en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

林毅喆(1999—),硕士研究生,主要从事生物多样性研究,(E-mail)linyizhe_0220@163.com。

通讯作者:

陈世品,博士,教授,主要从事植物分类学研究,(E-mail)fjcsp@126.com。

中图分类号:Q944

文献标识码:A

文章编号:1000-3142(2024)03-0488-13

DOI:10.11931/guihaia.gxzw202211057

参考文献
ARENA ET, RUEDEN CT, HINER MC, et al. , 2017. Quantitating the cell: turning images into numbers with ImageJ [J]. Wiley Interdiscip Rev Dev Biol, 6(2): e260.
参考文献
ASHLEY MV, 2021. Answers blowing in the wind: A quarter century of genetic studies of pollination in oaks [J]. Forests, 12(5): 575.
参考文献
BARBARÁ T, LEXER C, MARTINELLI G, et al. , 2008. Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A-geniculata, A-glaziouana and A-regina (Bromeliaceae) [J]. Heredity (Edinb), 101(3): 285-296.
参考文献
BARBARÁ T, MARTINELLI G, FAY MF, et al. , 2007. Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae) [J]. Mol Ecol, 16(10): 1981-1992.
参考文献
BYRNE M, KRAUSS SL, MILLAR MA, et al. , 2019. Persistence and stochasticity are key determinants of genetic diversity in plants associated with banded iron formation inselbergs [J]. Biol Rev Camb Philos Soc, 94(3): 753-772.
参考文献
CHEN YX, CUI ZJ, YANG JQ, 2009. Influence of climate and tectonic movements on granite landforms in China [J]. J Geogr Sci, 19(5): 587-599.
参考文献
CHEN DM, KANG HZ, LIU CJ, 2011. An overview on the potential Quaternary glacial refugia of plants in China mainland [J]. Bull Bot Res, 31(5): 623-632. [陈冬梅, 康宏樟, 刘春江, 2011. 中国大陆第四纪冰期潜在植物避难所研究进展 [J]. 植物研究, 31(5): 623-632. ]
参考文献
CONCEIÇÃO AA, PIRANI JR, MEIRELLES ST, 2007. Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil [J]. Rev Bras Bot, 30(4): 641-656.
参考文献
CUI ZJ, YANG JQ, CHEN YX, 2007. The type and evolution of the granite landforms in China [J]. Acta Geograph Sin, 62(7): 675-690. [崔之久, 杨建强, 陈艺鑫, 2007. 中国花岗岩地貌的类型特征与演化 [J]. 地理学报, 62(7): 675-690. ]
参考文献
DENG M, JIANG XL, SONG YG, et al. , 2017. Leaf epidermal features of Quercus Group Ilex (Fagaceae) and their application to species identification [J]. Rev Palaeobot Palynol, 237: 10-36.
参考文献
DUAN H, TONG H, LIU YQ, et al. , 2019. Research advances in the effect of heat and drought on rice and its mechanism [J]. Chin J Rice Sci, 33(3): 206-218. [段骅, 佟卉, 刘燕清, 等, 2019. 高温和干旱对水稻的影响及其机制的研究进展 [J]. 中国水稻科学, 33(3): 206-218. ]
参考文献
Editorial Committee of Chinese Flora, Chinese Academy of Sciences, 1998. Flora of China: Volume 22. Angiosperms, Dicotyledoneae, Fagaceae, Ulmaceae, Rhoipteleaceae [M]. Beijing: Science Press: 255-257. [中国科学院中国植物志编辑委员会, 1998. 中国植物志: 第二十二卷. 被子植物门双子叶植物纲壳斗科榆科马尾树科 [M]. 北京: 科学出版社: 255-257. ]
参考文献
FELICIANO DC, De GODOY SM, MARQUES DA SILVA JF, et al. , 2022. Landscape genetics reveal low diversity and adaptive divergence in Portulaca hatschbachii (Portulacaceae): an endangered species endemic to rocky outcrops of the Atlantic Forest [J]. Bot J Linn Soc, 200(1): 116-141.
参考文献
HE K, JIANG XL, 2014. Sky islands of southwest China. I: an overview of phylogeographic patterns [J]. Chin Sci Bull, 59(7): 585-597.
参考文献
HEGEBARTH D, BUSCHHAUS C, WU M, et al. , 2016. The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells [J]. Plant J, 88(5): 762-774.
参考文献
HENNERON L, SARTHOU C, DE MASSARY J, et al. , 2019. Habitat diversity associated to island size and environmental filtering control the species richness of rock-savanna plants in neotropical inselbergs [J]. Ecography, 42(9): 1536-1547.
参考文献
HETHERINGTON AM, WOODWARD FI, 2003. The role of stomata in sensing and driving environmental change [J]. Nature, 424: 901-908.
参考文献
HIPP AL, MANOS PS, HAHN M, et al. , 2020. Genomic landscape of the global oak phylogeny [J]. New Phytol, 226(4): 1198-1212.
参考文献
JIANG ZZ, ZHU HG, ZHANG Q, et al. , 2015. Progress of influence of low temperature on plant photosynthesis [J]. Crops, (3): 23-28. [姜籽竹, 朱恒光, 张倩, 等, 2015. 低温胁迫下植物光合作用的研究进展 [J]. 作物杂志, (3): 23-28. ]
参考文献
LIANG SJ, WEN FC, 2010. Morphologic characteristics of the miarolitic alkali feldspar granite in Taimushan Mountian Fujian Province [J]. Geology Fujian, 29(4): 334-346. [梁诗经, 文斐成, 2010. 福建太姥山晶洞碱长花岗岩地貌特征 [J]. 福建地质, 29(4): 334-346. ]
参考文献
LIU XW, BARTHOLOMEW E, CAI YL, et al. , 2016. Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L) [J]. Front Plant Sci, 7: 1187.
参考文献
LUO D, YUE JP, SUN WG, et al. , 2016. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains: first insights from comparative phylogeography of four perennial herbs [J]. J Biogeogr, 43(1): 31-43.
参考文献
MA YL, WANG L, LIU YX, et al. , 2015. Uptates on stress tolerance of main accessory structures and their synergetic interaction in desert plants [J]. Plant Physiol J, 51(11): 1821-1836. [马亚丽, 王璐, 刘艳霞, 等, 2015. 荒漠植物几种主要附属结构的抗逆功能及其协同调控的研究进展 [J]. 植物生理学报, 51(11): 1821-1836. ]
参考文献
MALLET B, MARTOS F, BLAMBERT L, et al. , 2014. Evidence for isolation-by-habitat among populations of an epiphytic orchid species on a small oceanic island [J]. PLoS ONE, 9(2): e87469.
参考文献
MILÁ B, WARREN BH, HEEB P, et al. , 2010. The geographic scale of diversification on islands: genetic and morphological divergence at a very small spatial scale in the Mascarene grey white-eye (Aves: Zosterops borbonicus) [J]. BMC Evol Biol, 10(1): 158.
参考文献
MOLES AT, LAFFAN SW, KEIGHERY M, et al. , 2020. A hairy situation: Plant species in warm, sunny places are more likely to have pubescent leaves [J]. J Biogeogr, 47(9): 1934-1944.
参考文献
MOTA MR, PINHEIRO F, DOS SANTOS LEAL BS, et al. , 2020. From micro- to macro-evolution: insights from a Neotropical bromeliad with high population genetic structure adapted to rock outcrops [J]. Heredity (Edinb), 125(5): 353-370.
参考文献
OH SH, 2015. Sea, wind, or bird: origin of Fagus multinervis (Fagaceae) inferred from chloroplast DNA sequences [J]. Korean J Plant Taxon, 45(3): 213-220.
参考文献
PENG DL, YANG N, SONG B, et al. , 2015. Woolly and overlapping leaves dampen temperature fluctuations in reproductive organ of an alpine Himalayan forb [J]. J Plant Ecol, 8(2): 159-165.
参考文献
POREMBSKI S, 2007. Tropical inselbergs: habitat types, adaptive strategies and diversity patterns [J]. Rev Bras Bot, 30(4): 579-586.
参考文献
POREMBSKI S, BARTHLOTT W, 2012. Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions [M]. Berlin: Springer Science & Business Media: 103-176. PU L,
参考文献
SUO JF, XUE YB, 2003. Molecular control of plant trichome development [J]. Acta Genet Sin, 30(11): 1078-1084. [普莉, 索金凤, 薛勇彪, 2003. 植物表皮毛发育的分子遗传控制 [J]. 遗传学报, 30(11): 1078-1084. ]
参考文献
RUAS RDB, PAGGI GM, AGUIAR-MELO C, et al. , 2020. Strong genetic structure in Dyckia excelsa (Bromeliaceae), an endangered species found on ironstone outcrops in Pantanal, Brazil [J]. Bot J Linn Soc, 192(4): 691-705.
参考文献
SÁNCHEZ-ACEVEDOT V, TORRES-MIRANDA A, GUTIÉRREZ-ARELLANO C, et al. , 2022. Variability in leaf morphological traits of an endemic Mexican oak (Quercus mexicana Bonpl. ) along an environmental gradientt [J]. Bot Sci, 100(3): 579-599.
参考文献
SCHELLMANN S, KIRIK V, WADA T, et al. , 2002. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis [J]. EMBO J, 21(19): 5036-5046.
参考文献
TAVARES MM, FERRO M, LEAL BSS, et al. , 2022. Speciation with gene flow between two Neotropical sympatric species (Pitcairnia spp. : Bromeliaceae) [J]. Ecol Evol, 12(5): e8834.
参考文献
WU ZL, JIANG YX, 1997. Forest zoning in China [M]//China Forest Editorial Committee. Forest in China. Beijing: China Forestry Publishing House: 437-512. [吴中伦, 蒋有绪, 1997. 中国森林分区 [M]//中国森林编辑委员会. 中国森林. 北京: 中国林业出版社: 437-512. ]
参考文献
XIE XF, YAN HF, WANG FY, et al. , 2012. Chloroplast DNA phylogeography of Primula ovalifolia in central and adjacent southwestern China: Past gradual expansion and geographical isolation [J]. J Syst Evol, 50(4): 284-294.
参考文献
XU ZZ, ZHOU GS, 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass [J]. J Exp Bot, 59(12): 3317-3325.
参考文献
YANG FS, QIN AL, LI YF, et al. , 2012. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau [J]. PLoS ONE, 7(5): e37196.
参考文献
YANG J, VAZQUEZ L, CHEN XD, et al. , 2017. Development of chloroplast and nuclear DNA markers for Chinese oaks (Quercus Subgenus Quercus) and assessment of their utility as DNA barcodes [J]. Front Plant Sci, 8: 816.
参考文献
YANG YC, ZHOU T, QIAN ZQ, et al. , 2021. Phylogenetic relationships in Chinese oaks (Fagaceae, Quercus): Evidence from plastid genome using low-coverage whole genome sequencing [J]. Genomics, 113(3): 1438-1447.
参考文献
YANG ZY, YI TS, PAN YZ, et al. , 2012. Phylogeography of an alpine plant Ligularia vellerea (Asteraceae) in the Hengduan Mountains [J]. J Syst Evol, 50(4): 316-324.
参考文献
ZHANG D, HAO GQ, GUO XY, et al. , 2019. Genomic insight into “sky island” species diversification in a mountainous biodiversity hotspot [J]. J Syst Evol, 57(6): 633-645.
参考文献
ZHANG JW, ZHAO JJ, ZHOU Q, et al. , 2018. Progress in research of plant trichome [J]. Chin Bull Bot, 53(5): 726-737. [张继伟, 赵杰才, 周琴, 等, 2018. 植物表皮毛研究进展 [J]. 植物学报, 53(5): 726-737. ]
目录contents

    摘要

    堡状峰是类似城堡外貌而凸出于周围环境之上的特殊山峰,位于中国闽南乌山风景区堡状峰地貌上的乌冈栎(壳斗科)种群的表型发生了变异,其与原类型的显著不同在于叶背具宿存性黄褐色星状毛。为解释这一现象,该研究对堡状峰顶部的乌冈栎种群分布进行调查,包括其中的变异型、原始型、过渡型,以及堡状峰山脚、另一异域的典型原始型种群被研究,基于叶表皮解剖,利用方差分析统计显微性状的差异,结合生态因子,探究变异的原因及演化的可能途径。结果表明:(1)变异型在山顶西侧形成以其为优势种的常绿阔叶灌丛群落,东侧的小片灌丛以原始型为主,后者内部还有少量过渡型。(2)各种群单细胞毛状体基(STB)与复合毛状体基(CTB)在叶上表皮的密度很小甚至小于每平方毫米1个,宏观的表现为无毛。原始型、过渡型、变异型的STB密度均值在叶下表皮递增。变异型种群与原始种群相比,叶下表皮CTB或典型星状毛(Tst)的密度由每平方毫米0.481~1.122个变异至每平方毫米57.2个,宏观表现为形成密毛。气孔长宽比在原始型(1.187~1.205)至变异型(1.258)间递增。(3)方差分析结果显示,变异型叶下表皮STB与CTB密度及气孔长宽比较原始型显著增加(大)(P<0.01),但气孔密度与尺寸在种群间未表现出规律与差异性(P>0.05)。乌山堡状峰顶的土壤贫瘠、水热条件差。综合生境与统计的结果表明,变异型乌冈栎叶背毛状体及气孔长宽比的变异具抵抗干旱或极端气温的功能。由于花粉流未曾间断,因此相比于地理隔离,特殊生境促使乌冈栎发生适应性演化应是该变异产生的主要原因。该研究为亚热带特殊花岗岩地貌促进种群分化和物种形成提供了直接的证据。

    Abstract

    Castle peak is a mountain that resembles the appearance of a castle and protrudes above its surroundings. The phenotypes of Quercus phillyreoides (Fagaceae) populations located on castle peak in the Wushan Scenic Spot of southern Fujian, China, are variegated. It differs significantly from the original form in the presence of persistent yellow-brown stellate hairs on the leaf abaxial surface. To explain this phenomenon, the distribution of Q. phillyreoides populations at the summit of castle peak was investigated, where variant, original, and intermediate forms, as well as typical original populations at the foot of castle peak and another allopatric area, were studied. Differences in micromorphological traits were counted using ANOVA based on leaf epidermal anatomy. Ecological factors were linked with a view to discovering the causes of variation and possible pathways of evolution. The results were as follows: (1) The variant form formed an evergreen broad-leaved scrub community with it as the dominant species on the west side of the summit, and the small patch of scrub on the east side is dominated by the original form, with a few intermediate form individuals within the latter. (2) The densities of single trichome base (STB) and compound trichome base (CTB) in the leaf adaxial epidermis of various populations was very low or even less than 1 No.·mm-2, and the macroscopic expression was glabrous. The mean values of STB density of original, intermediate, and variant forms were increasing in the leaf abaxial epidermis. The mean density of CTB or typical stellate trichome (Tst) on the leaf abaxial epidermis varied from 0.481-1.122 No.·mm-2 to 57.2 No.·mm-2 in the variant form population compared with the original form populations, which macroscopically showed the formation of dense hairs. The stomatal length-width ratio increases from original form (1.187- 1.205) to variant form (1.258). (3) ANOVA results showed that variant form leaf abaxial epidermal STB, CTB density and stomatal length-width ratio were significantly increased (larger) than the original form (P<0.01), but stomatal density and size did not show regularity and variability among populations (P>0.05). Poor soil, water and heat conditions at the summit of the Wushan castle peak, and combining the background with the obtained results indicate that the variation in the variant Q. phillyreoides leaf abaxial trichomes and stomatal aspect ratio were resistant to drought or temperature extremes. Since pollen flow has not been interrupted, the adaptive evolution of Q. phillyreoides due to specific habitats should be the main reason for this variation compared to geographical isolation. The microscopic traits showed no significant differences (P > 0.05) between the original form population on the top of castle peak and the rest original form populations confirms that the variation has been fixed by long-term selection and the short-term environmental influences play a limited role in shaping the variant traits. This study provides direct evidence that subtropical exceptional granitic landforms promote population differentiation and species formation.

  • 花岗岩堡状峰(castle peak)(下称堡状峰)是四周由陡直崖壁围限呈城堡状的一种花岗岩地貌类型(梁诗经和文斐成,2010),可连绵成墙状山体。中国东南沿海的堡状峰以新近纪(Neogene)后地质构造发生中度抬升为基础,经化学风化、流水下切侵蚀塑造而来(崔之久等,2007)。堡状峰实际为介于石林(stone forest)与石蛋(pebbly)之间的一种花岗岩过渡地貌类型。其特点为四周陡峻,岩壁裸露,峰顶平坦,可沉积土壤。较周边丘陵,堡状峰突兀地伫于山间,生态特征与低地截然不同(Porembski,2007)。

  • 热带地区的另一种花岗岩地貌“岛山”(inselberg)与堡状峰相似,但区别在于前者构造抬升轻微,经化学风化在平原上形成孤立的岩石露头(崔之久等,2007)。岛山上的植物群落常与周边地区不同,被认为是孤立山体特殊生境产生的效果;同时,其孤立程度取决于周围植被类型,较于真实岛屿,生态隔离弥补了岛山之间地理距离相对较短的不足(Porembski,2007)。生态与距离隔离以及不同于山脚的特殊生境共同作用于岛山的物种演化。就物种多样性而言,有研究显示其他因素(如面积、环境筛)而非隔离距离与物种丰富度间有更大关联(Conceição et al.,2007;Henneron et al.,2019),表明在较小空间尺度内,在异质性生境下发生了适应性辐射。大量研究表明,一些植物种群形态与遗传结构在或远或近的岛山上发生变异,基因流发生不同程度的限制,种群内遗传多样性降低,促进了种群分化与物种形成(Barbará et al.,2008;Byrne et al.,2019;Feliciano et al.,2022)。

  • 岛山作为陆地岛屿系统用于观察生态现象与物种形成,在温带与热带受到长期的关注(Porembski &Barthlott,2012)。中国拥有不同的地质史,喜马拉雅山脉、阿尔泰-天山地区、中国西南山地这类称作“天空之岛”(空岛,sky islands)的陆地岛屿近年的关注度较高,其中地形地貌及其改变与随之产生的气候变迁对谱系地理结构的影响研究较多(He &Jiang,2014)。西南地区的盆地、峡谷在更新世冰川期为物种提供相互间隔的小生境避难所,这些避难所便成为遗传分化的中心(Xie et al.,2012;Yang ZY et al.,2012),青藏高原的抬升还让异地分化的物种二次相遇发生偶然的杂交种化事件(Yang FS et al.,2012;Zhang et al.,2019),现有证据表明空岛上的高寒植物共享了一连串地质运动引发的谱系地理结构与进化历史(Luo et al.,2016)。然而,在中国亚热带的花岗岩堡状峰、峰丛、峰墙、石林等地貌上开展有关进化与生态的研究甚为少见。

  • 狭义栎属(Quercus)全世界约300种,中国约51种、14变种、1变型(中国科学院中国植物志编辑委员会,1998),由于复杂的网状进化历史,具有极高物种多样性(Hipp et al.,2020),栎属植物受地理与古气候的影响在各地发生适应性演化(Yang et al.,2021),叶表皮性状常视为重要特征之一被用于种间界定(Deng et al.,2017)。2019年11月,我们在福建省南部漳州市云霄和诏安两县交界的乌山风景区开展全国中药资源普查(图1:A,C),于乌山主峰红旗岩(Hongqiyan)顶发现一叶柄、叶背显著被星状毛的乌冈栎(Quercus phillyreoides)群体(其余性状未表现出显著不同)。经过1年的持续观察,发现其成熟叶片毛被不脱落。乌冈栎是中国秦岭淮河以南广泛分布的壳斗科(Fagaceae)栎属冬青砾组(Section Ilex)常绿阔叶树,日本也有分布,新叶有时疏被毛,老叶无毛或仅叶背中脉被疏柔毛(中国科学院中国植物志编辑委员会,1998)。对此,我们推测该种群叶表皮特征或多或少发生变异,故对乌山风景区堡状峰山顶、山脚及另一异域的乌冈栎种群做显微形态的比较研究,通过叶解剖获取表皮性状,所得性状数据经方差分析检验与比较,拟探讨以下问题:(1)变异种群哪些叶表皮性状发生了变异,变异的规律与趋势如何;(2)变异产生与堡状峰生境的关系,以及其是否具备生态合理性;(3)种群分化的历史进程,以及其是否具备演化合理性。通过对以上问题的探讨,以期为亚热带特殊花岗岩地貌促进种群分化提供证据。

  • 1 材料与方法

  • 1.1 研究样品

  • 采集样品之前,我们查阅了乌冈栎模式标本及中国数字标本馆(Chinese Virtual Herbarium,CVH,https://www.cvh.ac.cn/)的所有普通标本(有照片的标本),2份模式标本(Cavalerie,J.3626)均为叶无毛被类型,209份普通标本中有1份采自广西的标本与我们在红旗岩顶所见相似(叶背显著具毛,陈照宙50295),采集签记录的生境、生活型亦类同。然而,中国分布之北界未见该性状出现,表明叶背具稳定毛被的性状不是环境直接作用的结果,亦非乌冈栎表型可塑性可简单解释。与此同时,我们在红旗岩顶不但发现叶背具毛的种群,典型原始型亦有分布。

  • 为了解释这些现象,我们采集了红旗岩顶原始型、变异型与假定的过渡型,以及红旗岩脚原始型的叶片与凭证标本。由表1可知,野外观察到的过渡型是相对原始型叶背的几乎完全无毛以及变异型的叶背几乎完全为毛状体覆盖(叶下表皮不可见)而言,即过渡型虽然拥有宿存性的毛,但其叶下表皮在全株均明显可见,介于原始型和变异型两者之间。由于原始型的稳定性,允许我们以任意异域环境的乌冈栎种群代表全生境范围的所有乌冈栎群体,来说明红旗岩顶的这种变异。5个(极小)种群被研究,每种群随机选择3个成年个体(个体间大于等于20 m或最大间隔距离),每个体东西南北重复取样(共4片);考虑到毛状体对气孔性状的遮盖将不利于后期观察与统计,对变异型每个方向额外采集1片叶子,利用解剖刀去除毛被。叶片被切割成叶尖、叶中、叶基3段,保存于FAA固定液 (38%福尔马林∶冰醋酸∶70%乙醇=1∶1∶18,体积比)中。样品采集在2 d内完成,采集时间和天气均相同。叶表皮切片的制作方法参考Deng等(2017)。

  • 1.2 研究地概况

  • 漳州乌山主体位于福建南部与广东交界的诏安、云霄两县境内,为东南海岸平原、东北漳江、西南东溪环绕;南北走向,南北约45 km,东西约20 km,面积约900 km2。乌山风景区位于乌山中部,主峰海拔1 050.6 m,山体四周悬崖绝壁,稍有棱角,顶部平坦,与附近山谷高差达215 m(图1:A)。乌山基岩为花岗岩,新近纪后局部构造中度抬升(图1:B)。乌山主峰红旗岩属幼年(juvenile stage)至青年(adolescence stage)发育期花岗岩地貌(Chen et al.,2009),即为典型的堡状峰(图1:C)。山顶保留中新世统一夷平面的残留部分,山脚堆积深厚风化壳,发育成红壤(崔之久等,2007)。亚热带季风气候,年均降水1 519.6 mm,夏季均降水624 mm,冬季均降水121 mm;白天均温27℃,夜间均温20℃,夏季最高温31℃,冬季最低温12℃。地带植被为常绿阔叶林,壳斗科、樟科(Lauraceae)、山茶科(Theaceae)等为该地带森林的优势类群(吴中伦和蒋有绪,1997)。

  • 表1 种群与叶片样品凭证信息

  • Table1 Voucher information of populations and leaf samples

  • 1.3 统计和分析方法

  • 利用BK5000型光学显微镜观察叶上下表皮细胞垂周壁、毛状体基、毛状体及气孔。叶表皮术语及特征描述参考Deng等(2017)。每切片选1个视野(200×)拍摄记录。用ImageJ 1.53f51(https://imagej.nih.gov/ij/index.html)计测视野内全部气孔的数目,并测量尺寸(保卫细胞外轮廓的长径及短径)(Arena et al.,2017)。毛状体/毛状体基数目由人工在每个视野中计数得到。随后气孔、毛状体/毛状体基数目转化为密度,气孔尺寸计算出长宽比(长径与短径的比值)。将每片叶子叶尖、叶中、叶基各性状的数据求平均,以排除随机误差。由于4个方向的测量值并无明显的规律,因此将其全部纳入原始数据集,以减小抽样个体数较少可能存在的系统误差。用SPSS 25对原始数据集各性状实施F检验与多重比较(LSD),对结果具显著性的性状绘制箱型图。P<0.01,认为差异极显著;P<0.05,则认为差异显著。

  • 2 结果与分析

  • 2.1 表型变异和空间分布

  • 变异种群生于红旗岩顶的花岗岩风化壳上(图2:A-D),在山顶西侧大片生长,集群分布明显,形成以其为优势种的常绿阔叶灌丛群落,伴生种有凤凰润楠(Machilus phoenicis)、漳州越橘(Vaccinium zhangzhouense)、猴头杜鹃(Rhododendron simiarum) 等。东侧的小片灌丛以原始型为主,数量较少;而在变异种群外围亦见零星分布。北侧狭长、地势较低地带的变异型可能由山顶西扩散而来。在原始种群内部,发现叶背毛稍显发育的个体,视其为过渡型。

  • 唯独叶背密生成熟时不脱落的土黄色或黄褐色星状毛,一年生枝的星状毛也较密集而与原类型不同(图2:F-G)。红旗岩山顶乌冈栎变异型的花序、壳斗、坚果(图2:H)及其他叶性状(形状、大小、质地、颜色及叶缘等)均与原类型无异。

  • 2.2 叶表皮性状和显著性结果

  • 2.2.1 叶上表皮(图3:A-E)

  • 叶上表皮细胞垂周壁厚度均匀,有4种形态,即平直、弧形、波状、蜿蜒(图3:A,D-E),在各类各地种群间无规律。除在红旗岩脚原始型2(种群4)未在视野中观察到单细胞毛状体基(STB)以外,其余或多或少存在单细胞(图3:A)及复合毛状体基(CTB)(图3:B,C,E)2种类型,但CTB和STB密度均值小于每平方毫米7个;在青云山原始型3(种群5)观察到来源于STB的残存的头状毛状体(Ca),然而,均未发现与CTB相对应的毛状体类型。综上表明,各类型种群STB与CTB在叶上表皮的密度很小甚至小于每平方毫米1个,然而即便存在毛状体基,毛状体也不一定发生或容易脱落,在宏观上的表现即为无毛。特征统计见表2。

  • 2.2.2 叶下表皮(图3:F-L)

  • 叶下表皮细胞垂周壁在各种群内多少表现出平直、弧形、波状之渐变,厚度均匀(图3:H,J)。全部种群均观察到明显的头状毛状体(Ca)及STB(图3:I-L),后者的密度为每平方毫米0~10.125个。由表3可知,原始型、过渡型、变异型的STB密度均值递增。虽然CTB各种群均存在(图3:F,H-I,K),但是由其发生的典型星状毛(Tst)仅见于红旗岩顶变异型(种群1)、过渡型(种群2)及青云山原始型3(种群5) (图3:F-G,I,L)。然而,青云山原始型3的叶下表皮星状毛只局限于中脉的基部附近,对应的CTB密度均值则小于每平方毫米1个;相比之,红旗岩顶变异型的Tst存在于中脉、任意侧脉或次级脉上,CTB密度均值达每平方毫米57.2个,中脉、侧脉、次级脉上的CTB面积逐级减小;过渡型的CTB密度均值介于两者之间,为每平方毫米26.076个。这表明变异型种群与其他种群相比,CTB或Tst的增加很明显,宏观表现为密被星状毛,过渡型的叶背虽有星状毛,但叶下表皮也明显可见,原始型则几乎完全无毛。另外,气孔类型均为无规则型(图3:H,J)。各种群气孔密度均值在每平方毫米453~516个之间,气孔尺寸之短径为24.494~25.812 μm,长径介于28.906~31.047 μm,变异型与原始型在这3个性状的变化无规律。气孔长宽比均值则在原始型(1.187~1.205)、过渡型(1.240)、变异型(1.258)间递增。相关特征统计见表3。

  • 2.2.3 显著性检验

  • 方差分析结果(表2,表3)显示,叶上表皮STB(P=0.002 0)、叶下表皮STB(P=0.006 0)与CTB(P=0.000 5)密度及气孔长宽比(P=0.002 0)在不同种群之间存在极显著性差异(P<0.01)。叶上表皮STB密度虽然不同种群差异极显著,但经事后检验发现变异型与原始型2、3,原始型1与原始型2、3共同贡献了该差异,表明该性状在叶上表皮的发生较随机。叶下表皮的事后检验结果显示叶下表皮STB与CTB密度及气孔长宽比的差异主要是由变异型引起(图4)。变异型STB与CTB密度显著大于原始型,无论原始型位于山顶、山脚或异地。变异型气孔平均长宽比为1.258,极大值1.333;原始型均值不大于1.205,极大值1.274。这一性状在变异型中在一定程度上有增大,尽管在影像中看上去并不明显。过渡型各性状值均居中间水平。以上结果表明,变异型在一些叶下表皮性状(STB与CTB密度、气孔长宽比)上与原始型相比发生了显著性变异(P<0.01)。但是,对生境颇为敏感的气孔密度与尺寸在山顶、山脚或异地的种群间未表现出差异性(P>0.05)(表3)。

  • 3 讨论与结论

  • 3.1 堡状峰生境促进了种群分化

  • 同为花岗岩地貌的岛山导致种群变异和物种形成的案例已经屡见不鲜(Mota et al.,2020;Ruas et al.,2020;Tavares et al.,2022),这通常归因于距离隔离导致有限的基因流发生的遗传漂变和近交(Barbará et al.,2007;Mota et al.,2020),然而有时异质性生境被认为起到了更大作用,驱使同一物种在不同种群间发生分化(Milá et al.,2010;Mallet et al.,2014)。虽然岛山生境通常不适合物种的生存,但是世界上一些地区的岛山却成为生物多样性的中心,如巴西东南部、马达加斯加、澳大利亚西南部,推测与隔离及物种长期的坚持促进分化有关(Porembski,2007),因此岛山多特有种。

  • 乌山红旗岩是典型堡状峰地貌,与岛山类似,顶部生境与同纬南亚热带季风气候区迥异,与周边地区相比,具有一定的特殊性:夏季光照强度大,日照时间长;冬季夜间气温低;气温日较差大;降水滞留土壤时间短,雨水冲刷土壤造成流失;土壤本身贫瘠而薄;盛行风速大。一般情况下,同一物种在一定程度的干燥与适生条件下生长相比气孔密度增大,但当干旱进一步加强,密度将减小,气孔尺寸则在干旱条件下持续减小(Xu &Zhou,2008)。然而,乌山不同生境下的乌冈栎并未表现出这一倾向,并且在更大空间尺度的栎属植物研究案例中也存在这一现象(Sánchez-Acevedo et al.,2022)。由于气孔密度与尺寸通常具有一定关联性(Hetherington &Woodward,2003),因此不同种群乌冈栎的气孔尺寸与密度一样无显著性差异。

  • 图1 福建漳州乌山风景区

  • Fig.1 Wushan Scenic Area, Zhangzhou, Fujian

  • 为了应对乌山山顶特殊生境的挑战,在我们研究的中乌冈栎似乎倾向于依赖毛状体并调整气孔的形状,因为结果显示叶下表皮单细胞毛状体基(STB)、复合毛状体基(CTB)及气孔长宽比在不同种群间差异显著。毛状体有吸附空气中水滴、减少蒸腾的功能(Moles et al.,2020),在冬季具有一定保暖效果(Peng et al.,2015)。就荒漠植物而言,在应对寒、旱、盐碱、高温、强辐射等不同非生物胁迫时表皮毛的变化不一,在受机械损伤、干旱、长日照、高光照、盐胁迫时,通常会导致表皮毛长度或密度的增大 (马亚丽等, 2015)。乌山顶变异型乌冈栎的叶背STB、CTB密度与各原始型相比均显著,尽管毛状体在极端环境中可能被催生,但山顶原始型1的存在,以及与原始型2、3之间无显著差异,证实环境的短期作用对塑造乌冈栎叶背毛状体的能力有限。显著增多叶背的星状毛(Tst) 势必有助其适应山顶贫瘠土壤储水少、高蒸散导致的干旱,以及冬季花岗岩山体比热小、散热快导致的冷害、冻害。头状毛状体具备合成、贮藏和分泌诸多代谢物的作用(张继伟等,2018),增多的头状毛或能增加乌冈栎应对山顶环境胁迫的抗性。关于环境对毛状体的作用机制,就拟南芥(Arabidopsis thaliana)的研究显示,拥有丰富表皮毛的突变体的较于表皮毛缺失突变体其茎、叶蜡质层含有的C32+脂肪酸混合物含量显著增加,并且表皮毛所覆盖的蜡质C32+脂肪酸含量亦被证实高于周围细胞,表皮毛可联合蜡质层生物合成来利于减少增发和调控温度(Hegebarth et al.,2016)。对黄瓜(Cucumis sativus)表皮毛突变体的研究表明,GL1与TTG1为叶表皮发生的核心基因,GL3、EGL3为必要基因,这些基因的转录产物构成正调控因子(Liu et al.,2016)。但是,在TRY、CPC等基因转录的负调控因子介导下,表皮毛的发生受到抑制(Schellmann et al.,2002)。毛状体的发生发育机理研究表明其由多基因调控(张继伟等,2018),变异型乌冈栎叶背毛状体作为山顶环境胁迫响应的产物,可能经历了负调控因子突变、正调控因子转座或增强等过程。堡状峰顶环境因子与毛状体发生的内在联系需进一步研究方可明确。

  • 图2 红旗岩顶乌冈栎种群的分布与性状变异

  • Fig.2 Distribution and trait variation of Quercus phillyreoides populations at the top of Hongqiyan

  • 图3 乌冈栎变异、原始、过渡型的叶表皮形态

  • Fig.3 Leaf epidermal morphology of variant, original, and intermediate forms of Quercus phillyreoides

  • 图4 乌冈栎各类型叶下表皮复合毛状体基、单细胞毛状体基密度及气孔长宽比的箱形图

  • Fig.4 Box-plot of the densities of leaf abaxial surface CTB, STB, and stomata length-width ratio of each form of Quercus phillyreoides

  • 气孔长宽比实际上反映了气孔开度(stomatal aperture),其变化依赖于受离子及糖控制膨压的副卫细胞、细胞骨架组织、跨膜运输及基因表达的联合作用,大量证据显示单一的刺激性信号通路不足以让气孔开度发生变化(Hetherington &Woodward,2003)。在本次研究的乌冈栎种群间,与毛状体同理,同一时刻原始型1的气孔开度似乎没有因居处堡状峰顶而与山脚或青云山的原始型2、3在这一性状上表现出显著差异。但是,在变异型中,气孔长宽比显著增大,即气孔形状发生了变异,干旱、叶温过高或过低经信号传递最终在叶片上表现出气孔开度的减小(姜籽竹等,2015;段骅等,2019)。由此直观地推测,在同等条件下变异型种群通过减少蒸腾以便应对干旱或极端气温,并在大风环境中关闭气孔使机动性得以增强。

  • 综上所述,堡状峰地貌是变异产生的渊缘,该地貌生境,特别是贫瘠而薄的土壤,导致水热条件差于周围地区,STB、CTB及气孔长宽比的变异对适应该生境有积极作用。这些性状变异应是稳定的,它们并不受环境胁迫快速而直接地形成;经过1年的观察,在变异型或原始型内,不同发育时期亦稳定不变。

  • 3.2 种群分化的可能途径

  • 乌山直接形成于新近纪后中国东南海岸地带不同程度的隆起抬升与风化侵蚀(Chen et al.,2009),更新世末次冰期导致高海拔植物下潜到附近“避难所”(陈冬梅等,2011),在间冰期或全新世(Holocene)很可能让乌冈栎重回山顶。啮齿类是壳斗科种子传播的主要贡献者,但为抵达堡状峰顶,最初的迁移可能依赖于鸟类(Oh,2015)。原始型乌冈栎抵达山顶后,若受生境胁迫发生适应性演化,适应性强的个体具有优势,进而扩大成种群。然而,山顶却存在小范围分布或零散于变异型周围的原始型种群或个体。这表明原始型本身尚可忍耐干旱等极端生境。可以将其看作是基于自然选择与竞争排除原理种群残存的一个剖面,同时,鸟类传播这类偶然事件也可能对山顶群落演替产生重大影响,这均可导致当前原始型与变异型共存,并且通过杂交让过渡型产生。这表明过渡型之所以被观察到,可能是物种形成过程残留的随机变异个体,抑或是杂交的产物。但是作为风媒树种,四周低地的原始型花粉流应当从未断绝(Ashley,2021)。红旗岩堡状峰的地理隔离作用可能相当有限,堡状峰特殊生境显然较地理隔离对变异的产生起到了更大的促进作用。山顶的过渡型及山脚未调查到变异型的现状表明变异型可以与原始型融合而消失。但是就目前而言,堡状峰的确产生了一定的生态学岛屿效应。

  • 表2 调查种群叶上表皮性状统计

  • Table2 Statistics of leaf adaxial surface characteristics of investigated populations

  • 注:垂周壁表示叶表皮细胞垂周壁。str. 平直; cur. 弧形; un. 波状; sin. 蜿蜒状; uni. 均一厚度; Ca. 头状毛状体; Tst. 典型星状毛状体; STB. 单细胞毛状体基; CTB. 复合毛状体基; -表示密度小于1 No.·mm-2。字母a、b、ab等表示类别间的差异显著性。下同。

  • Note: Anticlinal wall indicates anticlinal wall of leaf epidermal cells. str. Straight; cur. Curved; un. Undulate; sin. Sinuous; uni . Uniform thickness; Ca. Capitate; Tst. Typical stellate trichome; STB. Simple-celled trichome base; CTB. Compound trichome base; -indicates density is less than 1 No.·mm-2. The letters a, b, ab, etc. indicate significant differences between categories. The same below.

  • 表3 调查种群叶下表皮性状统计

  • Table3 Statistics of leaf abaxial surface characteristics of investigated populations

  • 注: Anomocytic. 无规则型气孔。

  • Note: Anomocytic . Anomocytic type of stomata.

  • 3.3 祖先性状和平行演化

  • 较于气孔长宽比,毛状体的变异在栎属内有更多演化规律。首先需明确,乌山的变异型乌冈栎与拥有类似叶背毛状体的近缘种直线距离超过300 km,可排除杂交起源。

  • Deng等(2017)研究表明,STB是栎属的祖征,不同演化支或多或少存在,可在种间存在显著的密度差异,乌山变异型与原始型乌冈栎叶上下表皮STB即如此。然而,栎属分子系统结果显示CTB在不同支系中多次起源或丢失(Yang et al.,2017;Hipp et al.,2020),冬青砾组不同种的情况不一,因此变异型发生CTB密度的变异是可能的。表皮毛发育受多基因直接与间接调控(普莉等,2003),选择促进基因互作与重排,古老祖先多态性分选也可使类似性状反复产生。为解析它们的关系,需利用分子手段做各类型群体的研究。

  • 另外,乌冈栎的毛状体变异在广西的标本(陈照宙50295),以及Global Biodiversity Information Facility(GBIF,https://www.gbif.org/)额外检查的56份标本中的2份来自琉球群岛的标本(Wright,无号; Type of Quercus wrightii = Q. phillyreoides)中发现,若这不是单株突变,那就表明它们之间可能发生了平行演化。

  • 综上得到以下结论:福建漳州乌山红旗岩的乌冈栎变异型的叶下表皮STB、CTB、气孔长宽比与原始型相比发生了自然变异,即STB、CTB显著增多(P<0.01),气孔长宽比显著增大(P<0.01)。乌山堡状峰特殊生境促使变异产生,其具备一定生态与演化合理性。这为亚热带特殊花岗岩地貌促进种群分化提供了有效证据。乌冈栎广泛分布于中国南方及日本,是毛状体发生与演化、平行物种形成等研究的理想对象。中国是世界上花岗岩分布最广的国家之一,又以广东和福建两省最多(占中国30%~40%)(崔之久等,2007)。构造运动加速花岗岩出露地表,形成极其多样的地貌景观,中、高度隆起形成的堡状峰、峰丛、石林、独立巨峰等在大小空间尺度上广泛存在。特殊花岗岩地貌上的植物区系、群落生态、极小种群、物种演化等有望被进一步关注。

  • 参考文献

    • ARENA ET, RUEDEN CT, HINER MC, et al. , 2017. Quantitating the cell: turning images into numbers with ImageJ [J]. Wiley Interdiscip Rev Dev Biol, 6(2): e260.

    • ASHLEY MV, 2021. Answers blowing in the wind: A quarter century of genetic studies of pollination in oaks [J]. Forests, 12(5): 575.

    • BARBARÁ T, LEXER C, MARTINELLI G, et al. , 2008. Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A-geniculata, A-glaziouana and A-regina (Bromeliaceae) [J]. Heredity (Edinb), 101(3): 285-296.

    • BARBARÁ T, MARTINELLI G, FAY MF, et al. , 2007. Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae) [J]. Mol Ecol, 16(10): 1981-1992.

    • BYRNE M, KRAUSS SL, MILLAR MA, et al. , 2019. Persistence and stochasticity are key determinants of genetic diversity in plants associated with banded iron formation inselbergs [J]. Biol Rev Camb Philos Soc, 94(3): 753-772.

    • CHEN YX, CUI ZJ, YANG JQ, 2009. Influence of climate and tectonic movements on granite landforms in China [J]. J Geogr Sci, 19(5): 587-599.

    • CHEN DM, KANG HZ, LIU CJ, 2011. An overview on the potential Quaternary glacial refugia of plants in China mainland [J]. Bull Bot Res, 31(5): 623-632. [陈冬梅, 康宏樟, 刘春江, 2011. 中国大陆第四纪冰期潜在植物避难所研究进展 [J]. 植物研究, 31(5): 623-632. ]

    • CONCEIÇÃO AA, PIRANI JR, MEIRELLES ST, 2007. Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil [J]. Rev Bras Bot, 30(4): 641-656.

    • CUI ZJ, YANG JQ, CHEN YX, 2007. The type and evolution of the granite landforms in China [J]. Acta Geograph Sin, 62(7): 675-690. [崔之久, 杨建强, 陈艺鑫, 2007. 中国花岗岩地貌的类型特征与演化 [J]. 地理学报, 62(7): 675-690. ]

    • DENG M, JIANG XL, SONG YG, et al. , 2017. Leaf epidermal features of Quercus Group Ilex (Fagaceae) and their application to species identification [J]. Rev Palaeobot Palynol, 237: 10-36.

    • DUAN H, TONG H, LIU YQ, et al. , 2019. Research advances in the effect of heat and drought on rice and its mechanism [J]. Chin J Rice Sci, 33(3): 206-218. [段骅, 佟卉, 刘燕清, 等, 2019. 高温和干旱对水稻的影响及其机制的研究进展 [J]. 中国水稻科学, 33(3): 206-218. ]

    • Editorial Committee of Chinese Flora, Chinese Academy of Sciences, 1998. Flora of China: Volume 22. Angiosperms, Dicotyledoneae, Fagaceae, Ulmaceae, Rhoipteleaceae [M]. Beijing: Science Press: 255-257. [中国科学院中国植物志编辑委员会, 1998. 中国植物志: 第二十二卷. 被子植物门双子叶植物纲壳斗科榆科马尾树科 [M]. 北京: 科学出版社: 255-257. ]

    • FELICIANO DC, De GODOY SM, MARQUES DA SILVA JF, et al. , 2022. Landscape genetics reveal low diversity and adaptive divergence in Portulaca hatschbachii (Portulacaceae): an endangered species endemic to rocky outcrops of the Atlantic Forest [J]. Bot J Linn Soc, 200(1): 116-141.

    • HE K, JIANG XL, 2014. Sky islands of southwest China. I: an overview of phylogeographic patterns [J]. Chin Sci Bull, 59(7): 585-597.

    • HEGEBARTH D, BUSCHHAUS C, WU M, et al. , 2016. The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells [J]. Plant J, 88(5): 762-774.

    • HENNERON L, SARTHOU C, DE MASSARY J, et al. , 2019. Habitat diversity associated to island size and environmental filtering control the species richness of rock-savanna plants in neotropical inselbergs [J]. Ecography, 42(9): 1536-1547.

    • HETHERINGTON AM, WOODWARD FI, 2003. The role of stomata in sensing and driving environmental change [J]. Nature, 424: 901-908.

    • HIPP AL, MANOS PS, HAHN M, et al. , 2020. Genomic landscape of the global oak phylogeny [J]. New Phytol, 226(4): 1198-1212.

    • JIANG ZZ, ZHU HG, ZHANG Q, et al. , 2015. Progress of influence of low temperature on plant photosynthesis [J]. Crops, (3): 23-28. [姜籽竹, 朱恒光, 张倩, 等, 2015. 低温胁迫下植物光合作用的研究进展 [J]. 作物杂志, (3): 23-28. ]

    • LIANG SJ, WEN FC, 2010. Morphologic characteristics of the miarolitic alkali feldspar granite in Taimushan Mountian Fujian Province [J]. Geology Fujian, 29(4): 334-346. [梁诗经, 文斐成, 2010. 福建太姥山晶洞碱长花岗岩地貌特征 [J]. 福建地质, 29(4): 334-346. ]

    • LIU XW, BARTHOLOMEW E, CAI YL, et al. , 2016. Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L) [J]. Front Plant Sci, 7: 1187.

    • LUO D, YUE JP, SUN WG, et al. , 2016. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains: first insights from comparative phylogeography of four perennial herbs [J]. J Biogeogr, 43(1): 31-43.

    • MA YL, WANG L, LIU YX, et al. , 2015. Uptates on stress tolerance of main accessory structures and their synergetic interaction in desert plants [J]. Plant Physiol J, 51(11): 1821-1836. [马亚丽, 王璐, 刘艳霞, 等, 2015. 荒漠植物几种主要附属结构的抗逆功能及其协同调控的研究进展 [J]. 植物生理学报, 51(11): 1821-1836. ]

    • MALLET B, MARTOS F, BLAMBERT L, et al. , 2014. Evidence for isolation-by-habitat among populations of an epiphytic orchid species on a small oceanic island [J]. PLoS ONE, 9(2): e87469.

    • MILÁ B, WARREN BH, HEEB P, et al. , 2010. The geographic scale of diversification on islands: genetic and morphological divergence at a very small spatial scale in the Mascarene grey white-eye (Aves: Zosterops borbonicus) [J]. BMC Evol Biol, 10(1): 158.

    • MOLES AT, LAFFAN SW, KEIGHERY M, et al. , 2020. A hairy situation: Plant species in warm, sunny places are more likely to have pubescent leaves [J]. J Biogeogr, 47(9): 1934-1944.

    • MOTA MR, PINHEIRO F, DOS SANTOS LEAL BS, et al. , 2020. From micro- to macro-evolution: insights from a Neotropical bromeliad with high population genetic structure adapted to rock outcrops [J]. Heredity (Edinb), 125(5): 353-370.

    • OH SH, 2015. Sea, wind, or bird: origin of Fagus multinervis (Fagaceae) inferred from chloroplast DNA sequences [J]. Korean J Plant Taxon, 45(3): 213-220.

    • PENG DL, YANG N, SONG B, et al. , 2015. Woolly and overlapping leaves dampen temperature fluctuations in reproductive organ of an alpine Himalayan forb [J]. J Plant Ecol, 8(2): 159-165.

    • POREMBSKI S, 2007. Tropical inselbergs: habitat types, adaptive strategies and diversity patterns [J]. Rev Bras Bot, 30(4): 579-586.

    • POREMBSKI S, BARTHLOTT W, 2012. Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions [M]. Berlin: Springer Science & Business Media: 103-176. PU L,

    • SUO JF, XUE YB, 2003. Molecular control of plant trichome development [J]. Acta Genet Sin, 30(11): 1078-1084. [普莉, 索金凤, 薛勇彪, 2003. 植物表皮毛发育的分子遗传控制 [J]. 遗传学报, 30(11): 1078-1084. ]

    • RUAS RDB, PAGGI GM, AGUIAR-MELO C, et al. , 2020. Strong genetic structure in Dyckia excelsa (Bromeliaceae), an endangered species found on ironstone outcrops in Pantanal, Brazil [J]. Bot J Linn Soc, 192(4): 691-705.

    • SÁNCHEZ-ACEVEDOT V, TORRES-MIRANDA A, GUTIÉRREZ-ARELLANO C, et al. , 2022. Variability in leaf morphological traits of an endemic Mexican oak (Quercus mexicana Bonpl. ) along an environmental gradientt [J]. Bot Sci, 100(3): 579-599.

    • SCHELLMANN S, KIRIK V, WADA T, et al. , 2002. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis [J]. EMBO J, 21(19): 5036-5046.

    • TAVARES MM, FERRO M, LEAL BSS, et al. , 2022. Speciation with gene flow between two Neotropical sympatric species (Pitcairnia spp. : Bromeliaceae) [J]. Ecol Evol, 12(5): e8834.

    • WU ZL, JIANG YX, 1997. Forest zoning in China [M]//China Forest Editorial Committee. Forest in China. Beijing: China Forestry Publishing House: 437-512. [吴中伦, 蒋有绪, 1997. 中国森林分区 [M]//中国森林编辑委员会. 中国森林. 北京: 中国林业出版社: 437-512. ]

    • XIE XF, YAN HF, WANG FY, et al. , 2012. Chloroplast DNA phylogeography of Primula ovalifolia in central and adjacent southwestern China: Past gradual expansion and geographical isolation [J]. J Syst Evol, 50(4): 284-294.

    • XU ZZ, ZHOU GS, 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass [J]. J Exp Bot, 59(12): 3317-3325.

    • YANG FS, QIN AL, LI YF, et al. , 2012. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau [J]. PLoS ONE, 7(5): e37196.

    • YANG J, VAZQUEZ L, CHEN XD, et al. , 2017. Development of chloroplast and nuclear DNA markers for Chinese oaks (Quercus Subgenus Quercus) and assessment of their utility as DNA barcodes [J]. Front Plant Sci, 8: 816.

    • YANG YC, ZHOU T, QIAN ZQ, et al. , 2021. Phylogenetic relationships in Chinese oaks (Fagaceae, Quercus): Evidence from plastid genome using low-coverage whole genome sequencing [J]. Genomics, 113(3): 1438-1447.

    • YANG ZY, YI TS, PAN YZ, et al. , 2012. Phylogeography of an alpine plant Ligularia vellerea (Asteraceae) in the Hengduan Mountains [J]. J Syst Evol, 50(4): 316-324.

    • ZHANG D, HAO GQ, GUO XY, et al. , 2019. Genomic insight into “sky island” species diversification in a mountainous biodiversity hotspot [J]. J Syst Evol, 57(6): 633-645.

    • ZHANG JW, ZHAO JJ, ZHOU Q, et al. , 2018. Progress in research of plant trichome [J]. Chin Bull Bot, 53(5): 726-737. [张继伟, 赵杰才, 周琴, 等, 2018. 植物表皮毛研究进展 [J]. 植物学报, 53(5): 726-737. ]

  • 参考文献

    • ARENA ET, RUEDEN CT, HINER MC, et al. , 2017. Quantitating the cell: turning images into numbers with ImageJ [J]. Wiley Interdiscip Rev Dev Biol, 6(2): e260.

    • ASHLEY MV, 2021. Answers blowing in the wind: A quarter century of genetic studies of pollination in oaks [J]. Forests, 12(5): 575.

    • BARBARÁ T, LEXER C, MARTINELLI G, et al. , 2008. Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A-geniculata, A-glaziouana and A-regina (Bromeliaceae) [J]. Heredity (Edinb), 101(3): 285-296.

    • BARBARÁ T, MARTINELLI G, FAY MF, et al. , 2007. Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae) [J]. Mol Ecol, 16(10): 1981-1992.

    • BYRNE M, KRAUSS SL, MILLAR MA, et al. , 2019. Persistence and stochasticity are key determinants of genetic diversity in plants associated with banded iron formation inselbergs [J]. Biol Rev Camb Philos Soc, 94(3): 753-772.

    • CHEN YX, CUI ZJ, YANG JQ, 2009. Influence of climate and tectonic movements on granite landforms in China [J]. J Geogr Sci, 19(5): 587-599.

    • CHEN DM, KANG HZ, LIU CJ, 2011. An overview on the potential Quaternary glacial refugia of plants in China mainland [J]. Bull Bot Res, 31(5): 623-632. [陈冬梅, 康宏樟, 刘春江, 2011. 中国大陆第四纪冰期潜在植物避难所研究进展 [J]. 植物研究, 31(5): 623-632. ]

    • CONCEIÇÃO AA, PIRANI JR, MEIRELLES ST, 2007. Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil [J]. Rev Bras Bot, 30(4): 641-656.

    • CUI ZJ, YANG JQ, CHEN YX, 2007. The type and evolution of the granite landforms in China [J]. Acta Geograph Sin, 62(7): 675-690. [崔之久, 杨建强, 陈艺鑫, 2007. 中国花岗岩地貌的类型特征与演化 [J]. 地理学报, 62(7): 675-690. ]

    • DENG M, JIANG XL, SONG YG, et al. , 2017. Leaf epidermal features of Quercus Group Ilex (Fagaceae) and their application to species identification [J]. Rev Palaeobot Palynol, 237: 10-36.

    • DUAN H, TONG H, LIU YQ, et al. , 2019. Research advances in the effect of heat and drought on rice and its mechanism [J]. Chin J Rice Sci, 33(3): 206-218. [段骅, 佟卉, 刘燕清, 等, 2019. 高温和干旱对水稻的影响及其机制的研究进展 [J]. 中国水稻科学, 33(3): 206-218. ]

    • Editorial Committee of Chinese Flora, Chinese Academy of Sciences, 1998. Flora of China: Volume 22. Angiosperms, Dicotyledoneae, Fagaceae, Ulmaceae, Rhoipteleaceae [M]. Beijing: Science Press: 255-257. [中国科学院中国植物志编辑委员会, 1998. 中国植物志: 第二十二卷. 被子植物门双子叶植物纲壳斗科榆科马尾树科 [M]. 北京: 科学出版社: 255-257. ]

    • FELICIANO DC, De GODOY SM, MARQUES DA SILVA JF, et al. , 2022. Landscape genetics reveal low diversity and adaptive divergence in Portulaca hatschbachii (Portulacaceae): an endangered species endemic to rocky outcrops of the Atlantic Forest [J]. Bot J Linn Soc, 200(1): 116-141.

    • HE K, JIANG XL, 2014. Sky islands of southwest China. I: an overview of phylogeographic patterns [J]. Chin Sci Bull, 59(7): 585-597.

    • HEGEBARTH D, BUSCHHAUS C, WU M, et al. , 2016. The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells [J]. Plant J, 88(5): 762-774.

    • HENNERON L, SARTHOU C, DE MASSARY J, et al. , 2019. Habitat diversity associated to island size and environmental filtering control the species richness of rock-savanna plants in neotropical inselbergs [J]. Ecography, 42(9): 1536-1547.

    • HETHERINGTON AM, WOODWARD FI, 2003. The role of stomata in sensing and driving environmental change [J]. Nature, 424: 901-908.

    • HIPP AL, MANOS PS, HAHN M, et al. , 2020. Genomic landscape of the global oak phylogeny [J]. New Phytol, 226(4): 1198-1212.

    • JIANG ZZ, ZHU HG, ZHANG Q, et al. , 2015. Progress of influence of low temperature on plant photosynthesis [J]. Crops, (3): 23-28. [姜籽竹, 朱恒光, 张倩, 等, 2015. 低温胁迫下植物光合作用的研究进展 [J]. 作物杂志, (3): 23-28. ]

    • LIANG SJ, WEN FC, 2010. Morphologic characteristics of the miarolitic alkali feldspar granite in Taimushan Mountian Fujian Province [J]. Geology Fujian, 29(4): 334-346. [梁诗经, 文斐成, 2010. 福建太姥山晶洞碱长花岗岩地貌特征 [J]. 福建地质, 29(4): 334-346. ]

    • LIU XW, BARTHOLOMEW E, CAI YL, et al. , 2016. Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L) [J]. Front Plant Sci, 7: 1187.

    • LUO D, YUE JP, SUN WG, et al. , 2016. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains: first insights from comparative phylogeography of four perennial herbs [J]. J Biogeogr, 43(1): 31-43.

    • MA YL, WANG L, LIU YX, et al. , 2015. Uptates on stress tolerance of main accessory structures and their synergetic interaction in desert plants [J]. Plant Physiol J, 51(11): 1821-1836. [马亚丽, 王璐, 刘艳霞, 等, 2015. 荒漠植物几种主要附属结构的抗逆功能及其协同调控的研究进展 [J]. 植物生理学报, 51(11): 1821-1836. ]

    • MALLET B, MARTOS F, BLAMBERT L, et al. , 2014. Evidence for isolation-by-habitat among populations of an epiphytic orchid species on a small oceanic island [J]. PLoS ONE, 9(2): e87469.

    • MILÁ B, WARREN BH, HEEB P, et al. , 2010. The geographic scale of diversification on islands: genetic and morphological divergence at a very small spatial scale in the Mascarene grey white-eye (Aves: Zosterops borbonicus) [J]. BMC Evol Biol, 10(1): 158.

    • MOLES AT, LAFFAN SW, KEIGHERY M, et al. , 2020. A hairy situation: Plant species in warm, sunny places are more likely to have pubescent leaves [J]. J Biogeogr, 47(9): 1934-1944.

    • MOTA MR, PINHEIRO F, DOS SANTOS LEAL BS, et al. , 2020. From micro- to macro-evolution: insights from a Neotropical bromeliad with high population genetic structure adapted to rock outcrops [J]. Heredity (Edinb), 125(5): 353-370.

    • OH SH, 2015. Sea, wind, or bird: origin of Fagus multinervis (Fagaceae) inferred from chloroplast DNA sequences [J]. Korean J Plant Taxon, 45(3): 213-220.

    • PENG DL, YANG N, SONG B, et al. , 2015. Woolly and overlapping leaves dampen temperature fluctuations in reproductive organ of an alpine Himalayan forb [J]. J Plant Ecol, 8(2): 159-165.

    • POREMBSKI S, 2007. Tropical inselbergs: habitat types, adaptive strategies and diversity patterns [J]. Rev Bras Bot, 30(4): 579-586.

    • POREMBSKI S, BARTHLOTT W, 2012. Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions [M]. Berlin: Springer Science & Business Media: 103-176. PU L,

    • SUO JF, XUE YB, 2003. Molecular control of plant trichome development [J]. Acta Genet Sin, 30(11): 1078-1084. [普莉, 索金凤, 薛勇彪, 2003. 植物表皮毛发育的分子遗传控制 [J]. 遗传学报, 30(11): 1078-1084. ]

    • RUAS RDB, PAGGI GM, AGUIAR-MELO C, et al. , 2020. Strong genetic structure in Dyckia excelsa (Bromeliaceae), an endangered species found on ironstone outcrops in Pantanal, Brazil [J]. Bot J Linn Soc, 192(4): 691-705.

    • SÁNCHEZ-ACEVEDOT V, TORRES-MIRANDA A, GUTIÉRREZ-ARELLANO C, et al. , 2022. Variability in leaf morphological traits of an endemic Mexican oak (Quercus mexicana Bonpl. ) along an environmental gradientt [J]. Bot Sci, 100(3): 579-599.

    • SCHELLMANN S, KIRIK V, WADA T, et al. , 2002. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis [J]. EMBO J, 21(19): 5036-5046.

    • TAVARES MM, FERRO M, LEAL BSS, et al. , 2022. Speciation with gene flow between two Neotropical sympatric species (Pitcairnia spp. : Bromeliaceae) [J]. Ecol Evol, 12(5): e8834.

    • WU ZL, JIANG YX, 1997. Forest zoning in China [M]//China Forest Editorial Committee. Forest in China. Beijing: China Forestry Publishing House: 437-512. [吴中伦, 蒋有绪, 1997. 中国森林分区 [M]//中国森林编辑委员会. 中国森林. 北京: 中国林业出版社: 437-512. ]

    • XIE XF, YAN HF, WANG FY, et al. , 2012. Chloroplast DNA phylogeography of Primula ovalifolia in central and adjacent southwestern China: Past gradual expansion and geographical isolation [J]. J Syst Evol, 50(4): 284-294.

    • XU ZZ, ZHOU GS, 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass [J]. J Exp Bot, 59(12): 3317-3325.

    • YANG FS, QIN AL, LI YF, et al. , 2012. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau [J]. PLoS ONE, 7(5): e37196.

    • YANG J, VAZQUEZ L, CHEN XD, et al. , 2017. Development of chloroplast and nuclear DNA markers for Chinese oaks (Quercus Subgenus Quercus) and assessment of their utility as DNA barcodes [J]. Front Plant Sci, 8: 816.

    • YANG YC, ZHOU T, QIAN ZQ, et al. , 2021. Phylogenetic relationships in Chinese oaks (Fagaceae, Quercus): Evidence from plastid genome using low-coverage whole genome sequencing [J]. Genomics, 113(3): 1438-1447.

    • YANG ZY, YI TS, PAN YZ, et al. , 2012. Phylogeography of an alpine plant Ligularia vellerea (Asteraceae) in the Hengduan Mountains [J]. J Syst Evol, 50(4): 316-324.

    • ZHANG D, HAO GQ, GUO XY, et al. , 2019. Genomic insight into “sky island” species diversification in a mountainous biodiversity hotspot [J]. J Syst Evol, 57(6): 633-645.

    • ZHANG JW, ZHAO JJ, ZHOU Q, et al. , 2018. Progress in research of plant trichome [J]. Chin Bull Bot, 53(5): 726-737. [张继伟, 赵杰才, 周琴, 等, 2018. 植物表皮毛研究进展 [J]. 植物学报, 53(5): 726-737. ]