萌发和出苗的影响 [J]. 上海农业学报, 33(3): 37-40. ]
参考文献
WU XL, JIA QY, JI SX, et al. , 2020. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism [J]. BMC Plant Biol, 20(1): 1-21.
参考文献
XUE TX, REN ZB, REN SF, 2018. Impacts of NaCl stress on physiological characteristics of Forsythia intermedia [J]. Jiangsu Agric Sci, 46(11): 104-108. [薛腾笑, 任子蓓, 任士福, 2018. NaCl胁迫对美国金钟连翘生理特性的影响 [J]. 江苏农业科学, 46(11): 104-108. ]
参考文献
YANG JS, YAO RJ, WANG XP, et al. , 2022. Research on salt-affected soils in China: history, status quo and prospect [J]. Acta Pedol Sin, 59(1): 10-27. [杨劲松, 姚荣江, 王相平, 等, 2022. 中国盐渍土研究: 历程、现状与展望 [J]. 土壤学报, 59(1): 10-27. ]
参考文献
YANG YL, LÜ LR, LI J, et al. , 2018. Comparison of ascorbic acid-glutathione cycle in two wheat seedlings under salt stress [J]. J N Norm Univ (Nat Sci Ed), 54 (3): 65-70. [杨颖丽, 吕丽荣, 李晶, 等, 2018. 盐胁迫下2种小麦幼苗抗坏血酸-谷胱甘肽循环的比较 [J]. 西北师范大学学报(自然科学版), 54(3): 65-70. ]
参考文献
ZAFAR S, PERVEEN S, KAMRAN KHAN M, et al. , 2022. Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L. ) under salt stress [J]. PLoS ONE, 17(2): e0263194.
参考文献
ZHANG HH, BAI MY, XIA XY, 2021. Effect of γ-aminobutyric acid on growth and physiological metabolism of Vaccinium corymbosum plantlets in vitro under hyperhydricity stress [J]. Plant Physiol J, 57 (3): 623-631. [张换换, 白明月, 夏秀英, 2021. γ-氨基丁酸对玻璃化胁迫下越橘试管苗生长与生理代谢的影响 [J]. 植物生理学报, 57(3): 623-631. ]
参考文献
ZHANG HL, CHEN YY, YANG LX, et al. , 2020. Regulation of γ-aminobutyric acid on plant growth and development and stress resistance [J]. Plant Physiol J, 56(4): 600-612. [张海龙, 陈迎迎, 杨立新, 等, 2020. γ-氨基丁酸对植物生长发育和抗逆性的调节作用 [J]. 植物生理学报, 56(4): 600-612. ]
参考文献
ZHANG MR, LIU ZY, FAN YT, et al. , 2022. Characterization of GABA-transaminase gene from mulberry (Morus multicaulis) and its role in salt stress tolerance [J]. Genes, 13(3): 501.
参考文献
ZHOU M, HASSAN MJ, PENG Y, et al. , 2021. γ-aminobutyric acid (GABA) priming improves seed germination and seedling stress tolerance associated with enhanced antioxidant metabolism, DREB expression, and dehydrin accumulation in white clover under water stress [J]. Front Plant Sci, 12: 776939.
参考文献
ZOU XX, MA YQ, DAI XZ, et al. , 2020. Spread and industry development of pepper in China [J]. Acta Hortic Sin, 47(9): 1715-1726. [邹学校, 马艳青, 戴雄泽, 等, 2020. 辣椒在中国的传播与产业发展 [J]. 园艺学报, 47(9): 1715-1726. ]
目录contents

    摘要

    种子引发是提高作物生长期耐盐性的有效方法,而γ-氨基丁酸(GABA)种子引发对辣椒(Capsicum annuum) 耐盐性的效果和作用机制尚不清楚。该研究以‘茂蔬360’朝天椒为材料,分析了不同浓度γ-氨基丁酸(0、1.0、2.0、4.0、6.0、8.0 μmol·L-1)种子引发对4~6叶期100 mmol·L-1 NaCl胁迫下的植株生物量、渗透调节物质、抗氧化能力、光合作用系统及钾钠离子吸收的影响。结果表明:(1)种子引发能显著增加盐胁迫下辣椒植株的生物量,以6.0 μmol·L-1 GABA引发处理的效果最佳。(2)种子引发处理增加盐胁迫下植株可溶性糖、可溶性蛋白、脯氨酸的含量,同时,O2-和MDA的含量下降,抗氧化酶(SOD、POD、CAT和APX)活性增强,叶片叶绿素含量增加,叶片叶绿素荧光参数受胁迫影响程度低,叶绿素荧光指标包括Fv ′/Fm ′、qP_LssQY_LssNPQ_LssRfd均有所上升。根、茎中的K+含量和K+/Na+比值下降。(3)灰色关联度分析表明,GABA种子引发主要通过提高POD、CAT的活性和渗透调节物质含量来缓解盐胁迫对辣椒植株的伤害。综上所述,6.0 μmol·L-1 GABA种子引发可有效提高辣椒苗期的耐盐性,其作用机制可能是提高了盐胁迫下辣椒植株的抗氧化能力和渗透调节能力。

    Abstract

    Seed priming is proved to be an efficient way to improve crop salt tolerance, which is a measure of pre-treating seed with various agents while obtaining enhancement to crop performance at growing stage. Gamma amino butyric acid (GABA) is a non-protein amino acid involved in various metabolic processes, and partially protects plants from environmental stress. Enhancing effects of GABA priming on germination characteristics and abiotic stress have been established in several crops. However, the effect and mechanism of GABA seed priming on salt tolerance of pepper (Capsicum annuum) are still unknown. In this study, a hybrid pepper variety of ‘Maoshu 360’ Chaotian pepper was used as material, the effects of seed priming with various concentrations of GABA (0, 1.0, 2.0, 4.0, 6.0, 8.0 μmol·L-1) on plant biomass, leaf osmotic regulating substance, leaf antioxidant capacity, leaf photosynthesis system, potassium and sodium ion uptake and distribution between leaves and shoots of pepper plants under 100 mmol·L-1 NaCl stress applied at 4-6 leaf stage were investigated. The results were as follows: (1) From the point of plant growth under salt stress, the best concentration of GABA for seed priming of pepper was 6.0 μmol·L-1, which greatly boosted the biomass of pepper plants under salt stress. (2) The mechanisms of GABA seed priming promoting salt tolerance of pepper were further analyzed. Seed priming increased the leaf contents of soluble sugar, soluble protein, chlorophyll and proline, decreased the leaf contents of O2- and malondialdehyde (MDA), enhanced the leaf activities of antioxidant enzymes, including super oxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and raised several chlorophyll fluorescence metrics, including Fv′/Fm′, qP_Lss, QY_Lss, NPQ_Lss and Rfd, reduced the K+ content and K+/Na+ ratio in roots and stems. (3) For a comprehensive understanding of the mechanisms of GABA seed priming promoting salt tolerance of pepper, grey correlation analysis was carried out. Based on results of grey correlation analysis, seed priming with GABA significantly alleviated salt stress to pepper plants by boosting the activities of the antioxidant enzymes POD and CAT as well as increasing the levels of osmotic regulators. In conclusion, seed priming with 6.0 μmol·L-1 GABA significantly increases salt tolerance of pepper seedlings, probably by improving antioxidant and osmotic regulating capacities of pepper plants.

  • 近年来,全球已有1.1×109 hm2陆地表面受到盐渍化的影响,我国盐渍土总面积达3.69×107 hm2,盐渍化已成为农业可持续生产的重要障碍(杨劲松等,2022)。土壤盐分作为一种非生物胁迫因子,主要通过降低种子萌发率、影响植株活力、细胞离子稳态和代谢途径来对作物产量产生不利影响(Shabala et al.,2016; Elbadri et al.,2021)。辣椒(Capsicum annuum)是重要的茄果类蔬菜,在我国的种植面积超过2.1×106hm2(邹学校等,2020)。辣椒对盐度敏感或中等敏感,生长发育过程中受到的盐胁迫会导致产量降低和果实品质下降(胡华冉等,2022)。国内外学者对盐逆境的作用机制进行了广泛研究,目前主要认为盐分会直接或间接地引起活性氧(reactive oxygen species,ROS)的过量积累和氧化胁迫(Abdel Latef &He,2014),造成离子毒性和营养失衡,限制水分吸收、降低光合效率,最终导致生长发育不良或植株死亡(Cuartero et al.,2006; Afzal et al.,2008; Nouman et al.,2014)。植物可采用多种机制应对盐胁迫,如调节气孔、维持细胞膜的完整性、改变激素平衡、激活抗氧化系统、调节渗透势以及排斥有毒离子等(Neto et al.,2005; Abdel Latef et al.,2019)。

  • 种子引发是一种新兴的、提高植株生长发育期逆境抗性的种子处理技术,其作用机制目前尚不清楚,可能是通过控制种子的有限活化或逆境驯化,改变基因的表达模式,使之处于耐受逆境的准备状态(李洁等,2016)。种子引发可激活应激反应系统,使种子在暴露于未来的胁迫时,具有“交叉耐受性”(Bhanuprakash &Yogeesha,2016)。目前,种子引发作为一种实用、经济、低风险、无生物安全风险的栽培措施,不但能够改善逆境下种子的萌发和出苗(Migahid et al.,2019),而且可通过记忆效应提高植株生长发育期的逆境抗性,这种记忆效应甚至可遗传(Margarete et al.,2019)。

  • γ-氨基丁酸(γ-aminobutyric acid,GABA)是一种非蛋白四碳氨基酸,由谷氨酸脱羧或二胺氧化酶降解多胺产生的新型植物生长调节物质(Wang et al.,2014)。植株在逆境胁迫时,GABA可在细胞中快速积累,通过提高抗氧化应激反应,调节碳氮代谢和细胞质pH值,以及参与渗透调节和信号转导等途径提高植株对逆境的适应能力(贾琰等,2014;张海龙等,2020)。在盐胁迫中,GABA作为信号物质或临时氮库,通过调节植株的抗氧化能力和改善叶片的光合特性,对植物的耐盐性产生重要影响(Li et al.,2016; Ramesh et al.,2017; Kaspal et al.,2021)。本研究以种子引发和辣椒耐盐性为研究要点,采用生物量和生理生化分析方法,通过研究GABA种子引发处理对盐胁迫下辣椒植株生长和生理生化的影响,拟探讨:(1)GABA种子引发处理对辣椒植株耐盐性的影响;(2)GABA种子引发处理提高辣椒植株耐盐性的最佳处理浓度;(3)GABA种子引发处理提高辣椒植株耐盐性的作用机制。

  • 1 材料与方法

  • 1.1 材料和处理

  • 供试材料为‘茂蔬360’朝天椒,γ-氨基丁酸(GABA)购于上海生工商贸有限公司。

  • 1.1.1 种子引发处理

  • γ-氨基丁酸(GABA)引发处理设置0(蒸馏水,T0)、1.0(T1)、2.0(T2)、4.0(T4)、6.0(T6)、8.0(T8) μmol·L-1 6个浓度。选取大小一致、籽粒饱满的辣椒种子1.8 g (约100粒)置于不同浓度的GABA溶液中,种子质量(g)与溶液体积(mL)比为1∶5(吴凌云等,2017),在20℃黑暗条件下引发24 h。引发结束后,用蒸馏水洗净种子残余的GABA,吸干表面水分,置于鼓风干燥箱中28℃回干至原始质量。重复3次。

  • 1.1.2 盐胁迫处理

  • 将引发和未引发的种子在正常基质内催芽后,播种至15孔盘穴中,正常管理,以未进行种子引发处理的植株为对照(CK)。待植株长至4~6叶时,每两天每株用50 mL NaCl 溶液(100 mmol·L-1)浇灌,14 d后取样分析。每处理20株,重复3次。

  • 1.2 方法

  • 1.2.1 植株生长情况

  • 每个处理随机选取5株辣椒植株,测定每株植株的株高和根、茎和叶的鲜重及干重。

  • 1.2.2 酶活性及代谢物质含量的测定

  • 每处理随机选取5株,取植株上部完全展开叶用于分析。可溶性蛋白含量的测定参考Bradford(1976)的方法;采用蒽酮比色法测定可溶性糖含量,硫代巴比妥酸法测定丙二醛(malondialdehyde,MDA)含量李合生(2012);抗坏血酸过氧化物酶(ascorbate peroxidase,APX,U·g-1·min-1 FW)的测定参照 Nakano和Asada(1981)的方法;还原型抗坏血酸(ascorbic acid,AsA)、脱氢抗坏血酸(dehydroascorbate,DHA)的含量测定参照杨颖丽等(2018)的方法;脯氨酸(proline,Pro)、过氧化氢(hydrogen peroxide,H2O2)、超氧阴离子(superoxide anion,O2-)的含量和超氧化物歧化酶(superoxide dismutase,SOD,U·g-1 FW)、过氧化物酶(peroxidase,POD,U·g-1 FW)、过氧化氢酶(catalase,CAT,U·g-1 FW)、谷胱甘肽还原酶(glutathione reductase,GR,U·g-1 FW)的活性测定均采用试剂盒法(索莱宝科技有限公司),酶活性U指在最适条件下1 min催化1 μmol底物转化的酶量。

  • 1.2.3 叶绿素含量的测定

  • 每处理随机选取5株,选距生长点第2~5片完全展开叶,使用 SPAD-502仪(柯尼卡美能达)测定叶绿素含量(Wakiyama,2016)。

  • 1.2.4 叶绿素荧光参数的测定

  • 叶绿素荧光参数值采用FluorPen叶绿素荧光分析仪(Czech Republic,Photon Systems Instruments)测定,每处理随机选择6株,每株选取植株顶端完全展开叶片测定Fv/Fm,植株暗室放置20 min后测定其他叶绿素荧光参数值,即潜在最大量子产量(Fv′/Fm′)、稳态光化学淬灭(qP_Lss)、稳态非光化学淬灭(NPQ_Lss)、稳态光量子效率(QY_Lss)和荧光衰减率(Rfd)。

  • 1.2.5 Na+、K+的含量测定

  • 每处理随机选取5株,蒸馏水清洗后,分别取烘干后的根、茎、叶进行分析。采用浓硫酸-H2O2消煮法(鲍士旦,2000)消解干样,滤液采用火焰原子吸收法(鲍士旦,2000)测定K+、Na+的含量。

  • 1.3 数据分析

  • 在 Excel 2019 软件中进行数据常规处理,用SPSS 25.0软件对数据进行单因素方差分析,采用 Duncan’s 法进行多重比较,运用SPASSAU在线平台进行灰色关联度分析。

  • 2 结果与分析

  • 2.1 不同浓度GABA种子引发处理对盐胁迫下辣椒生长的影响

  • 不同浓度GABA种子引发处理对盐胁迫下辣椒植株生长的影响见图1。由图1可知,GABA种子引发处理可提高辣椒植株的根、茎、叶的鲜重、干重及株高。不同浓度GABA种子引发的效果不同,T6处理(6.0 μmol·L-1 GABA)的效果最佳,其次为T4和T2处理,三者除茎干重与株高无显著差异外,其余均显著高于未引发处理(CK)。根、茎、叶的鲜重分别比CK增加72.4%、163.9%、94.3%,根、茎、叶的干重分别比CK增加1.20倍、2.22倍、1.56倍,株高增高0.92倍;根、茎、叶的鲜重分别比T0处理增加了62.2%、138.5%、88.3%,根、茎、叶的干重分别比T0增加1.03倍、2.14倍、1.28倍,株高增高0.86倍。这表明盐胁迫条件下,GABA种子引发处理的辣椒植株长势更好,根、茎、叶的生物量积累更多。

  • 2.2 不同浓度GABA种子引发处理对盐胁迫下辣椒植株相关酶活性及代谢物质含量的影响

  • 2.2.1 对盐胁迫下辣椒叶片可溶性糖、可溶性蛋白、脯氨酸含量的影响

  • 不同浓度GABA种子引发处理对盐胁迫下辣椒植株叶片可溶性糖、可溶性蛋白和脯氨酸含量的影响见图2。由图2可知,GABA种子引发处理可不同程度增加盐胁迫下叶片3种物质的含量。当GABA浓度为6.0 μmol·L-1 时各值达到最大,显著高于未引发植株,可溶性糖含量增加1.28倍,可溶性蛋白含量增加1.72倍,脯氨酸含量增加1.04倍;与T0相比,可溶性糖含量增加0.94倍,可溶性蛋白的含量增加0.97倍,脯氨酸含量增加0.79倍。其中T4处理的可溶性糖、可溶性蛋白的含量与T6处理无显著差异,较降低0.83%、11.8%,T6处理脯氨酸的含量是T4处理的1.27倍,与其他处理组差异显著。这表明GABA种子引发处理可促进盐胁迫下辣椒植株的生理活动和渗透调节物质的积累。

  • 2.2.2 对盐胁迫下辣椒叶片H2O2、O2-和MDA含量的影响

  • 由图3可知,与未进行种子引发的植株相比,GABA种子引发处理可提高叶片H2O2含量,降低O2-含量和MDA含量。盐胁迫下辣椒植株叶片H2O2含量以T6处理最高,与其他处理组间存在显著差异,与未进行种子引发处理的植株相比,增加2.1倍,比T0处理增加1.04倍;O2-、MDA含量以T6处理最低,分别较未引发处理下降63.6%、73.6%,与T0相比,分别降低73.0%、68.8%,与GABA引发处理组T1、T2、T4、T8之间无显著差异。可见GABA种子引发处理能有效缓解盐胁迫下辣椒植株叶片的活性氧积累和细胞膜的氧化损伤。

  • 2.2.3 对盐胁迫下辣椒植株叶片SOD、POD、CAT、APX、GR活性的影响

  • 由图4可知,盐胁迫下,GABA种子引发处理可显著提高叶片SOD、POD、CAT和APX的活性,均在6.0 μmol·L-1 GABA处理中达到峰值,但对GR活性影响不明显(图4:E)。除T4处理的POD活性外,其他GABA引发处理的SOD、POD、CAT和APX活性与T6处理间均存在显著差异。与CK相比,T6处理的SOD、POD、CAT和APX活性分别增加了0.44倍、4.09倍、7.22倍和1.35倍;比T0处理的SOD、POD、CAT和APX活性分别增加了0.32倍、3.30倍、1.13倍和1.04倍。GR活性在未引发、水引发与GABA引发处理间没有规律性差异。可见GABA种子引发处理提高了盐胁迫下辣椒植株叶片由SOD、POD、CAT、APX酶介导的抗氧化能力。

  • 2.2.4 对盐胁迫下辣椒植株叶片AsA、DHA的含量及两者比值的影响

  • 由图5可知,GABA种子引发处理可提高叶片AsA含量和AsA/DHA比值,降低DHA含量。其中AsA含量以T8处理最高,与T4处理间存在显著差异,是T4处理的1.40倍。相比未引发处理的叶片,增加了62.3%,比T0处理增加2.02倍。GABA种子引发处理的抗坏血酸(AsA)含量高和氧化产物(DHA)含量低,这表明引发处理后的叶片抗氧化能力增强或自由基胁迫较低。

  • 2.3 不同浓度GABA种子引发对盐胁迫下辣椒植株叶片叶绿素含量的影响

  • 不同浓度GABA种子引发处理对盐胁迫下辣椒植株叶片叶绿素含量的影响见图6。由图6可知,只有6.0 μmol·L-1 GABA种子引发的叶片叶绿素含量与CK、T0有显著差异,含量分别提高了8.78%、8.41%;当GABA浓度达到8.0 μmol·L-1时,与T6处理存在显著差异,降低了16.0%。这说明适当浓度的GABA引发处理能缓解盐胁迫下辣椒植株叶片叶绿素的降解。

  • 2.4 不同浓度GABA种子引发对盐胁迫下辣椒植株叶片叶绿素荧光特性的影响

  • 不同浓度GABA引发处理对盐胁迫下辣椒植株叶片叶绿素荧光特性的影响见图7。由图7可知,与CK、T0相比,GABA种子引发处理的叶片Fo下降, Fv/Fm无显著差异, Fv′/Fm′、 qP_LssNPQ_LssQY_LssRfd均显著上升。与CK相比,T6处理的Fo最低,降低5.04%;Fv′/Fm′、qP_LssNPQ_LssQY_LssRfd最高,分别增加10.5%、22.3%、40.0%、14.5%和36.1%;相较T0处理,Fo下降14.6%,Fv′/Fm′、qP_LssNPQ_LssQY_LssRfd分别增加了5.47%、29.5%、10.4%、26.0%和27.0%。这表明GABA种子引发处理能使光合系统保持相对稳定的状态,促进光合作用的正常进行。

  • 图1 不同浓度GABA种子引发对盐胁迫下辣椒植株根鲜重(A)、茎鲜重(B)、叶鲜重(C)、根干重(D)、茎干重(E)、叶干重(F)和株高(G)的影响

  • Fig.1 Effects of different concentrations of GABA seed priming on root fresh weight (A) , stem fresh weight (B) , leaf fresh weight (C) , root dry weight (D) , stem dry weight (E) , leaf dry weight (F) and plant height (G) of pepper plants under salt stress

  • 2.5 不同浓度GABA种子引发对盐胁迫下辣椒植株Na+、K+的含量及K+/Na+比值的影响

  • 不同浓度GABA种子引发处理对盐胁迫下辣椒根、茎和叶K+、Na+含量的影响见图8。由图8可知,辣椒植株的根、茎、叶的K+含量依次增加;Na+含量在根、茎、叶间无显著差异。GABA种子引发处理可降低根和茎中K+含量,对叶中K+含量无显著影响;对根中Na+含量无显著影响,部分处理可提高茎和叶中Na+含量(分别为T0和T8处理);T1处理降低了根和茎的K+/Na+比值,对叶的K+/Na+比值无显著影响。

  • 图2 不同浓度GABA种子引发对盐胁迫下辣椒植株叶片可溶性糖含量(A)、可溶性蛋白含量(B)和脯氨酸含量(C)的影响

  • Fig.2 Effects of different concentrations of GABA seed priming on soluble sugar content (A) , soluble protein content (B) and proline content (C) in leaves of pepper plants under salt stress

  • 图3 不同浓度GABA种子引发对盐胁迫下辣椒植株叶片H2O2含量(A)、 O2-含量(B)和丙二醛含量(C)的影响

  • Fig.3 Effects of different concentrations of GABA seed priming on H2O2 content (A) , O2- content (B) and MDA content (C) in leaves of pepper plants under salt stress

  • 2.6 不同浓度GABA种子引发处理对盐胁迫下辣椒植株生理指标的灰色关联度分析

  • 将38个生理指标看作一个灰色系统,其中不同处理作为参考序列,生理指标作为比较序列,使用初值化量纲处理方式,综合分析两者的关联度。由表1可知,关联度介于0.556~0.755,该值越大表示评价项与“参考值”相关性越强。其中POD活性的综合评价最高(关联度为0.755),其次为CAT活性(关联度为0.692)和可溶性蛋白含量(关联度为0.688)。这说明GABA种子引发处理主要通过增加POD、CAT的活性和可溶性蛋白含量等途径来缓解盐胁迫对辣椒植株的伤害。

  • 图4 不同浓度GABA种子引发对盐胁迫下辣椒植株叶片SOD活性(A)、POD活性(B)、 CAT活性(C)、APX活性(D)和GR活性(E)的影响

  • Fig.4 Effects of different concentrations of GABA seed priming on activities of SOD (A) , POD (B) , CAT (C) , APX (D) and GR (E) in leaves of pepper plants under salt stress

  • 图5 不同浓度GABA种子引发对盐胁迫下辣椒植株叶片还原型抗坏血酸含量(A)、脱氢抗坏血酸含量(B)和AsA/DHA(C)的变化

  • Fig.5 Effects of different concentrations of GABA seed priming on contents of AsA (A) , DHA (B) and AsA/DHA (C) in leaves of pepper plants under salt stress

  • 图6 不同浓度GABA种子引发对盐胁迫下辣椒植株叶片叶绿素含量的影响

  • Fig.6 Effects of different concentrations of GABA seed priming on chlorophyl content in leaves of pepper plants under salt stress

  • 3 讨论与结论

  • 已有研究表明,种子引发处理可提高作物在生长发育期对盐胁迫的耐受性(Chen et al.,2021; Zafar et al.,2022; Adhikari et al.,2022)。在辣椒中,氯化钾、过氧化氢、5-氨基乙酰丙酸等被用于种子引发处理来提高生长发育期植株对干旱、盐碱或低温的耐受性(Korkmaz &Korkmaz,2009; Rinez et al.,2018; Gammoudi et al.,2020; Solichatun et al.,2022; )。GABA被认为是一种与植物逆境适应有关的新型植物生长调节物质(贾琰等,2014;张海龙等,2020)。GABA用于白三叶草(Trifolium repens)、黑胡椒(Piper nigrum)种子引发处理时,可提高其在水分或渗透胁迫下的生物量(Vijayakumari &Puthur,2016; Zhou et al.,2021)。将GABA添加到水培营养液中能促进盐胁迫下玉米幼苗的生长,提高株高和根、茎、叶的鲜重和干重(王泳超,2016);能促进盐胁迫下番茄(Lycopersicon esculentum)根、茎和叶的生长(罗黄颖等,2011)。GABA种子引发处理在辣椒上的应用尚未见报道。本研究表明不同浓度的GABA种子引发处理能有效地改善盐胁迫下辣椒植株的生长状况,增加株高以及根、茎、叶的鲜重和干重,以6.0 μmol·L-1 GABA(T6)种子引发处理的效果最好。

  • 表1 不同浓度GABA种子引发处理对盐胁迫下辣椒植株生理指标的灰色关联度分析

  • Table1 Grey correlation analysis of physiological indexes of pepper plants under salt stress primed with different GABA concentrations

  • 渗透胁迫是作物处于盐胁迫时的最直接反映,表现为作物吸水能力下降,叶片萎蔫。可溶性糖和可溶性蛋白既是植株生理活动的反映,也可与脯氨酸一起作为叶片的渗透调节物质(薛腾笑等,2018; Li et al.,2021)。在本研究中,所有GABA种子引发处理的叶片可溶性糖含量和可溶性蛋白质含量均显著高于未引发处理或蒸馏水引发处理,表明GABA种子引发处理提高了盐胁迫下辣椒植株的生理活动;T4和T6浓度种子引发处理的叶片脯氨酸含量高于未引发、蒸馏水引发和其他浓度的引发处理,但高浓度(T8)处理的叶片脯氨酸含量显著低于未引发或蒸馏水引发处理,这与根据生物量衡量出的最佳引发处理浓度一致,同时也表明,较高浓度的GABA种子引发处理可能对辣椒植株的生理代谢有不利影响。已有研究表明,GABA可直接作为渗透保护剂或通过提高渗透调节物质含量维持植株渗透势的稳定(白明月等,2022)。在培养基中添加0.5 g·L-1 GABA可以提高越橘(Vaccinium corymbosum)试管苗的可溶性糖、可溶性蛋白和游离脯氨酸的含量,进而缓解玻璃化现象的发生(张换换等,2021)。GABA种子引发处理可增加白三叶草(Trifolium repens)水胁迫下的可溶性糖、可溶性蛋白和脯氨酸的含量(Zhou et al.,2021)。叶面喷施GABA可促进盐碱胁迫下西伯利亚白刺(Nitraria sibirica)脯氨酸的积累,进而提高其对盐胁迫的耐受性(王贺,2021);GABA诱导匍匐翦股颖(Agrostis stolonifera)耐盐性提高的同时,促进了可溶性糖和多胺的积累(Li et al.,2020);但也有研究表明,GABA种子引发处理降低了水稻(Oryza sativa)逆境胁迫下的脯氨酸含量(Sheteiwy et al.,2019)。因此,GABA种子引发处理能提高辣椒植株渗透调节物质的含量,维持细胞的渗透调节平衡,从而降低盐胁迫对辣椒植株的影响。

  • 活性氧的积累是植物处于盐胁迫时的反应之一,对其的清除能力可反映作物对盐胁迫的耐受性(Abdel Latef et al.,2014)。在本研究中,GABA种子引发处理后,盐胁迫下辣椒植株叶片的O2-含量和MDA含量下降,说明植株的氧化胁迫程度轻、细胞膜完整;虽然叶片的H2O2含量增加,但SOD、POD、CAT和APX等抗氧化酶活性增强,对过氧化物和氧自由基进行了及时清除,减轻了氧化应激,提高了辣椒的耐盐性。李师翁等(2007)研究表明,H2O2可作为植物细胞的信号分子,参与系统获得抗性(SAR)和高度敏感抗性(HR)等诸多生理过程,因此,GABA种子引发处理后,可能通过促进H2O2的积累,激活了植物的抗氧化系统,进而提高了辣椒植株对盐胁迫的抗性。此外,GABA本身也具有清除ROS的能力(Deng et al.,2010; Liu et al.,2011)。外施GABA可以促进抗氧化酶相关基因的转录(Li et al.,2017; Zhang et al.,2022),提高水稻、黑胡椒和多年生黑麦草(Lolium perenne)中的SOD、POD、CAT、APX等酶活性(Krishnan et al.,2013; Nayyar et al.,2014; Vijayakumari &Puthur,2016)。GABA水稻种子引发处理可通过诱导逆境胁迫下的抗氧化酶活性及其基因的转录来控制氧自由基的水平(Sheteiwy et al.,2019)。

  • 作为末端氧化酶,抗坏血酸氧化酶可通过催化抗坏血酸氧化生成脱氢抗坏血酸的方式清除活性氧(李泽琴等,2013),同时AsA还可作为非酶抗氧化剂来清除氧自由基(Akashi et al.,2004)。在本研究中,GABA种子引发处理提高了APX酶活性和AsA含量,但其氧化产物(DHA)含量并未增加,说明植株耐盐性的提高可能与该途径无关或DHA下游途径参与了活性氧的清除。Li等(2016)研究表明,叶片喷施GABA可显著提高高温胁迫下匍匐翦股颖叶片中的AsA含量和AsA/DHA的比值。因此,GABA种子引发处理可能以类似的机制提高了辣椒植株盐胁迫下的氧自由基清除能力。

  • 逆境下植物光合能力的改变是反映植物对逆境耐受性的指标之一。非生物胁迫可影响植物的光合性能、叶绿素荧光参数和叶绿素含量(Brugnoli &Lauteri,1991; Garg et al.,2002)。在本研究中,GABA种子引发处理可影响盐胁迫下辣椒植株叶片的叶绿素含量,但仅T6浓度处理显著高于未引发和蒸馏水引发处理,而最高浓度处理(T8)则显著低于其他处理。与本研究结果类似,叶面喷施GABA可增加盐胁迫下西伯利亚白刺的叶绿素含量(王馨等,2019)。在叶绿素荧光参数方面,GABA种子引发处理的植株在盐胁迫下均不低于或优于未引发处理的植株,说明GABA种子引发处理能缓解盐胁迫对辣椒植株光合系统的损伤。有关GABA种子引发处理影响植物光合系统的报道还较少,但已有研究表明,在浇灌营养液中添加GABA可使盐胁迫下番茄幼苗的Fv/Fm、ETR、ΦPSⅡ和 qP增加(罗黄颖,2011);GABA引发蚕豆(Vicia faba)种子后,增加了盐胁迫下叶片的Fv/FmNPQ下降,缓解了盐胁迫对光合作用系统的不利影响(Shomali et al.,2021)。

  • 图7 不同浓度GABA种子引发对盐胁迫下辣椒植株叶片初始荧光(A)、光化学最大量子产量(B)、潜在最大量子产量(C)、稳态光化学淬灭(D)、稳态非光化学淬灭(E)、稳态光量子效率(F)和荧光衰减率(G)的影响

  • Fig.7 Effects of different concentrations of GABA seed priming on Fo (A) , Fv/Fm (B) , Fv′/Fm′ (C) , qP_Lss (D) , NPQ_Lss (E) , QY_Lss (F) and Rfd (G) in leaves of pepper plant under salt stress

  • 盐胁迫会引起植株Na+的积累和Na+/K+的比例失衡(Flowers &Colmer,2015),植物可通过Na+的选择性吸收或外排来提高耐盐性(Niu et al.,2018)。本研究表明,盐胁迫下,K+在辣椒植株的叶片中积累最多,其次是茎,根中的K+积累较少,这与正常生长环境中的辣椒植株钾积累状况类似(伍国强等,2019)。GABA种子引发处理后,根和茎中K+含量有所下降,但对叶中K+含量无显著影响;对根和茎中Na+含量无显著影响,仅高浓度处理(T8)的叶Na+含量显著高于未引发处理。Wu等(2020)研究表明,营养液中添加GABA能降低番茄植株Na+通量和含量,GABA种子引发处理能促进白三叶幼苗Na+/K+的转运和Na+/K+的积累(Cheng et al.,2018),但本研究结果表明,GABA种子引发处理提高辣椒植株的耐盐性可能与Na+/K+的选择性吸收或转运无关。

  • 图8 不同浓度GABA种子引发对盐胁迫下辣椒植株K+含量(A)、Na+含量(B)和K+/Na+比值(C)的变化

  • Fig.8 Effects of different concentrations of GABA seed priming on K+ content (A) , Na+ content (B) and K+/Na+ ratio (C) in pepper plants under salt stress

  • 灰色关联法作为综合评价方法被广泛用于作物抗性研究(高安静等,2021)。由于 GABA对植物的生理活动影响比较复杂,本研究根据灰色关联度法对GABA种子引发处理影响辣椒植株耐盐性的机制进行了分析,发现GABA引发处理主要通过提高抗氧化酶POD、CAT的活性和渗透调节物质含量等途径来减缓盐胁迫的伤害。

  • 综上所述,6.0 μmol·L-1 GABA种子引发处理可有效促进辣椒植株在盐胁迫下的生长,可作为生产用种子处理方法。GABA种子引发处理提高辣椒植株耐盐性的作用机制可能包括:促进植株的生理代谢,提高可溶性糖、可溶性蛋白及渗透调节物质脯氨酸的含量,增强植株的抗氧化能力,降低活性氧水平和膜脂过氧化损伤,维持光合作用系统的正常运行。

  • 参考文献

    • ABDEL LATEF AAH, HE CX, 2014. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? [J]. J Plant Growth Regul, 33(3): 644-653.

    • ABDEL LATEF AAH, MOSTOFA MG, RAHMAN M, et al. , 2019. Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants [J]. J Plant Growth Regul, 38(3): 966-979.

    • ADHIKARI B, OLORUNWA OJ, BARICKMAN TC, 2022. Seed priming enhances seed germination and morphological traits of Lactuca sativa L. under salt stress [J]. Seed, 1(2): 74-86.

    • AFZAL I, RAUF S, BASRA S, et al. , 2008. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress [J]. Plant Soil Environ, 54(9): 382-388.

    • AKASHI K, NISHIMURA N, ISHIDA Y, et al. , 2004. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon [J]. Biochem Biophys Res Commun, 323(1): 72-78.

    • BAI MY, LÜ SS, XIA XY, 2022. Effects of γ-aminobutyric acid on the growth and related physiological characteristics of Vaccinium plantlets in vitro [J]. Plant Physiol J, 58(3): 577-586. [白明月, 吕爽爽, 夏秀英, 2022. γ-氨基丁酸对越橘试管苗生长及相关生理代谢的影响 [J]. 植物生理学报, 58(3): 577-586. ]

    • BAO SD, 2000. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agricultural Press. [鲍士旦, 2000. 土壤农化分析 [M]. 第三版. 北京: 中国农业出版社. ]

    • BHANUPRAKASH K, YOGEESHA HS, 2016. Seed priming for abiotic stress tolerance: an overview [J]. Abiotic Stress Physiol Hortic Crops: 103-117. DOI: 10. 1007/978-81-322-2725-0_6.

    • BRADFORD MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 72(1/2): 248-254.

    • BRUGNOLI E, LAUTERI M, 1991. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L. ) and salt-sensitive (Phaseolus vulgaris L. ) C3 non-halophytes [J]. Plant Physiol, 95(2): 628-635.

    • CHEN XF, ZHANG RD, XING YF, et al. , 2021. The efficacy of different seed priming agents for promoting sorghum germination under salt stress [J]. PLoS ONE, 16(1): e0245505.

    • CHENG BZ, LI Z, LIANG LL, et al. , 2018. The γ-aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation, dehydrins accumulation, and stress-related genes expression in white clover [J]. Int J Mol Sci, 19(9): 2520.

    • CUARTERO J, BOLARIN MC, ASINS MJ, et al. , 2006. Increasing salt tolerance in the tomato [J]. J Exp Bot, 57(5): 1045-1058.

    • DENG Y, XU LJ, ZENG X, et al. , 2010. New perspective of GABA as an inhibitor of formation of advanced lipoxidation end-products: it’s interaction with malondiadehyde [J]. J Biomed Nanotechnol, 6(4): 318-324.

    • ELBADRI AM, BATOOL M, WANG CY, et al. , 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress [J]. Ecotoxicol Environ Saf, 225: 112695.

    • FLOWERS TJ, COLMER TD, 2015. Plant salt tolerance: adaptations in halophytes [J]. Ann Bot, 115(3): 327-331.

    • GAMMOUDI N, KARMOUS I, ZERRIA K, et al. , 2020. Efficiency of pepper seed invigoration through hydrogen peroxide priming to improve in vitro salt and drought stress tolerance [J]. Hortic Environ Biotechnol, 61(4): 703-714.

    • GAO AJ, LIU TT, ZHOU ML, et al. , 2021. Effects of exogenous melatonin on growth and physiological characteristics of tartary buckwheat seedlings under drought stress [J]. J S Agric, 52(11): 3003-3012. [高安静, 刘婷婷, 周美亮, 等, 2021. 外源褪黑素对干旱胁迫下苦荞幼苗生长及生理特性的影响 [J]. 南方农业学报, 52(11): 3003-3012. ]

    • GARG AK, KIM JK, OWENS TG, et al. , 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J]. Proc Natl Acad Sci USA, 99(25): 15898-15903.

    • HU HR, DU L, ZHANG RH, et al. , 2022. Research progress in the adaptation of hot pepper(Capsicum annuum L. )to abiotic stress [J]. Biotechnol Bull, 38(12): 1-15. [胡华冉, 杜磊, 张芮豪, 等, 2022. 辣椒适应非生物胁迫的研究进展 [J]. 生物技术通报, 38(12): 1-15. ]

    • JIA Y, ZHAO HW, WANG JG, et al. , 2014. Research progress on γ-aminobulyric acid metabolism and function of crops under stress [J]. Crops, (5): 9-15. [贾琰, 赵宏伟, 王敬国, 等, 2014. 逆境胁迫下作物中γ-氨基丁酸代谢及作用的研究进展 [J]. 作物杂志, (5): 9-15. ]

    • KASPAL M, KANAPADDALAGAMAGE MH, RAMESH SA, 2021. Emerging roles of γ-aminobutyric acid (GABA) gated channels in plant stress tolerance [J]. Plants, 10(10): 2178.

    • KORKMAZ A, KORKMAZ Y, 2009. Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress [J]. Sci Hortic, 119(2): 98-102.

    • KRISHNAN S, LASKOWSKI K, SHUKLA V, et al. , 2013. Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass [J]. J Am Soc Hortic Sci, 138(5): 358-366.

    • LI HY, TANG XQ, YANG XY, et al. , 2021. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress [J]. Sci Rep, 11(1): 1-19.

    • LI HS, 2012. Modern plant physiology [M]. 3rd ed. Beijing: Higher Education Press. [李合生, 2012. 现代植物生理学 [M]. 第3版. 北京: 高等教育出版社. ]

    • LI J, XU JG, LIN C, et al. , 2016. Effect of priming on germination and physiological characteristics of different types of corn seeds under low-temperature stress [J]. Plant Physiol J, 52(2): 157-166. [李洁, 徐军桂, 林程, 等, 2016. 引发对低温胁迫下不同类型玉米种子萌发及幼苗生理特性的影响 [J]. 植物生理学报, 52(2): 157-166. ]

    • LI MF, GUO SJ, YANG XH, et al. , 2016. Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes [J]. Biol Plant, 60(1): 123-131.

    • LI SW, XUE LG, FENG HY, et al. , 2007. Hydrogen peroxide signaling and its biological importance in plants [J]. Chin J Biochem Mol Biol, 23(10): 804-810. [李师翁, 薛林贵, 冯虎元, 等, 2007. 植物中的H2O2信号及其功能 [J]. 中国生物化学与分子生物学报, 23(10): 804-810. ]

    • LI YF, FAN Y, MA Y, et al. , 2017. Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L. ) seedlings under low light stress [J]. Plant Growth Regul, 36: 1-14.

    • LI Z, YU JJ, PENG Y, et al. , 2016. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera) [J]. Sci Rep, 6(1): 1-16.

    • LI Z, CHENG BZ, PENG Y, et al. , 2020. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass [J]. Plant Physiol Biochem, 157: 185-194.

    • LI ZQ, LI JX, ZHANG GF, 2013. Expression regulation of plant ascorbate peroxidase and its tolerance to abiotic stresses [J]. Hereditas, 35(1): 45-54. [李泽琴, 李静晓, 张根发, 2013. 植物抗坏血酸过氧化物酶的表达调控以及对非生物胁迫的耐受作用 [J]. 遗传, 35(1): 45-54. ]

    • LIU CL, ZHAO L, YU GH, 2011. The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity [J]. J Integr Plant Biol, 53(8): 608-618.

    • LUO HY, 2011. Effects of three kinds of exogenous substances on reactive oxygen species metabolism and chlorophy II fluorescence in tomato seedlings under NaCl stress [D]. Baoding: Agricultural University of Hebei. [罗黄颖, 2011. 三种外源物质对盐胁迫下番茄活性氧代谢及叶绿素荧光的影响 [D]. 保定: 河北农业大学. ]

    • LUO HY, GAO HB, XIA QP, et al. , 2011. Effects of exogenous GABA on reactive oxygen species metabolism and chlorophyll fluorescence parameters in tomato under NaCl stress [J]. Sci Agric Sin, 44(4): 753-761. [罗黄颖, 高洪波, 夏庆平, 等, 2011. γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响 [J]. 中国农业科学, 44(4): 753-761. ]

    • MARGARETE B, ANDRAS B, ANDREAS P, et al. , 2019. Preparing plants for improved cold tolerance by priming [J]. Plant Cell Environ, 42(3): 782-800.

    • MIGAHID MM, ELGHOBASHY RM, BIDAK LM, et al. , 2019. Priming of Silybum marianum (L. ) Gaertn seeds with H2O2 and magnetic field ameliorates seawater stress [J]. Heliyon, 5(6): e01886.

    • NAKANO Y, ASADA K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 22(5): 867-880.

    • NAYYAR H, KAUR R, KAUR S, et al. , 2014. γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants [J]. J Plant Growth Regul, 33(2): 408-419.

    • NETO ADDA, PRISCO JT, ENAS-FILHO J, et al. , 2005. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes [J]. Environ Exp Bot, 56(1): 87-94.

    • NIU ML, HUANG Y, SUN ST, et al. , 2018. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure [J]. J Exp Bot, 69(14): 3465-3476.

    • NOUMAN W, BASRA SMA, YASMEEN A, et al. , 2014. Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions [J]. Plant Growth Regul, 73(3): 267-278.

    • RAMESH SA, TYERMAN SD, GILLIHAM M, et al. , 2017. γ-aminobutyric acid (GABA) signalling in plants [J]. Cell Mol Life Sci, 74(9): 1577-1603.

    • RINEZ I, GHEZAL N, RINEZ A, et al. , 2018. Improving salt tolerance in pepper by bio-priming with Padina pavonica and Jania rubens aqueous extracts [J]. Int J Agric Biol, 20(3): 513-523.

    • SHABALA L, ZHANG JY, POTTOSIN I, et al. , 2016. Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress [J]. Plant Physiol, 172(4): 2445-2458.

    • SHETEIWY MS, SHAO H, QI W, et al. , 2019. GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice [J]. Int J Mol Sci, 20(22): 5709.

    • SHOMALI A, ALINIAEIFARD S, DIDARAN F, et al. , 2021. Synergistic effects of melatonin and gamma-aminobutyric acid on protection of photosynthesis system in response to multiple abiotic stressors [J]. Cells, 10(7): 1631.

    • SOLICHATUN S, PUTRI TA, MUDYANTINI W, et al. , 2022. Effect of seed priming using KCl on the growth and proline accumulation of paprika (Capsicum annuum) growing at different water availability [J]. Asian J Trop Biotechnol, 19(1): 1-6.

    • VIJAYAKUMARI K, PUTHUR JT, 2016. γ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress [J]. Plant Growth Regul, 78(1): 57-67.

    • WAKIYAMA Y, 2016. The relationship between SPAD values and leaf blade chlorophyll content throughout the rice development cycle [J]. Jpn Agric Res Q JARQ, 50: 329-334.

    • WANG CY, FAN LQ, GAO HB, et al. , 2014. Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots [J]. Plant Physiol Biochem, 82: 17-26.

    • WANG H, 2021. Regulatory effects of exogenous GABA on polyamines and proline metabolisms, and GABA shunt in Nitraria sibirica Pall. under salt stress [D]. Harbin: Northeast Agricultural University. [王贺, 2021. 外源GABA对盐胁迫下西伯利亚白刺多胺、脯氨酸代谢和GABA支路的调控作用 [D]. 哈尔滨: 东北农业大学. ]

    • WANG X, YAN YQ, YIN Y, et al. , 2019. Effect of exogenous γ-aminobutyric acid (GABA) on photosynthetic characteristics of Nitraria sibirica Pall under salt stress [J]. Jiangsu J Agric Sci, 35(5): 1032-1039. [王馨, 闫永庆, 殷媛, 等, 2019. 外源γ-氨基丁酸(GABA)对盐胁迫下西伯利亚白刺光合特性的影响 [J]. 江苏农业学报, 35(5): 1032-1039. ]

    • WANG YC, 2016. Mechanism of aminobutyric acid (GABA) regulating maize seed germination and seeding growth under salt stress [D]. Harbin: Northeast Agricultural University. [王泳超, 2016. γ-氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制 [D]. 哈尔滨: 东北农业大学. ]

    • WU GQ, LI H, LEI CR, et al. , 2019. Effects of additional KCl on growth and physiological characteristics of sainfoin (Onobrychis viciaefoia) under high salt stress [J]. Acta Pratac Sin, 28(6): 45-55. [伍国强, 李辉, 雷彩荣, 等, 2019. 添加KCl对高盐胁迫下红豆草生长及生理特性的影响 [J]. 草业学报, 28(6): 45-55. ]

    • WU LY, LI M, YAO DW, 2017. Effects of seed priming on seed germination and emergence of pepper and eggplant at different temperature [J]. Acta Agric Shanghai, 33(3): 37-40. [吴凌云, 李明, 姚东伟, 2017. 种子引发对辣椒和茄子种子在不同温度下萌发和出苗的影响 [J]. 上海农业学报, 33(3): 37-40. ]

    • WU XL, JIA QY, JI SX, et al. , 2020. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism [J]. BMC Plant Biol, 20(1): 1-21.

    • XUE TX, REN ZB, REN SF, 2018. Impacts of NaCl stress on physiological characteristics of Forsythia intermedia [J]. Jiangsu Agric Sci, 46(11): 104-108. [薛腾笑, 任子蓓, 任士福, 2018. NaCl胁迫对美国金钟连翘生理特性的影响 [J]. 江苏农业科学, 46(11): 104-108. ]

    • YANG JS, YAO RJ, WANG XP, et al. , 2022. Research on salt-affected soils in China: history, status quo and prospect [J]. Acta Pedol Sin, 59(1): 10-27. [杨劲松, 姚荣江, 王相平, 等, 2022. 中国盐渍土研究: 历程、现状与展望 [J]. 土壤学报, 59(1): 10-27. ]

    • YANG YL, LÜ LR, LI J, et al. , 2018. Comparison of ascorbic acid-glutathione cycle in two wheat seedlings under salt stress [J]. J N Norm Univ (Nat Sci Ed), 54 (3): 65-70. [杨颖丽, 吕丽荣, 李晶, 等, 2018. 盐胁迫下2种小麦幼苗抗坏血酸-谷胱甘肽循环的比较 [J]. 西北师范大学学报(自然科学版), 54(3): 65-70. ]

    • ZAFAR S, PERVEEN S, KAMRAN KHAN M, et al. , 2022. Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L. ) under salt stress [J]. PLoS ONE, 17(2): e0263194.

    • ZHANG HH, BAI MY, XIA XY, 2021. Effect of γ-aminobutyric acid on growth and physiological metabolism of Vaccinium corymbosum plantlets in vitro under hyperhydricity stress [J]. Plant Physiol J, 57 (3): 623-631. [张换换, 白明月, 夏秀英, 2021. γ-氨基丁酸对玻璃化胁迫下越橘试管苗生长与生理代谢的影响 [J]. 植物生理学报, 57(3): 623-631. ]

    • ZHANG HL, CHEN YY, YANG LX, et al. , 2020. Regulation of γ-aminobutyric acid on plant growth and development and stress resistance [J]. Plant Physiol J, 56(4): 600-612. [张海龙, 陈迎迎, 杨立新, 等, 2020. γ-氨基丁酸对植物生长发育和抗逆性的调节作用 [J]. 植物生理学报, 56(4): 600-612. ]

    • ZHANG MR, LIU ZY, FAN YT, et al. , 2022. Characterization of GABA-transaminase gene from mulberry (Morus multicaulis) and its role in salt stress tolerance [J]. Genes, 13(3): 501.

    • ZHOU M, HASSAN MJ, PENG Y, et al. , 2021. γ-aminobutyric acid (GABA) priming improves seed germination and seedling stress tolerance associated with enhanced antioxidant metabolism, DREB expression, and dehydrin accumulation in white clover under water stress [J]. Front Plant Sci, 12: 776939.

    • ZOU XX, MA YQ, DAI XZ, et al. , 2020. Spread and industry development of pepper in China [J]. Acta Hortic Sin, 47(9): 1715-1726. [邹学校, 马艳青, 戴雄泽, 等, 2020. 辣椒在中国的传播与产业发展 [J]. 园艺学报, 47(9): 1715-1726. ]

  • 参考文献

    • ABDEL LATEF AAH, HE CX, 2014. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? [J]. J Plant Growth Regul, 33(3): 644-653.

    • ABDEL LATEF AAH, MOSTOFA MG, RAHMAN M, et al. , 2019. Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants [J]. J Plant Growth Regul, 38(3): 966-979.

    • ADHIKARI B, OLORUNWA OJ, BARICKMAN TC, 2022. Seed priming enhances seed germination and morphological traits of Lactuca sativa L. under salt stress [J]. Seed, 1(2): 74-86.

    • AFZAL I, RAUF S, BASRA S, et al. , 2008. Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress [J]. Plant Soil Environ, 54(9): 382-388.

    • AKASHI K, NISHIMURA N, ISHIDA Y, et al. , 2004. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon [J]. Biochem Biophys Res Commun, 323(1): 72-78.

    • BAI MY, LÜ SS, XIA XY, 2022. Effects of γ-aminobutyric acid on the growth and related physiological characteristics of Vaccinium plantlets in vitro [J]. Plant Physiol J, 58(3): 577-586. [白明月, 吕爽爽, 夏秀英, 2022. γ-氨基丁酸对越橘试管苗生长及相关生理代谢的影响 [J]. 植物生理学报, 58(3): 577-586. ]

    • BAO SD, 2000. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agricultural Press. [鲍士旦, 2000. 土壤农化分析 [M]. 第三版. 北京: 中国农业出版社. ]

    • BHANUPRAKASH K, YOGEESHA HS, 2016. Seed priming for abiotic stress tolerance: an overview [J]. Abiotic Stress Physiol Hortic Crops: 103-117. DOI: 10. 1007/978-81-322-2725-0_6.

    • BRADFORD MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 72(1/2): 248-254.

    • BRUGNOLI E, LAUTERI M, 1991. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L. ) and salt-sensitive (Phaseolus vulgaris L. ) C3 non-halophytes [J]. Plant Physiol, 95(2): 628-635.

    • CHEN XF, ZHANG RD, XING YF, et al. , 2021. The efficacy of different seed priming agents for promoting sorghum germination under salt stress [J]. PLoS ONE, 16(1): e0245505.

    • CHENG BZ, LI Z, LIANG LL, et al. , 2018. The γ-aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation, dehydrins accumulation, and stress-related genes expression in white clover [J]. Int J Mol Sci, 19(9): 2520.

    • CUARTERO J, BOLARIN MC, ASINS MJ, et al. , 2006. Increasing salt tolerance in the tomato [J]. J Exp Bot, 57(5): 1045-1058.

    • DENG Y, XU LJ, ZENG X, et al. , 2010. New perspective of GABA as an inhibitor of formation of advanced lipoxidation end-products: it’s interaction with malondiadehyde [J]. J Biomed Nanotechnol, 6(4): 318-324.

    • ELBADRI AM, BATOOL M, WANG CY, et al. , 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress [J]. Ecotoxicol Environ Saf, 225: 112695.

    • FLOWERS TJ, COLMER TD, 2015. Plant salt tolerance: adaptations in halophytes [J]. Ann Bot, 115(3): 327-331.

    • GAMMOUDI N, KARMOUS I, ZERRIA K, et al. , 2020. Efficiency of pepper seed invigoration through hydrogen peroxide priming to improve in vitro salt and drought stress tolerance [J]. Hortic Environ Biotechnol, 61(4): 703-714.

    • GAO AJ, LIU TT, ZHOU ML, et al. , 2021. Effects of exogenous melatonin on growth and physiological characteristics of tartary buckwheat seedlings under drought stress [J]. J S Agric, 52(11): 3003-3012. [高安静, 刘婷婷, 周美亮, 等, 2021. 外源褪黑素对干旱胁迫下苦荞幼苗生长及生理特性的影响 [J]. 南方农业学报, 52(11): 3003-3012. ]

    • GARG AK, KIM JK, OWENS TG, et al. , 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J]. Proc Natl Acad Sci USA, 99(25): 15898-15903.

    • HU HR, DU L, ZHANG RH, et al. , 2022. Research progress in the adaptation of hot pepper(Capsicum annuum L. )to abiotic stress [J]. Biotechnol Bull, 38(12): 1-15. [胡华冉, 杜磊, 张芮豪, 等, 2022. 辣椒适应非生物胁迫的研究进展 [J]. 生物技术通报, 38(12): 1-15. ]

    • JIA Y, ZHAO HW, WANG JG, et al. , 2014. Research progress on γ-aminobulyric acid metabolism and function of crops under stress [J]. Crops, (5): 9-15. [贾琰, 赵宏伟, 王敬国, 等, 2014. 逆境胁迫下作物中γ-氨基丁酸代谢及作用的研究进展 [J]. 作物杂志, (5): 9-15. ]

    • KASPAL M, KANAPADDALAGAMAGE MH, RAMESH SA, 2021. Emerging roles of γ-aminobutyric acid (GABA) gated channels in plant stress tolerance [J]. Plants, 10(10): 2178.

    • KORKMAZ A, KORKMAZ Y, 2009. Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress [J]. Sci Hortic, 119(2): 98-102.

    • KRISHNAN S, LASKOWSKI K, SHUKLA V, et al. , 2013. Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass [J]. J Am Soc Hortic Sci, 138(5): 358-366.

    • LI HY, TANG XQ, YANG XY, et al. , 2021. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress [J]. Sci Rep, 11(1): 1-19.

    • LI HS, 2012. Modern plant physiology [M]. 3rd ed. Beijing: Higher Education Press. [李合生, 2012. 现代植物生理学 [M]. 第3版. 北京: 高等教育出版社. ]

    • LI J, XU JG, LIN C, et al. , 2016. Effect of priming on germination and physiological characteristics of different types of corn seeds under low-temperature stress [J]. Plant Physiol J, 52(2): 157-166. [李洁, 徐军桂, 林程, 等, 2016. 引发对低温胁迫下不同类型玉米种子萌发及幼苗生理特性的影响 [J]. 植物生理学报, 52(2): 157-166. ]

    • LI MF, GUO SJ, YANG XH, et al. , 2016. Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes [J]. Biol Plant, 60(1): 123-131.

    • LI SW, XUE LG, FENG HY, et al. , 2007. Hydrogen peroxide signaling and its biological importance in plants [J]. Chin J Biochem Mol Biol, 23(10): 804-810. [李师翁, 薛林贵, 冯虎元, 等, 2007. 植物中的H2O2信号及其功能 [J]. 中国生物化学与分子生物学报, 23(10): 804-810. ]

    • LI YF, FAN Y, MA Y, et al. , 2017. Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L. ) seedlings under low light stress [J]. Plant Growth Regul, 36: 1-14.

    • LI Z, YU JJ, PENG Y, et al. , 2016. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera) [J]. Sci Rep, 6(1): 1-16.

    • LI Z, CHENG BZ, PENG Y, et al. , 2020. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass [J]. Plant Physiol Biochem, 157: 185-194.

    • LI ZQ, LI JX, ZHANG GF, 2013. Expression regulation of plant ascorbate peroxidase and its tolerance to abiotic stresses [J]. Hereditas, 35(1): 45-54. [李泽琴, 李静晓, 张根发, 2013. 植物抗坏血酸过氧化物酶的表达调控以及对非生物胁迫的耐受作用 [J]. 遗传, 35(1): 45-54. ]

    • LIU CL, ZHAO L, YU GH, 2011. The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity [J]. J Integr Plant Biol, 53(8): 608-618.

    • LUO HY, 2011. Effects of three kinds of exogenous substances on reactive oxygen species metabolism and chlorophy II fluorescence in tomato seedlings under NaCl stress [D]. Baoding: Agricultural University of Hebei. [罗黄颖, 2011. 三种外源物质对盐胁迫下番茄活性氧代谢及叶绿素荧光的影响 [D]. 保定: 河北农业大学. ]

    • LUO HY, GAO HB, XIA QP, et al. , 2011. Effects of exogenous GABA on reactive oxygen species metabolism and chlorophyll fluorescence parameters in tomato under NaCl stress [J]. Sci Agric Sin, 44(4): 753-761. [罗黄颖, 高洪波, 夏庆平, 等, 2011. γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响 [J]. 中国农业科学, 44(4): 753-761. ]

    • MARGARETE B, ANDRAS B, ANDREAS P, et al. , 2019. Preparing plants for improved cold tolerance by priming [J]. Plant Cell Environ, 42(3): 782-800.

    • MIGAHID MM, ELGHOBASHY RM, BIDAK LM, et al. , 2019. Priming of Silybum marianum (L. ) Gaertn seeds with H2O2 and magnetic field ameliorates seawater stress [J]. Heliyon, 5(6): e01886.

    • NAKANO Y, ASADA K, 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol, 22(5): 867-880.

    • NAYYAR H, KAUR R, KAUR S, et al. , 2014. γ-aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants [J]. J Plant Growth Regul, 33(2): 408-419.

    • NETO ADDA, PRISCO JT, ENAS-FILHO J, et al. , 2005. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes [J]. Environ Exp Bot, 56(1): 87-94.

    • NIU ML, HUANG Y, SUN ST, et al. , 2018. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure [J]. J Exp Bot, 69(14): 3465-3476.

    • NOUMAN W, BASRA SMA, YASMEEN A, et al. , 2014. Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions [J]. Plant Growth Regul, 73(3): 267-278.

    • RAMESH SA, TYERMAN SD, GILLIHAM M, et al. , 2017. γ-aminobutyric acid (GABA) signalling in plants [J]. Cell Mol Life Sci, 74(9): 1577-1603.

    • RINEZ I, GHEZAL N, RINEZ A, et al. , 2018. Improving salt tolerance in pepper by bio-priming with Padina pavonica and Jania rubens aqueous extracts [J]. Int J Agric Biol, 20(3): 513-523.

    • SHABALA L, ZHANG JY, POTTOSIN I, et al. , 2016. Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress [J]. Plant Physiol, 172(4): 2445-2458.

    • SHETEIWY MS, SHAO H, QI W, et al. , 2019. GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice [J]. Int J Mol Sci, 20(22): 5709.

    • SHOMALI A, ALINIAEIFARD S, DIDARAN F, et al. , 2021. Synergistic effects of melatonin and gamma-aminobutyric acid on protection of photosynthesis system in response to multiple abiotic stressors [J]. Cells, 10(7): 1631.

    • SOLICHATUN S, PUTRI TA, MUDYANTINI W, et al. , 2022. Effect of seed priming using KCl on the growth and proline accumulation of paprika (Capsicum annuum) growing at different water availability [J]. Asian J Trop Biotechnol, 19(1): 1-6.

    • VIJAYAKUMARI K, PUTHUR JT, 2016. γ-aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress [J]. Plant Growth Regul, 78(1): 57-67.

    • WAKIYAMA Y, 2016. The relationship between SPAD values and leaf blade chlorophyll content throughout the rice development cycle [J]. Jpn Agric Res Q JARQ, 50: 329-334.

    • WANG CY, FAN LQ, GAO HB, et al. , 2014. Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots [J]. Plant Physiol Biochem, 82: 17-26.

    • WANG H, 2021. Regulatory effects of exogenous GABA on polyamines and proline metabolisms, and GABA shunt in Nitraria sibirica Pall. under salt stress [D]. Harbin: Northeast Agricultural University. [王贺, 2021. 外源GABA对盐胁迫下西伯利亚白刺多胺、脯氨酸代谢和GABA支路的调控作用 [D]. 哈尔滨: 东北农业大学. ]

    • WANG X, YAN YQ, YIN Y, et al. , 2019. Effect of exogenous γ-aminobutyric acid (GABA) on photosynthetic characteristics of Nitraria sibirica Pall under salt stress [J]. Jiangsu J Agric Sci, 35(5): 1032-1039. [王馨, 闫永庆, 殷媛, 等, 2019. 外源γ-氨基丁酸(GABA)对盐胁迫下西伯利亚白刺光合特性的影响 [J]. 江苏农业学报, 35(5): 1032-1039. ]

    • WANG YC, 2016. Mechanism of aminobutyric acid (GABA) regulating maize seed germination and seeding growth under salt stress [D]. Harbin: Northeast Agricultural University. [王泳超, 2016. γ-氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制 [D]. 哈尔滨: 东北农业大学. ]

    • WU GQ, LI H, LEI CR, et al. , 2019. Effects of additional KCl on growth and physiological characteristics of sainfoin (Onobrychis viciaefoia) under high salt stress [J]. Acta Pratac Sin, 28(6): 45-55. [伍国强, 李辉, 雷彩荣, 等, 2019. 添加KCl对高盐胁迫下红豆草生长及生理特性的影响 [J]. 草业学报, 28(6): 45-55. ]

    • WU LY, LI M, YAO DW, 2017. Effects of seed priming on seed germination and emergence of pepper and eggplant at different temperature [J]. Acta Agric Shanghai, 33(3): 37-40. [吴凌云, 李明, 姚东伟, 2017. 种子引发对辣椒和茄子种子在不同温度下萌发和出苗的影响 [J]. 上海农业学报, 33(3): 37-40. ]

    • WU XL, JIA QY, JI SX, et al. , 2020. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism [J]. BMC Plant Biol, 20(1): 1-21.

    • XUE TX, REN ZB, REN SF, 2018. Impacts of NaCl stress on physiological characteristics of Forsythia intermedia [J]. Jiangsu Agric Sci, 46(11): 104-108. [薛腾笑, 任子蓓, 任士福, 2018. NaCl胁迫对美国金钟连翘生理特性的影响 [J]. 江苏农业科学, 46(11): 104-108. ]

    • YANG JS, YAO RJ, WANG XP, et al. , 2022. Research on salt-affected soils in China: history, status quo and prospect [J]. Acta Pedol Sin, 59(1): 10-27. [杨劲松, 姚荣江, 王相平, 等, 2022. 中国盐渍土研究: 历程、现状与展望 [J]. 土壤学报, 59(1): 10-27. ]

    • YANG YL, LÜ LR, LI J, et al. , 2018. Comparison of ascorbic acid-glutathione cycle in two wheat seedlings under salt stress [J]. J N Norm Univ (Nat Sci Ed), 54 (3): 65-70. [杨颖丽, 吕丽荣, 李晶, 等, 2018. 盐胁迫下2种小麦幼苗抗坏血酸-谷胱甘肽循环的比较 [J]. 西北师范大学学报(自然科学版), 54(3): 65-70. ]

    • ZAFAR S, PERVEEN S, KAMRAN KHAN M, et al. , 2022. Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L. ) under salt stress [J]. PLoS ONE, 17(2): e0263194.

    • ZHANG HH, BAI MY, XIA XY, 2021. Effect of γ-aminobutyric acid on growth and physiological metabolism of Vaccinium corymbosum plantlets in vitro under hyperhydricity stress [J]. Plant Physiol J, 57 (3): 623-631. [张换换, 白明月, 夏秀英, 2021. γ-氨基丁酸对玻璃化胁迫下越橘试管苗生长与生理代谢的影响 [J]. 植物生理学报, 57(3): 623-631. ]

    • ZHANG HL, CHEN YY, YANG LX, et al. , 2020. Regulation of γ-aminobutyric acid on plant growth and development and stress resistance [J]. Plant Physiol J, 56(4): 600-612. [张海龙, 陈迎迎, 杨立新, 等, 2020. γ-氨基丁酸对植物生长发育和抗逆性的调节作用 [J]. 植物生理学报, 56(4): 600-612. ]

    • ZHANG MR, LIU ZY, FAN YT, et al. , 2022. Characterization of GABA-transaminase gene from mulberry (Morus multicaulis) and its role in salt stress tolerance [J]. Genes, 13(3): 501.

    • ZHOU M, HASSAN MJ, PENG Y, et al. , 2021. γ-aminobutyric acid (GABA) priming improves seed germination and seedling stress tolerance associated with enhanced antioxidant metabolism, DREB expression, and dehydrin accumulation in white clover under water stress [J]. Front Plant Sci, 12: 776939.

    • ZOU XX, MA YQ, DAI XZ, et al. , 2020. Spread and industry development of pepper in China [J]. Acta Hortic Sin, 47(9): 1715-1726. [邹学校, 马艳青, 戴雄泽, 等, 2020. 辣椒在中国的传播与产业发展 [J]. 园艺学报, 47(9): 1715-1726. ]