en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王迤翾(1997—),硕士研究生,研究方向为森林培育与林木育种,(E-mail)414714577@qq.com。

通讯作者:

朱宁华,教授,博士研究生导师,研究方向为石漠化治理与森林培育,(E-mail)zhuninghua@yahoo.com。

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2024)03-0477-11

DOI:10.11931/guihaia.gxzw202305027

参考文献
BA I C, 2016. Spatial structure parameters and the application on studying structure dynamics of natural Quercus aliena var. acuteserrata forest [D]. Beijing: Chinese Academy of Forestry. [白超, 2016. 空间结构参数及其在锐齿栎天然林结构动态分析中的应用[D]. 北京: 中国林业科学研究院. ]
参考文献
BAO SD, 2011. Agrochemical analysis of soil [M]. Beijing: China Agricultural Press: 25-250. [鲍士旦, 2011. 土壤农化分析[M]. 北京: 中国农业出版社: 25-250. ]
参考文献
CHEN FH, WU SH, CUI P, et al. , 2020. Progress of applied research of physical geography and living environment in China from 1949 to 2019 [J]. Acta Geogr Sin, 75(9): 1799-1830. [陈发虎, 吴绍洪, 崔鹏, 等, 2020. 1949—2019年中国自然地理学与生存环境应用研究进展[J]. 地理学报, 75(9): 1799-1830. ]
参考文献
CHEN SS, ZHU NH, ZHOU GY, et al. , 2022. Vegetation and soil physical characteristics of artificial arbor forests under different grades of rocky desertification [J]. Ecol Environ Sci, 31(1): 52-61. [陈双双, 朱宁华, 周光益, 等, 2022. 不同等级石漠化环境下人工乔木林的植被与土壤物理特征[J]. 生态环境学报, 31(1): 52-61. ]
参考文献
CHEN YN, YANG H, MA SY, et al. , 2015. Spatial structure diversity of semi-natural and plantation stands of Larix gmelini in Changbai Mountains, northeastern China [J]. J Beijing For Univ, 37(12): 48-58. [陈亚南, 杨华, 马士友, 等, 2015. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 37(12): 48-58. ]
参考文献
CURTIS JT, MCINTOSH RP, 1951. An upland forest continuum in the prairie-forest border region of Wisconsin[J]. Ecol, 32(3): 476-496.
参考文献
DING H, YANG YF, XU HG, et al. , 2015. Species composition and community structure of the typical evergreen broad-leaved forest in the Wuyi Mountains of Southeastern China [J]. Acta Ecol Sin, 35(4): 1142-1154. [丁晖, 杨云方, 徐海根, 等, 2015. 武夷山典型常绿阔叶林物种组成与群落结构[J]. 生态学报, 35(4): 1142-1154. ]
参考文献
FANG YT, MO JM, PER G, et al. , 2004. Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: a review [J]. Acta Ecol Sin, 24(7): 1523-1531. [方运霆, 莫江明, PER G, 等, 2004. 森林土壤氮素转换及其对氮沉降的响应[J]. 生态学报, 24(7): 1523-1531. ]
参考文献
FENG J, WANG QC, LU AJ, et al. , 2021. Plant diversity and soil characteristic of larch-manchurian ash mixed stand in eastern Liaodong [J]. J NW A & F Univ, 19(6): 2-12. [冯健, 王骞春, 陆爱君, 等, 2021. 辽东山区落叶松-水曲柳混交林植物多样性和土壤特性研究[J]. 西北农林科技大学学报, 19(6): 2-12. ]
参考文献
FENG YH, LI HG, WANG LQ, et al. , 2011. Genetic dissection for the reproductive fitness of Liriodendron derived from offsprings of complete-diallel crosses [J]. Sci Silv Sin, 47(9): 43-49. [冯源恒, 李火根, 王龙强, 等, 2011. 鹅掌楸属树种繁殖性能的遗传分析[J]. 林业科学, 47(9): 43-49. ]
参考文献
HAN J, WANG XJ, DUAN HY, 2019. Study on forest structure of coniferous and broad-leaved mixed forest in Jingouling Forest Farm of Wangqing county of jilin province [J]. J Cent S Univ For Technol, 39(1): 58-63. [韩金, 王新杰, 段皓赟, 2019. 金沟岭云冷杉针阔混交林林分结构研究[J]. 中南林业科技大学学报, 39(1): 58-63. ]
参考文献
HE TX, HU BQ, ZHANG JB, et al. , 2020. Fine root effects on the retention and availability of soil carbon and nitrogen after ten years of vegetation restoration in a karst slope ecosystem [J]. Acta Ecol Sin, 40(23): 8638-8648. [贺同鑫, 胡宝清, 张建兵, 等, 2020. 植被恢复十年喀斯特坡地细根对土壤碳氮存留与可利用性的影响[J]. 生态学报, 40(23): 8638-8648. ]
参考文献
HUANG JQ, 1998. Embryology reasons for lower seed-setting in Liriodendron chinense [J]. J Zhejiang For Coll, 15(3): 267-273. [黄坚钦, 1998. 鹅掌楸结籽率低的胚胎学原因探讨[J]. 浙江林学院学报, 15(3): 269-273. ]
参考文献
HUANG MZ, LAN JC, WEN LX, et al. , 2021. Response of soil quality to different ecological restoration models in a karst rocky desertification area [J]. J For Environ, 41(2): 148-156. [黄明芝, 蓝家程, 文柳茜, 等, 2021. 喀斯特石漠化地区土壤质量对生态修复的响应[J]. 森林与环境学报, 41(2): 148-156. ]
参考文献
HUI GY, GADOW KV, 2003. Quantitative analysis of forest spatial structure [M]. Beijing: Science and Technology of China Press: 20-22. [惠刚盈, GADOW KV, 2003. 森林空间结构量化分析方法[M]. 北京: 中国科学技术出版社: 20-22. ]
参考文献
LI AD, YU LF, 2009. Afforestation technique study based on water consumption features of Zanthoxylum bungeanum in Guizhou karst area [J]. Carsol Sin, 28(2): 189-193. [李安定, 喻理飞, 2009. 贵州省喀斯特区基于林木耗水特征的顶坛花椒造林整地技术[J]. 中国岩溶, 28(2): 189-193. ]
参考文献
LI GJ, MATTEO R, WAN L, et al. , 2020. Preliminary characterization of underground hydrological processes under multiple rainfall conditions and rocky desertification degrees in karst regions of Southwest China [J]. Water, 12(2): 594.
参考文献
LI M, MA HC, 2003. The review of the asexual propagation on Magnoliaceae [J]. J SW For Coll, 23(2): 92-96. [黎明, 马焕成, 2003. 木兰科植物无性繁殖研究概况[J]. 西南林学院学报, 23(2): 92-96. ]
参考文献
LI SB, ZHOU LL, CHEN BY, et al. , 2019. Effects of tree species transition on stoichiometric ratios of soil carbon, nitrogen and phosphorus in subtropical areas [J]. J For Environ, 39(6): 575-583. [李树斌, 周丽丽, 陈宝英, 等, 2019. 亚热带树种转换对林地土壤碳氮磷计量比的影响[J]. 森林与环境学报, 39(6): 575-583. ]
参考文献
LI TT, RONG L, WANG MJ, et al. , 2021. Dynamic changes in niche and interspecific association of major species of karst secondary forest in Central Guizhou [J]. J Trop Subtrop Bot, 29(1): 9-19. [李婷婷, 容丽, 王梦洁, 等, 2021. 黔中喀斯特次生林主要物种的生态位及种间联结性动态变化[J]. 热带亚热带植物学报, 29(1): 9-19. ]
参考文献
LI YB, HOU JJ, XIE DT, 2002. The recent development of research on karst ecology in Southwest China [J]. Sci Geogr Sin, 22(3): 365-370. [李阳兵, 侯建筠, 谢德体, 2002. 中国西南岩溶生态研究进展[J]. 地理科学, 22(3): 365-370. ]
参考文献
LI ZH, NIE KY, 2011. Growth conditions and productivity of Cinnamomum camphora in karst areas of Western Hunan [J]. J Cent S Univ For Technol, 31(3): 12-16. [李志辉, 聂侃谚, 2011. 湘西喀斯特地区香樟生长及生产力研究[J]. 中南林业科技大学学报, 31(3): 12-16. ]
参考文献
LIU LL, ZHOU GY, DANG P, et al. , 2022. Differences of soil fungal community structure under three afforestation modes in rocky desertification region of Western Hunan Province [J]. Acta Ecol Sin, 42(10): 4150-4159. [刘立玲, 周光益, 党鹏, 等, 2022. 湘西石漠化区3种造林模式土壤真菌群落结构差异[J]. 生态学报, 42(10): 4150-4159. ]
参考文献
MA TS, DENG XW, CHEN L, et al. , 2020. The soil properties and their effects on plant diversity in different degrees of rocky desertification[J]. Sci Total Environ, 736: 139667.
参考文献
MA ZQ, LIU QJ, WANG HM, et al. , 2011. The growth pattern of Pinus elliottii plantation in central subtropical China [J]. Acta Ecol Sin, 31(6): 1525-1537. [马泽清, 刘琪璟, 王辉民, 等, 2011. 中亚热带湿地松人工林生长过程[J]. 生态学报, 31(6): 1525-1537. ]
参考文献
National Soil Census Office, 1992. China soil census technology [M]. Beijing: Agricultural Publishing House. [全国土壤普查办公室, 1992. 中国土壤普查技术[M]. 北京: 农业出版社. ]
参考文献
PENG YH, HE QF, TAN CQ, et al. , 2016. Quantitative analysis of stand spatial structure of a rare species Kmeria septentrionalis in Guangxi [J]. Chin J Ecol, 35(2): 363-369. [彭玉华, 何琴飞, 谭长强, 等, 2016. 广西极小种群单性木兰群落空间结构量化[J]. 生态学杂志, 35(2): 363-369. ]
参考文献
PU JW, ZHAO XQ, MIAO PP, et al. , 2020. Integrating multisource RS data and GIS techniques to assist the evaluation of resource-environment carrying capacity in karst mountainous area [J]. J Mount Sci, 17(10): 2528-2547.
参考文献
SHENG MY, XIONG KN, CUI GY, et al. , 2015. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou, China [J]. Acta Ecol Sin, 35(2): 434-448. [盛茂银, 熊康宁, 崔高仰, 等, 2015. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J]. 生态学报, 35(2): 434-448. ]
参考文献
State Forestry Administration, 1999. Forestry industry standard of the people's republic of China - forest soil analysis method [M] Beijing: China Industry Standards Press: 1210-1275. [国家林业局, 1999. 中华人民共和国林业行业标准-森林土壤分析方法[M]. 北京: 中国行业标准出版社: 1210-1275. ]
参考文献
SUN YL, ZHOU JX, PANG DB, et al. , 2018. Soil moisture dynamic change of different vegetation restoration patterns in karst faulted basins [J]. For Res, 31(4): 104-112. [孙永磊, 周金星, 庞丹波, 等, 2018. 喀斯特断陷盆地不同植被恢复模式土壤水分动态变化[J]. 林业科学研究, 31(4): 104-112. ]
参考文献
TAO GH, BU YK, XUE WP, et al. , 2020. Relationship between understory diversity and stand spatial structure in air-drilled Pinus tabulaeformis forests of different densities [J]. J For Environ, 40(2): 171-177. [陶观护, 卜元坤, 薛卫鹏, 等, 2020. 不同密度油松飞播林灌草多样性与林分空间结构关系[J]. 森林与环境学报, 40(2): 171-177. ]
参考文献
WANG Q, ZHANG JC, TIAN YL, et al. , 2012. Stand spatial structure of a natural mixed forest in the Fengyang Mountains of Zhejiang [J]. J Zhejiang Agric For Univ, 29(6): 875-882. [王群, 张金池, 田月亮, 等, 2012. 浙江凤阳山天然混交林林分空间结构分析[J]. 浙江农林大学学报, 29(6): 875-882. ]
参考文献
WU XY, YANG H, LÜ YJ, et al. , 2019. Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests [J]. J Beijing For Univ, 41(1): 64-72. [吴晓永, 杨华, 吕延杰, 等, 2019. 云杉—白桦混交林结构特征分析[J]. 北京林业大学学报, 41(1): 64-72. ]
参考文献
YANG M, CAI TJ, JU CY, et al. , 2019. Evaluating spatial structure of a mixed broad-leaved Korean pine forest based on neighborhood relationships in Mudanfeng National Nature Reserve, China [J]. J For Res, 30(4): 1375-1381.
参考文献
YUAN XM, ZHU NH, ZHOU GY, et al. , 2022, Spatial structure of the 42-year-old Pinus elliottii-Cinnamomum camphora mixed plantation in the karst area of western Hunan [J]. J Cent S Univ For Technol, 42(4): 49-58. [袁星明, 朱宁华, 周光益, 等, 2022. 湘西喀斯特地区42年生湿地松-樟树人工混交林空间结构研究[J]. 中南林业科技大学学报, 42(4): 49-58. ]
参考文献
YUAN Y, LI XY, XIONG DH, et al. , 2019. Effects of restoration age on water conservation function and soil fertility quality of restored woodlands in phosphate mined-out areas [J]. Environ Earth Sci, 78(23): 1-14.
参考文献
ZENG ZX, WANG KL, LIU XL, et al. , 2015. Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi [J]. Chin J Plant Ecol, 39(7): 682-693. [曾昭霞, 王克林, 刘孝利, 等, 2015. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J]. 植物生态学报, 39(7): 682-693. ]
参考文献
ZHANG HY, YANG Y, LI Y, 2015. Discussion on ecosystem degradation and restoration in karst rock desertification areas of southwest China [J]. Ecol Sci, 34(4): 169-174. [张红玉, 杨勇, 李勇, 2015. 西南喀斯特石漠化区域生态系统退化与恢复探讨[J]. 生态科学, 34(4): 169-174. ]
参考文献
ZHANG JY, DAI MH , WANG LC, et al. , 2015. The challenge and future of rocky desertification control in Karst areas in Southwest China [J]. Solid Earth Discuss, 7(4): 3271-3292.
参考文献
ZHU NH, SHANG H, LIU LL, et al. , 2020. Afforestation in karst area [M]. England: IntechOpen: 1-2.
目录contents

    摘要

    为探究湘西石漠化区湿地松-马褂木人工混交林林分结构及土壤理化性质,该研究以湘西石漠化地区湿地松-马褂木人工针阔混交林为对象,利用植物群落学分析和野外取样检测的方法,分析林分结构和土壤理化性质,运用Winklemass 1.0计算林分空间结构参数,并用三维离散随机变量分析了优势种的空间分布格局。结果表明:(1)林分内胸径(DBH)≥2 cm的林木株数为897 plants·hm-2,隶属于15科16属。主林层为湿地松,平均DBH为32.3 cm,重要值为44.2%;次林层为阔叶树,中幼龄林木居多,其中樟树、马褂木为优势树种,重要值分别为17.1%和13.2%。此外,还存在较多处于劣势生态位的天然更新种。(2)林木的水平分布格局偏向于随机分布( =0.503);林分整体趋向于中庸偏劣势过渡的态势(Ū=0.505);种间隔离程度较高( =0.689),林木混交状况良好。空间结构参数的三维离散随机变量表明,湿地松87.3%为优势和亚优势,马褂木41.7%为亚优势、26.9%为中庸态势,樟树23.5%为中庸态势、56.8%为劣势和绝对劣势。(3)林分土壤pH值趋于中性;与撂荒地相比,林分土壤的容重、持水量、孔隙度、有机碳、全钾、全氮、全磷等因子均明显改善,但整体而言,林分土壤仍然较为贫瘠,局部土壤紧实,保水能力差。综上表明,湿地松、马褂木作为先锋树种生长43年后,林分有向异龄林、强度混交林演替的趋势;林分内中幼龄阔叶树株数占比较大,近熟林出现断层,老龄针叶树占据优势生态区位,需抽针补阔、间针育阔,择伐劣势木,促使林分向阳生性阔叶树为主、中生性和耐阴性阔叶树为次的林分结构演替。该研究结果为湘西石漠化区的植被恢复、人工林结构优化和土壤改良提供了理论依据。

    Abstract

    To explore the forest structure and soil physicochemical properties of the artificial mixed forest of Pinus elliottii and Liriodendron chinense in the rocky desertification area of Western Hunan, taking Pinus elliottii and Liriodendron chinense artificial coniferous and broad-leaved mixed forest in the rocky desertification area of Western Hunan as the research object, this paper provides a theoretical basis for vegetation restoration, plantation structure optimization, and soil improvement in this area. The stand structure and soil physicochemical properties of existing stands were analyzed using plant community analysis and field sampling detection methods. Winklemass 1.0 was used to calculate the spatial structure parameters of the stands, and three-dimensional discrete random variables were used to analyze the spatial distribution pattern of dominant species. The results were as follows: (1) A total of trees of 897 plants·hm-2 with diameter at breast height (DBH) ≥ 2 cm in the stand, belonging to 15 families and 16 genera. The main forest layer was Pinus elliottii, with an average DBH of 32.3 cm and an important value of 44.2%; the secondary forest layer was the broad-leaved tree, with the majority of young and middle-aged trees. Cinnamomum camphora and Liriodendron chinense were the dominant species, with important values of 17.1% and 13.2%, respectively. In addition, there were many natural regeneration species at the disadvantaged ecological niche. (2) The horizontal distribution pattern of trees tended to be random ( =0.503); the overall trend of forest stands tended to transition towards mediocrity and disadvantage (Ū=0.505); the degree of interspecific isolation was relatively high ( =0.689), and the mixed forest was in good condition. Three-dimensional discrete random variables of spatial structure parameters showed that 87.3% of Pinus elliottii was dominant and sub-dominant, 41.7% of Liriodendron chinense was sub-dominant, 26.9% was moderate, 23.5% of Cinnamomum camphora was moderate, 56.8% was inferior and absolute inferior. (3) The pH value of forest soil tended to be neutral; compared with abandoned land, the bulk density, water capacity, porosity, organic carbon, total potassium, total nitrogen, and total phosphorus of the forest soil had significantly improved. However, the forest soil was still relatively barren, with local soil compaction and poor water retention ability. To sum up, after 43 years of growth of Pinus elliottii and Liriodendron chinense as pioneer species, the stand has a trend of succession to the uneven-aged forest and intensive mixed forest. However, the number of young and middle-aged broad-leaved trees in the forest is relatively large, and faults appear in the near mature forest. The elderly coniferous trees occupy the dominant ecological location. Needles need to be drawn to supplement the broad-leaved trees, interspersed to cultivate the broad-leaved trees, and selective felling the inferior trees, to promote the structural succession of the forest with mainly sunny broad-leaved trees, followed by mesophytic and shade-tolerant broad-leaved trees. The results of this study provide a theoretical basis for vegetation restoration, plantation structure optimization and soil improvement in the rocky desertification area of Western Hunan.

  • 湘西武陵山是印度和欧亚两个板块在第三纪末碰撞后形成,海拔上升导致环境突变、土壤侵蚀活动剧烈,加之森林采伐、农业耕作等人为因素反作用于区域生态平衡(Zhu et al.,2020),致使石漠化成为中国西南地区极为严峻的生态问题,制约了当地的社会、经济和人文发展(陈发虎等,2020)。石漠化地区生态系统十分脆弱,原始植被一旦遭受破坏,生态环境难以恢复到原本的面貌(Pu et al.,2020)。此外,石漠化会加剧水土流失、基岩大面积裸露,裸岩附近的土壤养分和水分会一直处于亏缺状态(孙永磊等,2018),林地生产力也会随之逐渐衰退,甚至完全丧失(Li et al.,2020)。由于石漠化的生态脆弱性,因此植被恢复与重建工作已经成为我国西南石漠化地区生态治理的重心与难点(张红玉等,2015)。然而,石漠化地区土壤承载力低、环境容纳量小,导致植被生长发育受限(Zhang et al.,2015),在长期的生态修复和森林经营工作中,仍然面临幼苗成活率低、林木郁闭成林后质量低下等问题(李安定和喻理飞,2009)。

  • 森林的基础功能与林分质量密切相关,林分质量的高低对森林生态系统的稳定和森林的可持续经营具有很大影响(陶观护等,2020)。林分空间结构是由林木与相邻木的属性及其生态区位联合构建的结构单元,是森林生长演替的驱动因子。林分空间结构参数的定量分析可以准确描述林木之间的空间分布格局、竞争态势和种间关系,分析现实林分的林木质量和生长潜力,在之后的森林经营中可作为决策的关键指标(白超,2016)。土壤理化性质则是成土母质、环境因子和生物性质的综合反映,它影响着植被的萌生、发育和演替过程,同时植物的群落结构、凋落物的数量与性质会影响土壤养分的分布与循环(Yuan et al.,2019)。石漠化地区的植被恢复决定了林地土壤恢复改良的效果,凋落物的分解和沉积有利于改善石漠化地区土壤水分与养分被限制的情况,直至形成“植被-土壤-水分-基岩”协调的良性生态系统(贺同鑫等,2020;黄明芝等,2021)。因此,利用林分空间结构分析石漠化地区植被恢复治理的效果,制定林分优化调整的方案,对维持和提高森林生态的稳定、改良土壤具有重要意义(Yang et al.,2019)。

  • 本研究以湘西石漠化地区湿地松-马褂木人工针阔混交林为对象,分析林分的树种组成、径级分布、林分空间结构特征和土壤理化性质,拟探讨以下问题:(1)湘西石漠化地区湿地松-马褂木人工林演替后植被结构特征;(2)营造针阔混交林与石漠化地区土壤因子的响应机制;(3)为今后湘西石漠化地区人工林结构优化和植被恢复提出思路与建议。以期通过以上问题的研究,为石漠化地区的生态修复提供理论依据。

  • 1 材料与方法

  • 1.1 试验地和林分概况

  • 武陵山石漠化综合治理国家长期科研基地(110°13′ E、29°03′ N)地处湖南省西北部的永顺县青坪国有林场,海拔320~820 m,土壤以红黄壤为主,土层厚度不一。气候为东南季风和中亚热带湿润气候,年均降雨量1 300~1 500 mm,年均日照时数1 240~1 440 h,年均温度15.8~16.9℃。20世纪60年代初,林场开始生态恢复工作,如今造林成果显著。试验地原名“茅山坡”,寓意为漫山茅草、岩石众多,于1978年造林,平均坡度15°,平均海拔467 m。树种配置为湿地松(Pinus elliottii)和马褂木(Liriodendron chinense)按7∶3的比例进行株间混交种植,行距2.5 m,初植密度1 600 plants·hm-2。经过多年的林分经营与自然更新,林木长势优良,郁闭度达0.85以上。

  • 1.2 样地调查和取样

  • 2021年7月,在试验地中设置4块0.16 hm2的标准样地,分为S1、S2、S3、S4,采用相邻网格法将其分为16个10 m × 10 m的小样方,以网格左下角为坐标原点建立平面直角坐标系。每木检尺标准DBH≥2 cm,记录树种、胸径、树高、冠幅、XY坐标,并挂牌标号。在每块样地内间隔20 m取3个点,除去枯枝落叶及腐殖质,用螺旋土钻和环刀取土器(型号Edelman,产地Germany;环刀规格D=50.46 mm,H=50 mm,V=100 cm3)分层取0~15 cm、15~30 cm、30~50 cm的土壤,测定土壤水分物理性质。同时,每个样点取约500 g的土壤装入样品袋,剔除杂质,风干后研磨,测定土壤化学性质。撂荒地布设3块20 m × 20 m重复样地(CK),土壤采样方法同上。

  • 1.3 物种重要值计算

  • Curtis和Mcintosh(1951)首次提出了“重要值”(important value),用于全面反映一种植物在群落中的功能与地位的指标(Curtis &Mcintosh,1951)。采用样方调查的方法,获取林木株数、胸径、树高等参数,计算林木的相对多度、相对频率、相对优势度、重要值(冯健等,2021)。

  • 1.4 林分空间结构分析

  • 采用4株相邻木构成的空间结构单元来分析林分空间结构的信息特征(表1),用角尺度分析林木个体在水平空间的分布格局,用大小比数分析林木相对大小差异状况,用混交度分析林分的树种空间配置和隔离程度(惠刚盈和Gadow,2003)。

  • 1.5 三维离散随机变量分布

  • 用三维离散随机变量的联合概率分析林分空间结构,可以更加直观地表明单种林木的空间态势(吴晓永等,2019)。利用4块样地优势木的平均混交度、平均角尺度和平均大小比数交叉联合,得到125个三维离散随机变量(X、Y、Z),绘制优势木林分空间结构参数的3D堆积条状图。

  • 表1 林分空间结构各指标计算公式及说明

  • Table1 Calculation formula and instruction of various indexes of stand spatial structure

  • 1.6 土壤理化性质测定

  • 土壤物理性质测定:土壤密度、最大持水量、最小持水量、毛管孔隙度、总孔隙度参照《中华人民共和国林业行业标准-森林土壤分析方法》(国家林业局,1999)中的方法。土壤化学性质测定:土壤酸碱度、土壤有机碳、全氮、全磷、全钾参照《土壤农化分析》(鲍士旦,2011)中的方法。

  • 1.7 数据统计分析

  • 用Microsoft Office Excel2016处理数据,用SPSS 26进行数据描述性分析,用Winkelmass 1.0计算林分空间结构参数,用Origin 2018绘制柱状图、3D堆积条状图、箱线图。

  • 2 结果与分析

  • 2.1 针阔混交林乔木层物种组成特征

  • 林分中胸径≥2 cm的乔木公顷株数为897 plants·hm-2,隶属于15科16属。由表2可知,主林层为湿地松,公顷株数为259 plants·hm-2,平均胸径为32.3 cm,平均树高为23.5 m,相对优势度高达77.7%,重要值为44.2%,表明此林分中湿地松种群生长状况优良,林龄为成熟林至过熟林,林木蓄积量极高,是林分中绝对的优势种。次林层为阔叶树,中幼龄林占多数,其中马褂木的平均胸径为12.9 cm,平均树高为14.9 m,重要值为13.2%,表明马褂木能在此地较好地生长与自然更新;樟树的平均胸径为10.9 cm,平均树高为10.7 m,相对多度为22.3%,重要值为17.1%,樟树作为天然更新树种,凭其优良的繁衍能力与生长抗逆性,在试验地广泛更新。油桐(Vernicia fordii)、板栗(Castanea mollissima)、苦楝(Melia azedarach)、喜树(Camptotheca acuminata) 等阔叶树也均是天然更新树种,总公顷株数为269 plants·hm-2,种子为远距离传播,在基地内均存在相对应的林分,受到立地条件、林分竞争等多种因子的影响,这些天然更新种均处于劣势的生态位,但其存在填补了林间空隙,形成了生态更加稳定的针阔混交复层异龄林。除此之外,林分中偶见胸径小于2 cm的单木、更新的幼树和木质藤本等,它们处于林分的底层,增加了林下湿度,丰富了物种多样性,使林分的群落结构更加稳定。

  • 表2 样地乔木层树种组成

  • Table2 Tree species composition of tree layer in sample plot

  • 2.2 林分径阶结构和树高结构特征

  • 分别以2 cm和2 m为分级对林木的胸径和树高进行分析(图1),试验地内林木的径阶范围为2~55 cm、树高范围为2.5~28.0 m,径级和树高的分布均呈双峰形。林分中径级4~16 cm的林木株数最多,占林分总株数的67.2%,其中樟树、马褂木、其他树种的株数分别占林分总株数的19.3%、15.7%、28.0%,极少存在径级大于20 cm的其他树种。而湿地松径级大于28 cm的株数占林分总株数的23.3%,径级大于40 cm的绝大多数为湿地松(占林分总株数的9.58%),但湿地松极少存在自然更新。林分中树高小于16 m的林木以樟树、马褂木和其他树种的中幼龄林为主,占林分总株数的61.7%;树高大于16 m的林木则大多数为湿地松,占林分总株数的23.9%。林分的径阶结构和树高结构特征都表明该林分内中幼龄林数量占比较大,近熟林出现断层,只有湿地松种群处于成熟林至过熟林阶段。在今后的森林经营中,需要进行适当的人工干预,协调种间关系,促使林分向更稳定的森林群落演替。

  • 2.3 林分空间结构

  • 由图2可知,Wi=0.50的相对频率为0.614,表明随机分布是林分内大多数林木的分布方式。Wi=0、Wi=0.25、Wi=0.75、Wi=1.00的相对频率分别为0、0.214、0.119、0.053,表明林分内没有绝对均匀分布的林木个体,均匀分布、不均匀分布、绝对不均匀分布的林木个体总占比为0.386。林分平均角尺度为0.503,根据Wi<0.475为均匀分布、0.475≤ Wi≤0.517为随机分布、Wi>0.517为团状分布(王群等,2012),林分整体偏向于随机分布。

  • 林木的大小比数各等级所占比例相差不大,表明不同径级的林木均匀分布在不同的林木结构单元内。林分平均大小比数为0.505,表明林木整体的优劣分化程度不大,林分整体处于中庸态势。但是劣势(Ui=0.220)和绝对劣势(Ui=0.206)林木的比例略微大于优势(Ui=0.220)和亚优势(Ui=0.172)的林木,表明林分整体处在中庸偏劣势过渡的状态。

  • 图1 林分径阶和树高分布

  • Fig.1 Distribution of stand diameter and height

  • 图2 林分空间结构参数的频率分布

  • Fig.2 Frequency distribution of stand spatial structure parameter

  • 林分混交度分布频率中,Mi=0.25、Mi=0.50、Mi=0.75、Mi=1.00的相对频率分别为0.127、0.224、0.336、0.293,Mi=0的相对频率仅为0.020,强度、极强度混交明显优于弱度混交和中度混交,无零度混交,表明林分内各林木个体混交程度较高。林分的平均混交度Mi=0.689,林分整体的混交程度处于中强度混交,林木的种间隔离程度高,合理的竞争态势存在于树种间,有利于群落的稳定。

  • 2.4 空间结构参数的三元分布特征

  • 由图3:a可知,当角尺度和大小比数保持不变时,相对频率分布随混交度的增加而升高。湿地松的相对频率主要分布于Wi=0.50、Mi=0.75、Mi=1.00,其相对频率分别为0.741、0.318、0.427,表明74.1%的湿地松处于随机分布,74.5%处于强度混交和极强度混交;Ui=0、Ui=0.25的相对频率分别为0.633、0.239,表明87.2%的湿地松处于优势和亚优势,林木的竞争态势十分明显。当Wi=0.50、Mi=1.00时,累积相对频率最高,为0.317,其中Wi=0.50、Mi=1.00、Ui=0的相对频率最大(0.201),表明20.1%的湿地松同时处于随机分布、极强度混交和绝对优势的生态位。

  • 由图3:b可知,樟树的相对频率在Wi=0.25、Wi=0.50上分布明显,其相对频率分别为0.268、0.607,表明樟树26.8%处于均匀分布,60.7%处于随机分布,樟树群落的水平分布格局相对均匀,这与其种子的繁衍习性密切相关。当角尺度和混交度保持不变时,樟树的大小比数主要分布在Ui=0.50、Ui=0.75、Ui=1.00,相对频率分别为0.235、0.302、0.266,表明23.5%的樟树处于中庸态势,56.8%处于劣势和绝对劣势的生态位。当Mi=0.75、Mi=1.00时,相对频率分别为0.457、0.222,表明67.9%的樟树处于强度混交和极强度混交,其中Mi=0.75、Wi=0.50的累积相对频率最高,为0.278,表明27.8%的樟树同时处于强度混交和随机分布。

  • 由图3:c可知,马褂木的相对频率集中分布于Wi=0.50、Mi=1.00上,其相对频率分别为0.765、0.629,表明马褂木76.5%处于随机分布,62.9%处于极强度混交。当大小比数保持不变时,Wi=0.50、Mi=1.00的累积相对频率为0.481,表明48.1%的马褂木处于随机分布和极强度混交,其中以Wi=0.50、Mi=1.00、Ui=0.25的相对频率最高(0.200),其次是Wi=0.50、Mi=1.00、Ui=0.50的相对频率(0.129),表明马褂木同时处于随机分布和极强度混交的林木中有20%处于亚优势、12.9%处于中庸态势。

  • 图3 优势树种空间结构参数的三元分布

  • Fig.3 Three-dimensional distribution of spatial structure parameters of dominant tree species

  • 2.5 土壤理化性质

  • 2.5.1 土壤物理性质

  • 样地和撂荒地的土壤容重均随土层加深而增加(图4:a),与撂荒地相比,样地表层的土壤容重由于枯落物分解堆积有明显的改善,而深层土壤由于根系的挤压,土壤相对紧实,样地和撂荒地的局部地区都存在较大的土壤容重,可能是由石漠化地区岩石风化后,土壤中微小的石粒较多导致。样地最大持水量、最小持水量、毛管孔隙度、总孔隙度的均值分别为30.34%、24.24%、33.15%、40.18%(图4:b-e),各项指标均高于撂荒地,尤其是土壤表层的水分物理性质,表明人为正向促进植被演替有利于改良土壤的水分物理性质。但总体而言,林分土壤的持水、水分渗透、水气交换的能力还是较差,土壤持水性能和孔隙度仍有较大的改善空间。

  • 2.5.2 土壤化学性质

  • 从土壤化学性质的测定结果来看,样地土壤pH值的变化范围为5.09~7.87,均值为6.70,土壤偏向于中性,样地各层土壤的pH值均显著高于撂荒地(P<0.05)(图4:f)。但是南方土壤普遍为酸性,而样地的土壤pH值较高则与石漠化程度较高有密切联系,可能是石灰岩地区碳酸化合物偏多,水解产生碳酸氢根和氢氧根,从而使得土壤整体上呈现中性。样地和撂荒地的土壤有机碳含量随土层深度的增加而降低,其中样地0~15 cm的土壤有机碳含量(均值19.11 g·kg-1)显著高于其他土层(P<0.05),土壤有机碳含量表聚效应明显(图4:g)。样地土壤有机碳的变异系数为70.09%,撂荒地为63.37%,表明此石漠化地区土壤的有机碳含量分布极为不均。样地土壤全氮、全磷、全钾的平均含量分别为1.22、0.32、26.15 g·kg-1,均高于撂荒地的全氮、全磷、全钾的平均含量(0.93、0.23、18.56 g·kg-1),并且样地各层土壤的全氮、全磷、全钾的平均含量均高于撂荒地,其中0~15 cm的全氮含量(均值1.73 g·kg-1)显著高于其他土层的全氮含量(P<0.05)。林分的土壤化学性质整体上优于撂荒地,表明在石漠化地区营造人工林对土壤有机碳、全氮、全磷、全钾的积累效应优于撂荒地。

  • 3 讨论

  • 植被组成与林分结构是森林的最基本特征,体现了林木间的相互关系,是林木生长与其所处环境的响应(丁晖等,2015)。现阶段,湿地松是异龄林的主林层树种,以成熟或过熟的大径材林木为主,在林分中占有绝对优势的生态位,这与湿地松适应性强、抗旱耐贫瘠、林木前期生长不存在缓冲期等生物学特性有关(马泽清等,2011)。樟树的重要值仅次于湿地松,樟树凭其优异的繁殖能力,在林窗和岩石夹缝中大范围更新,但樟树主要为中幼林,石漠化贫瘠的立地条件使其生长发育受限(李志辉和聂侃谚,2011)。试验地内存在较大范围更新的中龄林马褂木,这与前人的研究结论不一致,马褂木单花的雌雄蕊花期不遇,受精不良导致种子空瘪率极高,在单株环境下的发芽率低于5.0%,群体环境中低于31.8%,因其幼苗耐阴性差,在我国常常生长在林窗或林缘地带(黄坚钦,1998;黎明和马焕成,2003;冯源恒等,2011)。而试验地内中龄林马褂木可能是2008年南方冰灾所致,低温有利于种子层积催芽,促进萌发,并且冰灾摧毁了上层林分,给下层萌生幼林提供光照以及生长空间。此外,随着林分演替的进行,天然更新树种和灌草层的自然更新增加了物种丰富度,林分郁闭后,森林生态系统达到相对稳定状态。

  • 图4 标准样地与撂荒地土壤理化性质分析

  • Fig.4 Analysis of soil physical and chemical properties of standard sample plot and abandoned land

  • 林分空间结构参数定量分析了林木的优势态和生态区位,全面地反映林分的现状特征,一般来说,林分的空间结构越优,林木水平分布格局应为随机分布,林分混交度应为中度混交以上,优势级别的林木越多越好,这样的林分功能性越强、稳定性越高(陈亚南等,2015;彭玉华等,2016)。在试验地的研究中,林分群落的水平分布格局偏向于随机分布,林木处于中度混交与强度混交之间,林木混生程度高,林分整体处于中庸偏劣势过渡的状态,这与袁星明等(2022)对湘西石漠化地区樟树-湿地松人工混交林的研究结论一致。在之后的森林质量精准提升中,应充分考虑林木自然更新和林分结构特征,可以将聚集分布(Wi>0.75)、零度混交和弱度混交的林木作为择伐对象,促使林分向随机分布、中度至强度混交演化,并抚育间伐霸王木、枯死木、弯曲木,协调种间关系(韩金等,2019)。林分空间结构参数的三元分布则表明,湿地松在林分中占有绝对优势,马褂木次之,樟树处于中庸或劣势的生态位。但是湿地松出现明显的老龄化,在今后的演替进程中,此林分极可能演变为以马褂木、樟树为主,与天然更新的中生性或耐阴性阔叶树种共存的森林结构(李婷婷等,2021)。

  • 森林土壤受成土母质、气候、地形地貌、降水等多种因子的影响,并随着生物因子的演变而不断改变(Ma et al.,2020),而岩溶地区的土壤普遍具有基岩裸露、土层浅薄导致生境保水性差、土壤和水富钙等特征(李阳兵等,2002)。本研究中,试验地土壤pH值偏向于中性,这与石灰岩地区碳酸化合物偏多密切相关。与撂荒地相比,林分的土壤有机碳、全氮、全磷、全钾含量增加,这是林分生长吸收大气沉降的碳、氮、磷等元素且凋落物分解加速了养分返还效率所致(曾昭霞等,2015)。陈双双等(2022)也研究表明,湘西石漠化环境下,随着林分物种数量的逐渐增加,土壤性质逐渐改善,植被与土壤存在相互作用。刘立玲等(2022)则揭示了湘西石漠化地区营造针阔混交林比针叶纯林能更好地促进土壤肥力状况的提升。此外,试验地土壤的各理化性质具有极强的空间异质性,这与盛茂银等(2015)的研究结论一致,裸岩产生“篱笆效应”使凋落物分解后汇聚到岩石周围的土壤中。但是,试验地的土壤理化性质出现了“缺磷少氮富钾”的特征(全国土壤普查办公室,1992),这可能是因为亚热带季风气候区夏季高温多雨,土壤中的氮、磷元素在长期的“淋溶作用”下损失,沉降至土壤中的氮发生硝化和反硝化反应,以氧化二氮的形式流失,而土壤磷含量偏低的主要由于土壤的固磷机制所致,但钾元素则可转变成可溶性钾形态富集在土壤中(方运霆等,2004;李树斌等,2019)。总体而言,试验地的土壤肥力较为贫瘠,局部地区土壤紧实且基岩裸露,对植物根系的伸展、水气渗透、持水能力均呈现负效应,而湿地松、马褂木、樟树却在此长势良好,这与湘西温热的立地条件以及前人辛勤整地相关。

  • 4 结论

  • 通过对湘西石漠化湿地松-马褂木人工混交林的林分结构与土壤理化性质的研究分析,表明主林层为湿地松,以大径级林木为主,重要值为44.2%;次林层为阔叶树,中幼龄林木居多,其中樟树、马褂木为优势树种,重要值分别为17.1%、13.2%。此外,林分中还存在较多处于劣势生态位的天然更新种。林木的水平分布格局为随机分布,林分的优势程度趋于中庸偏劣势过渡的状态,多数林木处于中度混交与强度混交之间,种间隔离程度较高,林分经过多年的生长后,整体有向异龄林和强度混交演替的趋势。但林分内中幼龄阔叶树的株数占比较大,近熟林出现断层,老龄针叶树占据绝对优势的生态区位,需抽针补阔、间针育阔,择伐劣势木,促进林分向以阳生性阔叶树为主、中生性和耐阴性阔叶树为次的林分结构演替。林分的土壤理化性质与撂荒地相比,有明显改善趋势,但整体而言,土壤肥力仍然较为贫瘠,局部地区土壤紧实且基岩裸露,对植物根系的伸展、水气渗透、持水能力均呈现负效应,土壤有待进一步改良。在湘西今后的石漠化治理进程中,湿地松、马褂木、樟树可做为先锋树种进行推广种植,修复生态环境,改良立地条件。

  • 参考文献

    • BA I C, 2016. Spatial structure parameters and the application on studying structure dynamics of natural Quercus aliena var. acuteserrata forest [D]. Beijing: Chinese Academy of Forestry. [白超, 2016. 空间结构参数及其在锐齿栎天然林结构动态分析中的应用[D]. 北京: 中国林业科学研究院. ]

    • BAO SD, 2011. Agrochemical analysis of soil [M]. Beijing: China Agricultural Press: 25-250. [鲍士旦, 2011. 土壤农化分析[M]. 北京: 中国农业出版社: 25-250. ]

    • CHEN FH, WU SH, CUI P, et al. , 2020. Progress of applied research of physical geography and living environment in China from 1949 to 2019 [J]. Acta Geogr Sin, 75(9): 1799-1830. [陈发虎, 吴绍洪, 崔鹏, 等, 2020. 1949—2019年中国自然地理学与生存环境应用研究进展[J]. 地理学报, 75(9): 1799-1830. ]

    • CHEN SS, ZHU NH, ZHOU GY, et al. , 2022. Vegetation and soil physical characteristics of artificial arbor forests under different grades of rocky desertification [J]. Ecol Environ Sci, 31(1): 52-61. [陈双双, 朱宁华, 周光益, 等, 2022. 不同等级石漠化环境下人工乔木林的植被与土壤物理特征[J]. 生态环境学报, 31(1): 52-61. ]

    • CHEN YN, YANG H, MA SY, et al. , 2015. Spatial structure diversity of semi-natural and plantation stands of Larix gmelini in Changbai Mountains, northeastern China [J]. J Beijing For Univ, 37(12): 48-58. [陈亚南, 杨华, 马士友, 等, 2015. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 37(12): 48-58. ]

    • CURTIS JT, MCINTOSH RP, 1951. An upland forest continuum in the prairie-forest border region of Wisconsin[J]. Ecol, 32(3): 476-496.

    • DING H, YANG YF, XU HG, et al. , 2015. Species composition and community structure of the typical evergreen broad-leaved forest in the Wuyi Mountains of Southeastern China [J]. Acta Ecol Sin, 35(4): 1142-1154. [丁晖, 杨云方, 徐海根, 等, 2015. 武夷山典型常绿阔叶林物种组成与群落结构[J]. 生态学报, 35(4): 1142-1154. ]

    • FANG YT, MO JM, PER G, et al. , 2004. Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: a review [J]. Acta Ecol Sin, 24(7): 1523-1531. [方运霆, 莫江明, PER G, 等, 2004. 森林土壤氮素转换及其对氮沉降的响应[J]. 生态学报, 24(7): 1523-1531. ]

    • FENG J, WANG QC, LU AJ, et al. , 2021. Plant diversity and soil characteristic of larch-manchurian ash mixed stand in eastern Liaodong [J]. J NW A & F Univ, 19(6): 2-12. [冯健, 王骞春, 陆爱君, 等, 2021. 辽东山区落叶松-水曲柳混交林植物多样性和土壤特性研究[J]. 西北农林科技大学学报, 19(6): 2-12. ]

    • FENG YH, LI HG, WANG LQ, et al. , 2011. Genetic dissection for the reproductive fitness of Liriodendron derived from offsprings of complete-diallel crosses [J]. Sci Silv Sin, 47(9): 43-49. [冯源恒, 李火根, 王龙强, 等, 2011. 鹅掌楸属树种繁殖性能的遗传分析[J]. 林业科学, 47(9): 43-49. ]

    • HAN J, WANG XJ, DUAN HY, 2019. Study on forest structure of coniferous and broad-leaved mixed forest in Jingouling Forest Farm of Wangqing county of jilin province [J]. J Cent S Univ For Technol, 39(1): 58-63. [韩金, 王新杰, 段皓赟, 2019. 金沟岭云冷杉针阔混交林林分结构研究[J]. 中南林业科技大学学报, 39(1): 58-63. ]

    • HE TX, HU BQ, ZHANG JB, et al. , 2020. Fine root effects on the retention and availability of soil carbon and nitrogen after ten years of vegetation restoration in a karst slope ecosystem [J]. Acta Ecol Sin, 40(23): 8638-8648. [贺同鑫, 胡宝清, 张建兵, 等, 2020. 植被恢复十年喀斯特坡地细根对土壤碳氮存留与可利用性的影响[J]. 生态学报, 40(23): 8638-8648. ]

    • HUANG JQ, 1998. Embryology reasons for lower seed-setting in Liriodendron chinense [J]. J Zhejiang For Coll, 15(3): 267-273. [黄坚钦, 1998. 鹅掌楸结籽率低的胚胎学原因探讨[J]. 浙江林学院学报, 15(3): 269-273. ]

    • HUANG MZ, LAN JC, WEN LX, et al. , 2021. Response of soil quality to different ecological restoration models in a karst rocky desertification area [J]. J For Environ, 41(2): 148-156. [黄明芝, 蓝家程, 文柳茜, 等, 2021. 喀斯特石漠化地区土壤质量对生态修复的响应[J]. 森林与环境学报, 41(2): 148-156. ]

    • HUI GY, GADOW KV, 2003. Quantitative analysis of forest spatial structure [M]. Beijing: Science and Technology of China Press: 20-22. [惠刚盈, GADOW KV, 2003. 森林空间结构量化分析方法[M]. 北京: 中国科学技术出版社: 20-22. ]

    • LI AD, YU LF, 2009. Afforestation technique study based on water consumption features of Zanthoxylum bungeanum in Guizhou karst area [J]. Carsol Sin, 28(2): 189-193. [李安定, 喻理飞, 2009. 贵州省喀斯特区基于林木耗水特征的顶坛花椒造林整地技术[J]. 中国岩溶, 28(2): 189-193. ]

    • LI GJ, MATTEO R, WAN L, et al. , 2020. Preliminary characterization of underground hydrological processes under multiple rainfall conditions and rocky desertification degrees in karst regions of Southwest China [J]. Water, 12(2): 594.

    • LI M, MA HC, 2003. The review of the asexual propagation on Magnoliaceae [J]. J SW For Coll, 23(2): 92-96. [黎明, 马焕成, 2003. 木兰科植物无性繁殖研究概况[J]. 西南林学院学报, 23(2): 92-96. ]

    • LI SB, ZHOU LL, CHEN BY, et al. , 2019. Effects of tree species transition on stoichiometric ratios of soil carbon, nitrogen and phosphorus in subtropical areas [J]. J For Environ, 39(6): 575-583. [李树斌, 周丽丽, 陈宝英, 等, 2019. 亚热带树种转换对林地土壤碳氮磷计量比的影响[J]. 森林与环境学报, 39(6): 575-583. ]

    • LI TT, RONG L, WANG MJ, et al. , 2021. Dynamic changes in niche and interspecific association of major species of karst secondary forest in Central Guizhou [J]. J Trop Subtrop Bot, 29(1): 9-19. [李婷婷, 容丽, 王梦洁, 等, 2021. 黔中喀斯特次生林主要物种的生态位及种间联结性动态变化[J]. 热带亚热带植物学报, 29(1): 9-19. ]

    • LI YB, HOU JJ, XIE DT, 2002. The recent development of research on karst ecology in Southwest China [J]. Sci Geogr Sin, 22(3): 365-370. [李阳兵, 侯建筠, 谢德体, 2002. 中国西南岩溶生态研究进展[J]. 地理科学, 22(3): 365-370. ]

    • LI ZH, NIE KY, 2011. Growth conditions and productivity of Cinnamomum camphora in karst areas of Western Hunan [J]. J Cent S Univ For Technol, 31(3): 12-16. [李志辉, 聂侃谚, 2011. 湘西喀斯特地区香樟生长及生产力研究[J]. 中南林业科技大学学报, 31(3): 12-16. ]

    • LIU LL, ZHOU GY, DANG P, et al. , 2022. Differences of soil fungal community structure under three afforestation modes in rocky desertification region of Western Hunan Province [J]. Acta Ecol Sin, 42(10): 4150-4159. [刘立玲, 周光益, 党鹏, 等, 2022. 湘西石漠化区3种造林模式土壤真菌群落结构差异[J]. 生态学报, 42(10): 4150-4159. ]

    • MA TS, DENG XW, CHEN L, et al. , 2020. The soil properties and their effects on plant diversity in different degrees of rocky desertification[J]. Sci Total Environ, 736: 139667.

    • MA ZQ, LIU QJ, WANG HM, et al. , 2011. The growth pattern of Pinus elliottii plantation in central subtropical China [J]. Acta Ecol Sin, 31(6): 1525-1537. [马泽清, 刘琪璟, 王辉民, 等, 2011. 中亚热带湿地松人工林生长过程[J]. 生态学报, 31(6): 1525-1537. ]

    • National Soil Census Office, 1992. China soil census technology [M]. Beijing: Agricultural Publishing House. [全国土壤普查办公室, 1992. 中国土壤普查技术[M]. 北京: 农业出版社. ]

    • PENG YH, HE QF, TAN CQ, et al. , 2016. Quantitative analysis of stand spatial structure of a rare species Kmeria septentrionalis in Guangxi [J]. Chin J Ecol, 35(2): 363-369. [彭玉华, 何琴飞, 谭长强, 等, 2016. 广西极小种群单性木兰群落空间结构量化[J]. 生态学杂志, 35(2): 363-369. ]

    • PU JW, ZHAO XQ, MIAO PP, et al. , 2020. Integrating multisource RS data and GIS techniques to assist the evaluation of resource-environment carrying capacity in karst mountainous area [J]. J Mount Sci, 17(10): 2528-2547.

    • SHENG MY, XIONG KN, CUI GY, et al. , 2015. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou, China [J]. Acta Ecol Sin, 35(2): 434-448. [盛茂银, 熊康宁, 崔高仰, 等, 2015. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J]. 生态学报, 35(2): 434-448. ]

    • State Forestry Administration, 1999. Forestry industry standard of the people's republic of China - forest soil analysis method [M] Beijing: China Industry Standards Press: 1210-1275. [国家林业局, 1999. 中华人民共和国林业行业标准-森林土壤分析方法[M]. 北京: 中国行业标准出版社: 1210-1275. ]

    • SUN YL, ZHOU JX, PANG DB, et al. , 2018. Soil moisture dynamic change of different vegetation restoration patterns in karst faulted basins [J]. For Res, 31(4): 104-112. [孙永磊, 周金星, 庞丹波, 等, 2018. 喀斯特断陷盆地不同植被恢复模式土壤水分动态变化[J]. 林业科学研究, 31(4): 104-112. ]

    • TAO GH, BU YK, XUE WP, et al. , 2020. Relationship between understory diversity and stand spatial structure in air-drilled Pinus tabulaeformis forests of different densities [J]. J For Environ, 40(2): 171-177. [陶观护, 卜元坤, 薛卫鹏, 等, 2020. 不同密度油松飞播林灌草多样性与林分空间结构关系[J]. 森林与环境学报, 40(2): 171-177. ]

    • WANG Q, ZHANG JC, TIAN YL, et al. , 2012. Stand spatial structure of a natural mixed forest in the Fengyang Mountains of Zhejiang [J]. J Zhejiang Agric For Univ, 29(6): 875-882. [王群, 张金池, 田月亮, 等, 2012. 浙江凤阳山天然混交林林分空间结构分析[J]. 浙江农林大学学报, 29(6): 875-882. ]

    • WU XY, YANG H, LÜ YJ, et al. , 2019. Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests [J]. J Beijing For Univ, 41(1): 64-72. [吴晓永, 杨华, 吕延杰, 等, 2019. 云杉—白桦混交林结构特征分析[J]. 北京林业大学学报, 41(1): 64-72. ]

    • YANG M, CAI TJ, JU CY, et al. , 2019. Evaluating spatial structure of a mixed broad-leaved Korean pine forest based on neighborhood relationships in Mudanfeng National Nature Reserve, China [J]. J For Res, 30(4): 1375-1381.

    • YUAN XM, ZHU NH, ZHOU GY, et al. , 2022, Spatial structure of the 42-year-old Pinus elliottii-Cinnamomum camphora mixed plantation in the karst area of western Hunan [J]. J Cent S Univ For Technol, 42(4): 49-58. [袁星明, 朱宁华, 周光益, 等, 2022. 湘西喀斯特地区42年生湿地松-樟树人工混交林空间结构研究[J]. 中南林业科技大学学报, 42(4): 49-58. ]

    • YUAN Y, LI XY, XIONG DH, et al. , 2019. Effects of restoration age on water conservation function and soil fertility quality of restored woodlands in phosphate mined-out areas [J]. Environ Earth Sci, 78(23): 1-14.

    • ZENG ZX, WANG KL, LIU XL, et al. , 2015. Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi [J]. Chin J Plant Ecol, 39(7): 682-693. [曾昭霞, 王克林, 刘孝利, 等, 2015. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J]. 植物生态学报, 39(7): 682-693. ]

    • ZHANG HY, YANG Y, LI Y, 2015. Discussion on ecosystem degradation and restoration in karst rock desertification areas of southwest China [J]. Ecol Sci, 34(4): 169-174. [张红玉, 杨勇, 李勇, 2015. 西南喀斯特石漠化区域生态系统退化与恢复探讨[J]. 生态科学, 34(4): 169-174. ]

    • ZHANG JY, DAI MH , WANG LC, et al. , 2015. The challenge and future of rocky desertification control in Karst areas in Southwest China [J]. Solid Earth Discuss, 7(4): 3271-3292.

    • ZHU NH, SHANG H, LIU LL, et al. , 2020. Afforestation in karst area [M]. England: IntechOpen: 1-2.

  • 参考文献

    • BA I C, 2016. Spatial structure parameters and the application on studying structure dynamics of natural Quercus aliena var. acuteserrata forest [D]. Beijing: Chinese Academy of Forestry. [白超, 2016. 空间结构参数及其在锐齿栎天然林结构动态分析中的应用[D]. 北京: 中国林业科学研究院. ]

    • BAO SD, 2011. Agrochemical analysis of soil [M]. Beijing: China Agricultural Press: 25-250. [鲍士旦, 2011. 土壤农化分析[M]. 北京: 中国农业出版社: 25-250. ]

    • CHEN FH, WU SH, CUI P, et al. , 2020. Progress of applied research of physical geography and living environment in China from 1949 to 2019 [J]. Acta Geogr Sin, 75(9): 1799-1830. [陈发虎, 吴绍洪, 崔鹏, 等, 2020. 1949—2019年中国自然地理学与生存环境应用研究进展[J]. 地理学报, 75(9): 1799-1830. ]

    • CHEN SS, ZHU NH, ZHOU GY, et al. , 2022. Vegetation and soil physical characteristics of artificial arbor forests under different grades of rocky desertification [J]. Ecol Environ Sci, 31(1): 52-61. [陈双双, 朱宁华, 周光益, 等, 2022. 不同等级石漠化环境下人工乔木林的植被与土壤物理特征[J]. 生态环境学报, 31(1): 52-61. ]

    • CHEN YN, YANG H, MA SY, et al. , 2015. Spatial structure diversity of semi-natural and plantation stands of Larix gmelini in Changbai Mountains, northeastern China [J]. J Beijing For Univ, 37(12): 48-58. [陈亚南, 杨华, 马士友, 等, 2015. 长白山2种针阔混交林空间结构多样性研究[J]. 北京林业大学学报, 37(12): 48-58. ]

    • CURTIS JT, MCINTOSH RP, 1951. An upland forest continuum in the prairie-forest border region of Wisconsin[J]. Ecol, 32(3): 476-496.

    • DING H, YANG YF, XU HG, et al. , 2015. Species composition and community structure of the typical evergreen broad-leaved forest in the Wuyi Mountains of Southeastern China [J]. Acta Ecol Sin, 35(4): 1142-1154. [丁晖, 杨云方, 徐海根, 等, 2015. 武夷山典型常绿阔叶林物种组成与群落结构[J]. 生态学报, 35(4): 1142-1154. ]

    • FANG YT, MO JM, PER G, et al. , 2004. Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: a review [J]. Acta Ecol Sin, 24(7): 1523-1531. [方运霆, 莫江明, PER G, 等, 2004. 森林土壤氮素转换及其对氮沉降的响应[J]. 生态学报, 24(7): 1523-1531. ]

    • FENG J, WANG QC, LU AJ, et al. , 2021. Plant diversity and soil characteristic of larch-manchurian ash mixed stand in eastern Liaodong [J]. J NW A & F Univ, 19(6): 2-12. [冯健, 王骞春, 陆爱君, 等, 2021. 辽东山区落叶松-水曲柳混交林植物多样性和土壤特性研究[J]. 西北农林科技大学学报, 19(6): 2-12. ]

    • FENG YH, LI HG, WANG LQ, et al. , 2011. Genetic dissection for the reproductive fitness of Liriodendron derived from offsprings of complete-diallel crosses [J]. Sci Silv Sin, 47(9): 43-49. [冯源恒, 李火根, 王龙强, 等, 2011. 鹅掌楸属树种繁殖性能的遗传分析[J]. 林业科学, 47(9): 43-49. ]

    • HAN J, WANG XJ, DUAN HY, 2019. Study on forest structure of coniferous and broad-leaved mixed forest in Jingouling Forest Farm of Wangqing county of jilin province [J]. J Cent S Univ For Technol, 39(1): 58-63. [韩金, 王新杰, 段皓赟, 2019. 金沟岭云冷杉针阔混交林林分结构研究[J]. 中南林业科技大学学报, 39(1): 58-63. ]

    • HE TX, HU BQ, ZHANG JB, et al. , 2020. Fine root effects on the retention and availability of soil carbon and nitrogen after ten years of vegetation restoration in a karst slope ecosystem [J]. Acta Ecol Sin, 40(23): 8638-8648. [贺同鑫, 胡宝清, 张建兵, 等, 2020. 植被恢复十年喀斯特坡地细根对土壤碳氮存留与可利用性的影响[J]. 生态学报, 40(23): 8638-8648. ]

    • HUANG JQ, 1998. Embryology reasons for lower seed-setting in Liriodendron chinense [J]. J Zhejiang For Coll, 15(3): 267-273. [黄坚钦, 1998. 鹅掌楸结籽率低的胚胎学原因探讨[J]. 浙江林学院学报, 15(3): 269-273. ]

    • HUANG MZ, LAN JC, WEN LX, et al. , 2021. Response of soil quality to different ecological restoration models in a karst rocky desertification area [J]. J For Environ, 41(2): 148-156. [黄明芝, 蓝家程, 文柳茜, 等, 2021. 喀斯特石漠化地区土壤质量对生态修复的响应[J]. 森林与环境学报, 41(2): 148-156. ]

    • HUI GY, GADOW KV, 2003. Quantitative analysis of forest spatial structure [M]. Beijing: Science and Technology of China Press: 20-22. [惠刚盈, GADOW KV, 2003. 森林空间结构量化分析方法[M]. 北京: 中国科学技术出版社: 20-22. ]

    • LI AD, YU LF, 2009. Afforestation technique study based on water consumption features of Zanthoxylum bungeanum in Guizhou karst area [J]. Carsol Sin, 28(2): 189-193. [李安定, 喻理飞, 2009. 贵州省喀斯特区基于林木耗水特征的顶坛花椒造林整地技术[J]. 中国岩溶, 28(2): 189-193. ]

    • LI GJ, MATTEO R, WAN L, et al. , 2020. Preliminary characterization of underground hydrological processes under multiple rainfall conditions and rocky desertification degrees in karst regions of Southwest China [J]. Water, 12(2): 594.

    • LI M, MA HC, 2003. The review of the asexual propagation on Magnoliaceae [J]. J SW For Coll, 23(2): 92-96. [黎明, 马焕成, 2003. 木兰科植物无性繁殖研究概况[J]. 西南林学院学报, 23(2): 92-96. ]

    • LI SB, ZHOU LL, CHEN BY, et al. , 2019. Effects of tree species transition on stoichiometric ratios of soil carbon, nitrogen and phosphorus in subtropical areas [J]. J For Environ, 39(6): 575-583. [李树斌, 周丽丽, 陈宝英, 等, 2019. 亚热带树种转换对林地土壤碳氮磷计量比的影响[J]. 森林与环境学报, 39(6): 575-583. ]

    • LI TT, RONG L, WANG MJ, et al. , 2021. Dynamic changes in niche and interspecific association of major species of karst secondary forest in Central Guizhou [J]. J Trop Subtrop Bot, 29(1): 9-19. [李婷婷, 容丽, 王梦洁, 等, 2021. 黔中喀斯特次生林主要物种的生态位及种间联结性动态变化[J]. 热带亚热带植物学报, 29(1): 9-19. ]

    • LI YB, HOU JJ, XIE DT, 2002. The recent development of research on karst ecology in Southwest China [J]. Sci Geogr Sin, 22(3): 365-370. [李阳兵, 侯建筠, 谢德体, 2002. 中国西南岩溶生态研究进展[J]. 地理科学, 22(3): 365-370. ]

    • LI ZH, NIE KY, 2011. Growth conditions and productivity of Cinnamomum camphora in karst areas of Western Hunan [J]. J Cent S Univ For Technol, 31(3): 12-16. [李志辉, 聂侃谚, 2011. 湘西喀斯特地区香樟生长及生产力研究[J]. 中南林业科技大学学报, 31(3): 12-16. ]

    • LIU LL, ZHOU GY, DANG P, et al. , 2022. Differences of soil fungal community structure under three afforestation modes in rocky desertification region of Western Hunan Province [J]. Acta Ecol Sin, 42(10): 4150-4159. [刘立玲, 周光益, 党鹏, 等, 2022. 湘西石漠化区3种造林模式土壤真菌群落结构差异[J]. 生态学报, 42(10): 4150-4159. ]

    • MA TS, DENG XW, CHEN L, et al. , 2020. The soil properties and their effects on plant diversity in different degrees of rocky desertification[J]. Sci Total Environ, 736: 139667.

    • MA ZQ, LIU QJ, WANG HM, et al. , 2011. The growth pattern of Pinus elliottii plantation in central subtropical China [J]. Acta Ecol Sin, 31(6): 1525-1537. [马泽清, 刘琪璟, 王辉民, 等, 2011. 中亚热带湿地松人工林生长过程[J]. 生态学报, 31(6): 1525-1537. ]

    • National Soil Census Office, 1992. China soil census technology [M]. Beijing: Agricultural Publishing House. [全国土壤普查办公室, 1992. 中国土壤普查技术[M]. 北京: 农业出版社. ]

    • PENG YH, HE QF, TAN CQ, et al. , 2016. Quantitative analysis of stand spatial structure of a rare species Kmeria septentrionalis in Guangxi [J]. Chin J Ecol, 35(2): 363-369. [彭玉华, 何琴飞, 谭长强, 等, 2016. 广西极小种群单性木兰群落空间结构量化[J]. 生态学杂志, 35(2): 363-369. ]

    • PU JW, ZHAO XQ, MIAO PP, et al. , 2020. Integrating multisource RS data and GIS techniques to assist the evaluation of resource-environment carrying capacity in karst mountainous area [J]. J Mount Sci, 17(10): 2528-2547.

    • SHENG MY, XIONG KN, CUI GY, et al. , 2015. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou, China [J]. Acta Ecol Sin, 35(2): 434-448. [盛茂银, 熊康宁, 崔高仰, 等, 2015. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J]. 生态学报, 35(2): 434-448. ]

    • State Forestry Administration, 1999. Forestry industry standard of the people's republic of China - forest soil analysis method [M] Beijing: China Industry Standards Press: 1210-1275. [国家林业局, 1999. 中华人民共和国林业行业标准-森林土壤分析方法[M]. 北京: 中国行业标准出版社: 1210-1275. ]

    • SUN YL, ZHOU JX, PANG DB, et al. , 2018. Soil moisture dynamic change of different vegetation restoration patterns in karst faulted basins [J]. For Res, 31(4): 104-112. [孙永磊, 周金星, 庞丹波, 等, 2018. 喀斯特断陷盆地不同植被恢复模式土壤水分动态变化[J]. 林业科学研究, 31(4): 104-112. ]

    • TAO GH, BU YK, XUE WP, et al. , 2020. Relationship between understory diversity and stand spatial structure in air-drilled Pinus tabulaeformis forests of different densities [J]. J For Environ, 40(2): 171-177. [陶观护, 卜元坤, 薛卫鹏, 等, 2020. 不同密度油松飞播林灌草多样性与林分空间结构关系[J]. 森林与环境学报, 40(2): 171-177. ]

    • WANG Q, ZHANG JC, TIAN YL, et al. , 2012. Stand spatial structure of a natural mixed forest in the Fengyang Mountains of Zhejiang [J]. J Zhejiang Agric For Univ, 29(6): 875-882. [王群, 张金池, 田月亮, 等, 2012. 浙江凤阳山天然混交林林分空间结构分析[J]. 浙江农林大学学报, 29(6): 875-882. ]

    • WU XY, YANG H, LÜ YJ, et al. , 2019. Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests [J]. J Beijing For Univ, 41(1): 64-72. [吴晓永, 杨华, 吕延杰, 等, 2019. 云杉—白桦混交林结构特征分析[J]. 北京林业大学学报, 41(1): 64-72. ]

    • YANG M, CAI TJ, JU CY, et al. , 2019. Evaluating spatial structure of a mixed broad-leaved Korean pine forest based on neighborhood relationships in Mudanfeng National Nature Reserve, China [J]. J For Res, 30(4): 1375-1381.

    • YUAN XM, ZHU NH, ZHOU GY, et al. , 2022, Spatial structure of the 42-year-old Pinus elliottii-Cinnamomum camphora mixed plantation in the karst area of western Hunan [J]. J Cent S Univ For Technol, 42(4): 49-58. [袁星明, 朱宁华, 周光益, 等, 2022. 湘西喀斯特地区42年生湿地松-樟树人工混交林空间结构研究[J]. 中南林业科技大学学报, 42(4): 49-58. ]

    • YUAN Y, LI XY, XIONG DH, et al. , 2019. Effects of restoration age on water conservation function and soil fertility quality of restored woodlands in phosphate mined-out areas [J]. Environ Earth Sci, 78(23): 1-14.

    • ZENG ZX, WANG KL, LIU XL, et al. , 2015. Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi [J]. Chin J Plant Ecol, 39(7): 682-693. [曾昭霞, 王克林, 刘孝利, 等, 2015. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J]. 植物生态学报, 39(7): 682-693. ]

    • ZHANG HY, YANG Y, LI Y, 2015. Discussion on ecosystem degradation and restoration in karst rock desertification areas of southwest China [J]. Ecol Sci, 34(4): 169-174. [张红玉, 杨勇, 李勇, 2015. 西南喀斯特石漠化区域生态系统退化与恢复探讨[J]. 生态科学, 34(4): 169-174. ]

    • ZHANG JY, DAI MH , WANG LC, et al. , 2015. The challenge and future of rocky desertification control in Karst areas in Southwest China [J]. Solid Earth Discuss, 7(4): 3271-3292.

    • ZHU NH, SHANG H, LIU LL, et al. , 2020. Afforestation in karst area [M]. England: IntechOpen: 1-2.