en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

任何琴(1998—),硕士研究生,研究方向为植物对非生物胁迫适应,(E-mail)RenHQ@aliyun.com。

通讯作者:

孙学广,博士,教授,研究方向为林木与微生物互作,(E-mail)sunxg0518@aliyun.com。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2024)03-0521-10

DOI:10.11931/guihaia.gxzw202305073

参考文献
AH N SJ, 2002. Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo) [J]. J Exp Bot, 53(376): 1959-1966.
参考文献
BAO SD, 2000. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Publishing House: 239-240. [鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 239-240. ]
参考文献
BLOOM PR, WEAVER RM, MCBRIDE MB, 1978. The spectrophotometric and fluorometric determination of aluminum with 8-hydroxyquinoline and butyl acetate extraction[J]. Soil Sci Soc Am J, 42(5): 713-716.
参考文献
CHEN SS, QI XY, FENG J, et al. , 2022. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals[J]. Plant Physiol Biochem, 185: 268-278.
参考文献
CHEN YM, TSAO TM, LIU CC, et al. , 2011. Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE)) [J]. J Sci Food Agric, 91(6): 1111-1117.
参考文献
ČIAMPOROVÁ M, 2002. Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels [J]. Biol Plant, 45: 161-171.
参考文献
DAI YP, 2017. Study on the characteristics of aluminum enrichment in ferns and its influencing factors[D]. Shanghai: East China Normal University. [代亚萍, 2017. 蕨类植物铝富集特征及影响因素研究[D]. 上海: 华东师范大学. ]
参考文献
FENG YM, LUO GR, QU M, et al. , 2022. Effects of boron on aluminum adsorption and desorption of cell wall components of pea root tips[J]. Plant Nutr Fert Sci, 28(10): 1893-1900. [冯英明, 罗功荣, 曲梅, 等, 2022. 硼对豌豆根尖细胞壁组分对铝吸附解吸的影响[J]. 植物营养与肥料学报, 28(10): 1893-1900. ]
参考文献
GAO HJ, ZHAO Q, ZHANG XC, et al. , 2014. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. J Agric Food Chem, 62(10): 2313-2319.
参考文献
GU XR, JIA H, WANG XH, et al. , 2023. Differential aluminum tolerance and absorption characteristics in Pinus massoniana seedlings colonized with ectomycorrhizal fungi of Lactarius deliciosus and Pisolithus tinctorius[J]. J For Res, 34: 1523-1533.
参考文献
GU XR, NI YL, JIANG YN, et al. , 2018. Effects of Laccaria bicolor on growth, uptake and distribution of nutrients and aluminum of Pinus massoniana seedlings under acid aluminum exposure[J]. Sci Silv Sin, 54(2): 170-178. [辜夕容, 倪亚兰, 江亚男, 等, 2018. 接种双色蜡蘑对酸性铝胁迫下马尾松幼苗生长、养分和铝吸收与分布的影响[J]. 林业科学, 54(2): 170-178. ]
参考文献
GUO P, LI Q, QI YP, et al. , 2017a. Sulfur-mediated-alleviation of aluminum-toxicity in citrus grandis seedlings[J]. Int J Mol Sci, 18(12): 2570.
参考文献
GUO P, QI YP, CAI YT, et al. , 2018. Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance[J]. Tree Physiol, 38(10): 1548-1565.
参考文献
GUO P, QI YP, YANG LT, et al. , 2017b. Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two citrus species with different aluminum-tolerance[J]. Front Plant Sci, 8: 330.
参考文献
HOU M, HU CJ, XIONG L, et al. , 2013. Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensis[J]. Microchem J, 110: 575-578.
参考文献
HUANG LY, 2017. Mechanisms of aluminum uptake and tolerance in Camellia oleifera Abel. [D]. Changsha: Central South University of Forestry and Technology. [黄丽媛, 2017. 油茶对铝的吸收积累及其耐性机理研究[D]. 长沙: 中南林业科技大学. ]
参考文献
INOSTROZA-BLANCHETEAU C, RENGEL Z, ALBERDI M, et al. , 2012. Molecular and physiological strategies to increase aluminum resistance in plants[J]. Mol Biol Rep, 39(3): 2069-2079.
参考文献
JAISWAL SK, NAAMALA J, DAKORA FD, 2018. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia[J]. Biol Fertil Soils, 54(3): 309-318.
参考文献
JI YW, 2016. Study on physiological response mechanism of Pinus massoniana Lamb. to aluminum stress[D]. Chongqing: Southwest University. [纪雨薇, 2016. 马尾松铝胁迫生理响应机制[D]. 重庆: 西南大学. ]
参考文献
JIANG DX, WU HH, CAI H, et al. , 2022. Silicon confers aluminium tolerance in rice via cell wall modification in the root transition zone[J]. Plant Cell Environ, 45(6): 1765-1778.
参考文献
KIDD PS, LLUGANY M, POSCHENRIEDER C, et al. , 2001. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L. ) [J]. J Exp Bot, 52(359): 1339-1352.
参考文献
KLUG B, KIRCHNER T, HORST W, 2015. Differences in aluminium accumulation and resistance between genotypes of the genus Fagopyrum[J]. Agronomy, 5(3): 418-434.
参考文献
KOCHIAN LV, PINEROS MA, LIU J, et al. , 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance[J]. Annu Rev Plant Biol, 66: 571-598.
参考文献
KOPITTKE PM, GIANONCELLI A, KOUROUSIAS G, et al. , 2017. Alleviation of Al toxicity by Si is associated with the formation of Al-Si complexes in root tissues of sorghum[J]. Front Plant Sci, 8: 2189.
参考文献
LI JA, 2021. Alleviation and regulation of exogenous organic acids on aluminum toxicity of Pinus massoniana[D]. Chongqing: Southwest University. [李峻安, 2021. 酸铝环境下外源有机酸对马尾松铝毒害的缓解作用及调控机制[D]. 重庆: 西南大学. ]
参考文献
LI ZY, LU WL, QIAN W, et al. , 2022. Biological characteristics and response to aluminum stress of root border cells in Cunninghamia lanceolata and their response to aluminum stress[J]. Sci Silv Sin, 58(7): 73-81. [李舟阳, 陆文玲, 钱旺, 等, 2022. 杉木根边缘细胞生物学特性及其对铝胁迫的响应[J]. 林业科学, 58(7): 73-81. ]
参考文献
LIU WJ, XU FJ, LV T, et al. , 2018. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L. ) plants[J]. Sci Total Environ, 627: 462-469.
参考文献
LIU YJ, 2020. Physiological and biochemical changes in response to aluminum treatment and aluminum accumulation in the Camellia japonica[D]. Chengdu: Sichuan Agricultural University. [刘元娇, 2020. 山茶对铝的生理生化响应及体内铝累积效应研究[D]. 成都: 四川农业大学. ]
参考文献
LIU YM, 2018. The characteristics and rhizosphere effects in alleviating Al-toxicity of Pinus massoniana root exudation in acid-aluminum environment[D]. Chongqing: Southwest University. [刘玉民, 2018. 酸铝环境马尾松根系分泌物特性及其缓解铝毒的根际效应[D]. 重庆: 西南大学. ]
参考文献
LU MY, 2014. Cell biological mechanisms of aluminum induced on root apex of different aluminum-tolerant fast-growing eucalyptus clones[D]. Nanning: Guangxi University. [陆明英, 2014. 铝诱导不同耐铝型速生桉无性系的根尖细胞生物学响应机制研究[D]. 南宁: 广西大学. ]
参考文献
MUKHOPADYAY M, BANTAWA P, DAS A, et al. , 2012. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L. ) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 25(6): 1141-1154.
参考文献
RIAZ M, YAN L, WU XW, et al. , 2019. Boron supply maintains efficient antioxidant system, cell wall components and reduces aluminum concentration in roots of trifoliate orange[J]. Plant Physiol Biochem, 137: 93-101.
参考文献
SCHMITT M, WATANABE T, JANSEN S, 2016. The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species[J]. AoB Plants, 8: plw065.
参考文献
SU YY, 2021. The physiological response mechanism of acetylcholine regulatingcadmium stress in tobacco (Nicotiana benthamiana)[D]. Xianyang: Northwest A & F University. [苏芸芸, 2021. 乙酰胆碱调节烟草镉胁迫响应的生理机制[D]. 咸阳: 西北农林科技大学. ]
参考文献
SUN CL, LU LL, YU Y, et al. , 2016. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots[J]. J Exp Bot, 67(3): 979-989.
参考文献
SUN LL, ZHANG MS, LIU XM, et al. , 2020. Aluminium is essential for root growth and development of tea plants (Camellia sinensis)[J]. J Integr Plant Biol, 62(7): 984-997.
参考文献
TAYLOR GJ, MCDONALD-STEPHENS JL, HUNTER DB, et al. , 2000. Direct measurement of aluminum uptake and distribution in single cells of Chara corallina[J]. Plant Physiol, 123(3): 987-996.
参考文献
WANG P, ZHOU SJ, LI A, et al. , 2022. Influence of aluminum at low pH on the rhizosphere processes of Masson pine (Pinus massoniana Lamb) [J]. Plant Growth Regul, 97(3): 499-510.
参考文献
WANG SL, WANG P, WANG CY, 2010. Changes in rhizosphere pH and exudation of organic acids of masson pine (Pinus massoniana) seedlings under aluminum stress[J]. J Ecol Rural Environ, 26(1): 87-91. [王水良, 王平, 王趁义, 2010. 铝胁迫下马尾松幼苗有机酸分泌和根际pH值的变化[J]. 生态与农村环境学报, 26(1): 87-91. ]
参考文献
WANG XH, 2020. Fine root morphology, hormone synthesis and secretion characteristics of ectomycorrhizal Pinus massoniana seedlings under acid aluminum stress[D]. Chongqing: Southwest University. [王小河, 2020. 菌根化马尾松幼苗在酸性铝胁迫下的细根形态结构、激素合成与分泌特征[D]. 重庆: 西南大学. ]
参考文献
WANG YX, LI KF, DING GJ, et al. , 2020. Effects of aluminum on growth and nutrient element absorption of mycorrhizal Pinus massoniana seedlings[J]. J For Environ, 40(2): 119-125. [汪远秀, 李快芬, 丁贵杰, 等, 2020. 铝对马尾松菌根苗生长及营养元素吸收的影响[J]. 森林与环境学报, 40(2): 119-125. ]
参考文献
WEIGEL HJ, JAGER HJ, 1980. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiol, 65(3): 480-482.
参考文献
WU Z, MCGROUTHER K, CHEN D, et al. , 2013. Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress[J]. J Agric Food Chem, 61(20): 4715-4722.
参考文献
XIAO HJ, WANG ZY, 2006. Advance on study of aluminum toxicity and plant nutrition in acid soils[J]. SW Chin J Agric Sci, 19(6): 1180-1188. [肖厚军, 王正银, 2006. 酸性土壤铝毒与植物营养研究进展[J]. 西南农业学报, 19(6): 1180-1188. ]
参考文献
XIAO ZX, LIANG YC, 2022. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice[J]. Plant Physiol Biochem, 175: 12-22.
参考文献
YAO HY, LIU YM, ZHANG SN, et al. , 2018. Effects of exogenous citric acid on physiological characteristics of Pinus massoniana under aluminum stress[J]. Sci Silv Sin, 54(7): 155-164. [姚虹宇, 刘亚敏, 张盛楠, 等, 2018. 外源柠檬酸对铝胁迫下马尾松生理特性的影响[J]. 林业科学, 54(7): 155-164. ]
参考文献
YAO HY, ZHANG SN, ZHOU WY, et al. , 2020. The effects of exogenous malic acid in relieving aluminum toxicity in Pinus massoniana[J]. Int J Phytorem, 22(6): 669-678.
参考文献
ZHANG HH, JIANG Z, QIN R, et al. , 2014. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana[J]. BMC Plant Biol, 14: 264.
参考文献
ZHANG SN, LIU YM, LIU YM, et al. , 2016. Impacts of aluminum stress on the growth and physiological characteristics of Pinus massoniana seedlings[J]. Acta Bot Boreal-Occident Sin, 36(10): 2022-2029. [张盛楠, 刘亚敏, 刘玉民, 等, 2016. 马尾松幼苗生长及生理特性对铝胁迫的响应[J]. 西北植物学报, 36(10): 2022-2029. ]
参考文献
ZHANG X, LONG Y, HUANG JJ, et al. , 2019. Molecular mechanisms for coping with Al toxicity in plants[J]. Int J Mol Sci, 20(7): 1551.
参考文献
ZHAO TL, XIE GN, ZHANG XX, et al. , 2013. Process and mechanism of plants in overcoming acid soil aluminum stress[J]. Chin J Appl Ecol, 24(10): 3003-3011. [赵天龙, 解光宁, 张晓霞, 等, 2013. 酸性土壤上植物应对铝胁迫的过程与机制[J]. 应用生态学报, 24(10): 3003-3011. ]
参考文献
ZHOU ZX, 2001. Pinus massoniana in China[M]. Beijing: China Forestry Press: 14-17. [周政贤, 2001. 中国马尾松[M]. 北京: 中国林业出版社: 14-17. ]
参考文献
ZHU GX, XIAO HY, GUO QJ, et al. , 2017. Subcellular distribution and chemical forms of heavy metals in three types of compositae plants from lead-zinc tailings area[J]. Huanjing Kexue, 38(7): 3054-3060.
目录contents

    摘要

    有毒金属离子在植物组织中的分布和亚细胞水平的定位与植物对金属离子的耐受性密切相关。为探究铝进入马尾松体内后在亚细胞水平下的分布情况,该研究分别设置0、0.5、1.0、2.0 mmol·L-14个铝浓度,通过盆栽试验研究不同铝浓度下马尾松的生长状况及亚细胞水平下铝的分配特征。结果表明:(1) 低浓度铝 (0.5 mmol·L-1)显著促进马尾松的生长(P<0.05),随铝浓度的升高 (≥1.0 mmol·L-1),马尾松根系生长和根尖细胞活力均受到抑制。(2) 相较于茎叶,进入马尾松体内的铝主要沉积在根系中(P<0.05),但随着铝浓度的增加,茎叶中的铝含量也开始增加。(3)亚细胞水平下,不同铝浓度影响了铝在细胞壁和液泡中的分配比例。当铝浓度为1.0 mmol·L-1及以下时,铝在根系和茎叶的细胞壁和液泡中的比例均较高,两者间铝含量差异不显著;而高铝浓度下 (2.0 mmol·L-1),铝则主要沉积在细胞壁上,根系、茎叶的细胞壁铝含量分别占比55%和70%。相较而言,各铝浓度处理下细胞器和细胞质中的铝含量均维持在较低水平,这降低了铝对细胞功能的影响。综上认为,马尾松可以通过调整体内铝的分配来适应铝胁迫,这为后续从细胞及分子层面进一步阐明马尾松对铝环境的适应机制奠定了理论基础。

    Abstract

    The distribution and subcellular localization of toxic metal ions in plant tissues are of great significance for plants to cope with metal stresses, which could provide valuable insights into the mechanisms underlying plant metal tolerance. To explore the distribution of aluminum (Al) at the subcellular level after entering Pinus massoniana, four aluminum concentrations of 0, 0.5, 1.0, 2.0 mmol·L-1 were set up in this study. The growth status of P. massoniana and the distribution characteristics of aluminum at the subcellular level under different Al concentrations were studied by pot experiment. The results were as follows: (1) P. massoniana exhibited significant growth enhancement under 0.5 mmol·L-1 Al treatment, and the biomass, seedling height, root length, as well as the number of lateral roots were all significantly promoted. However, higher Al concentrations (≥1 mmol·L-1) led to diminished growth promotion effects and inhibited root growth and cell viability in P. massoniana root tips. (2) Translocation of Al from roots to shoots in P. massoniana was limited. The absorbed Al was mainly deposited in the roots (P<0.05), although the accumulation of Al in the shoots increased along with the Al concentration increased. (3) At the subcellular level, different Al concentrations affected the proportions of absorbed Al deposited in cell walls and vacuoles. Under both 0.5 and 1.0 mmol·L-1Al treatments, the proportions of Al in both the cell walls and vacuoles of roots or shoots were all at higher levels compared with other cell components, and there was no significant difference between the Al contents of cell walls and vacuoles. However, at high Al concentration (2.0 mmol·L-1), a majority of deposited Al was found on the cell walls, accounting for 55% and 70% in root and shoot cells, respectively. In contrast, the Al contents in the organelles and cytoplasm maintained low levels of Al concentration treatments, which mitigated the adverse effects of Al on cellular functions. In summary, the presented results suggest that P. massoniana effectively adapted to Al stress through coordinated distribution and subcellular localization mechanisms for absorbed Al. This evokes the needs of further investigation of the adaptation mechanisms of P. massoniana to Al stress from both the cellular and molecular levels.

    关键词

    马尾松亚细胞组分细胞壁分配特征

  • 土壤中的铝多以硅酸盐态或氧化态等非水溶态存在,在近中性土壤中,铝不会对植物造成伤害,但在酸性条件下(pH<5.5)Al3+会大量溶出,并对植物产生毒害(肖厚军和王正银,2006)。在酸性土中,Al3+主要通过破坏植物细胞壁和质膜,干扰细胞信号转导、钙稳态和氧化还原稳态等途径(陆明英,2014;Schmitt et al.,2016)影响根系的发育和功能,最终抑制植物生长(赵天龙等,2013;冯英明等,2022)。

  • 植物主要通过根尖有机酸的分泌、细胞壁的固定、细胞质内的螯合和液泡区隔化等方式来应对铝毒害(Kochian et al.,2015;Guo et al.,2018)。根系是最先与Al3+接触的器官,在受到铝毒害时其会释放有机酸、酚类物质等成分螯合Al3+(Chen et al.,2011;Yao et al.,2020)。同时,根系内的细胞成分也会发挥作用降低Al3+对植物的伤害,如细胞壁作为Al3+进入原生质体的第一道屏障,其主要成分中的果胶具有带负电的羧基、半纤维素具有高度的支链结构,都可以与Al3+相互作用,阻止Al3+进入细胞(Sun et al.,2016;Zhang et al.,2019)。同时,细胞质以及液泡内由于含有有机酸、酚类物质(Kidd et al.,2001;Chen et al.,2011)等成分,可以与Al3+形成无毒螯合物储存于其中(Inostroza-Blancheteau et al.,2012),从而降低Al3+对植物的伤害。有研究表明,铝进入植物体内后,其在根系和茎叶中的分配比例,以及在亚细胞水平的分配情况可以反映植物对铝毒害的适应性(Čiamporová,2002;Zhang et al.,2019)。然而,目前有关亚细胞水平下铝分配特征的研究还非常有限,主要集中在油茶(Camellia oleifera)(黄丽媛,2017)、山茶(C. japonica)(刘元娇,2020)和桉树(Eucalyptus robusta)(陆明英,2014)等少数几种植物上,而且关于铝处理下植物根系和茎叶的亚细胞组分中铝分配特征的比较,以及对不同铝浓度的响应鲜见报道。

  • 马尾松(Pinus massoniana)作为我国本土主要的造林和工业原料树种之一,主要分布于南方亚热带地区的酸性土壤中,对酸铝环境有着很好的适应能力(周政贤,2001;王水良等,2010;刘玉民,2018)。目前,马尾松通过根系分泌有机酸(王水良等,2010;姚虹宇等,2018;李峻安,2021;Wang et al.,2022)和与外生菌根真菌建立共生关系(Jaiswal et al.,2018;辜夕容等,2018;王小河,2020;Gu et al.,2023)来提高对铝胁迫的耐受性已得到充分证实。然而,有关铝胁迫下马尾松的细胞壁、液泡等细胞成分对Al3+的结合能力仍未知,亚细胞水平下的耐受机理有待揭示。因此,本研究以马尾松幼苗为试验对象,选用不同铝浓度处理,拟在解析不同铝浓度处理对马尾松生长以及各细胞组分内铝含量的分布特征的影响。为进一步从亚细胞水平研究马尾松酸铝耐受机制提供理论依据。

  • 1 材料与方法

  • 1.1 试验材料

  • 马尾松种子来自贵州省都匀市的马鞍山国有林场马尾松1.5代种子园半同胞良种基地。

  • 1.2 试验处理

  • 选取籽粒饱满、大小均一的马尾松种子,于室温下在蒸馏水中浸泡24 h,用0.5%的 KMnO4溶液浸泡消毒2 h后用无菌水清洗3~5次,将消毒后的种子置于已灭菌的湿润蛭石中24℃暗培养,种子露白后转为光照培养(光照160 μmol· m-2·s-1 14 h,温度25℃;黑暗10 h,温度24℃)。

  • 种子出芽30 d后,选取长势一致的幼苗置于装有已灭菌的蛭石盆中,参照刘元娇(2020)的方法设置0、0.5、1.0、2.0 mmol·L-1 4个铝浓度,以AlCl3·6H2O形式添加。每个处理24棵幼苗,于人工气候箱中培养2个月,每隔7 d施一次含不同铝浓度的Hoagland营养液50 mL,营养液用2%的HCl溶液将pH调节至4.00±0.05。培养条件:光照160 μmol· m-2·s-1 14 h,温度25℃;黑暗10 h,温度24℃。

  • 1.3 测定指标和方法

  • 1.3.1 幼苗鲜重及根系形态的测定

  • 各处理随机选取15株幼苗进行扫描(Epson Perfection V330Photo),统计根系分枝数,使用ImageJ平台的SmartRoot插件测定根系长度;用电子天平分别称取根系、茎叶的鲜重;在荧光体视显微镜(M205FA,Leica)下观察根毛形态。

  • 1.3.2 根系细胞活力及铝在根系沉积情况的测定

  • 根系细胞活力和铝在根系的沉积情况的观测参照Xiao和Liang(2022)、李舟阳等(2022)、Riaz等(2019)的方法。

  • 根系细胞活力用二乙酰荧光素(fluorescein diacetate,FDA)-碘化丙啶(propidium iodide,PI)(FDA-PI)双染色剂测定。截取1 cm幼苗根尖约15个,用FDA-PI(50 μL FDA和15 μL PI)在黑暗条件下对其染色15 min后,在荧光体视显微镜(M205FA,Leica)下观察根细胞活性(活细胞呈绿色,死细胞呈红色)。

  • 铝在根系沉积情况用morin染色测定。截取1 cm的根段15个,于100 μmol·L-1 morin染色液中浸泡20 min,在荧光体视显微镜(M205FA,Leica)下观察染色情况。

  • 1.3.3 亚细胞组分的分离及铝含量的测定

  • 为探究马尾松幼苗地下部分和地上部分的铝分配情况,分别称取0.5 g的根系和茎叶样品,加入10 mL缓冲液[250 mmol·L-1蔗糖,50 mmol·L-1 Tris-HCl(pH=7.5),1 mmol·L-1二硫赤藓糖醇(C4H10S2)]后在冰浴中研磨至匀浆,匀浆用尼龙布过滤,再用上述缓冲液洗涤残渣3次后作为细胞壁组分。将过滤的滤液在4 °C、2 000×g下离心 15 min,沉淀为液泡组分;再次将上清液在12 000×g、4℃下进一步离心30 min后,最终所得上清液和沉淀分别被鉴定为细胞质和除液泡外的细胞器组分(Weigel &Jager,1980;Zhu et al.,2017;苏芸芸,2021)。参照Bloom等(1978)和鲍士旦(2000)的方法测定各组分的铝含量,3次重复。

  • 1.4 数据处理

  • 采用 SPSS 22.0.0 软件中的单因素ANVOA进行方差分析和Duncan法进行显著性检验。用Origin Pro 8.5软件绘图。

  • 2 结果与分析

  • 2.1 马尾松幼苗生物量和根系形态

  • 铝处理对马尾松生长的影响表现为低浓度(0.5 mmol·L-1)促进,高浓度(≥1.0 mmol·L-1)抑制。与对照(CK)相比,0.5 mmol·L-1的铝浓度对马尾松的根系、茎叶的鲜重,总根长,侧根数,苗高以及地径均有一定程度的促进作用,并显著增加了根系鲜重、总根长、侧根数、苗高和地径(P<0.05)(表1;图1:A,B);当铝浓度为1.0 mmol·L-1和2.0 mmol·L-1时则显著降低了马尾松幼苗的鲜重、总根长、侧根数和苗高(P<0.05),地径也逐渐降低,但与对照没有显著差异(表1;图1: C,D)。同时在铝浓度为1.0 mmol·L-1及以下时根毛形态与对照相差不大(图2:A-C),但浓度为2.0 mmol·L-1时根毛形态变得弯曲、短小(图2:D)。

  • 2.2 根系细胞活力及铝在根系沉积情况

  • 根系细胞活力染色结果表明,铝处理影响了根尖细胞活性。与对照(CK)相比, 0.5 mmol·L-1铝浓度下根尖的绿色荧光信号较强;随着铝浓度的升高,绿色荧光信号逐渐减弱,而红色荧光信号逐渐增强,表明活性细胞数量逐渐减少,死细胞逐渐增多(图3)。

  • 表1 不同铝浓度处理下马尾松的生长情况

  • Table1 Growth of Pinus massoniana under different Al concentration treatments

  • 注:同列数据后的不同字母代表不同铝浓度间有显著性差异(P<0.05)。

  • Note: Different letters after the data in the same column indicate significant differences between different Al concentrations (P<0.05) .

  • morin染色结果表明,当铝浓度为0.5 mmol·L-1时,在根尖检测到较弱的荧光信号(图4:B),而随着铝浓度的升高,根尖的荧光染色信号逐渐增强(图4:C,D),表明随着铝浓度的升高铝在根尖的沉积增加。

  • 2.3 幼苗及各细胞组分内的铝含量

  • 铝进入马尾松体内后主要分布于根系。铝浓度对根系中铝沉积量的影响不大,各浓度下的铝含量差异不明显,0.5 mmol·L-1浓度下根系的铝含量相较于其他两个浓度稍低;与根系不同,茎叶的铝含量随着铝浓度的升高逐渐升高,当浓度为2.0 mmol·L-1时,铝含量达到37.45 mg·g-1,与其他两个浓度相比差异显著(P<0.05);同一浓度下根系的铝含量显著地比茎叶高(P<0.05),尤其是铝浓度为0.5 mmol·L-1时,差异极显著(P<0.01)(图5)。

  • 在亚细胞水平下,不同铝浓度处理下根系及茎叶细胞中的铝均主要分布在细胞壁和液泡中。其中,根系细胞壁的铝含量随着铝浓度的升高而增加,液泡中则随铝浓度升高而降低(图6:B)。茎叶细胞的细胞壁铝含量在铝浓度为1.0 mmol·L-1及以下时差异不显著,在浓度为2.0 mmol·L-1时铝含量为26.59 mg·g-1,差异显著(P<0.05);而液泡内的铝含量在各铝浓度间差异不显著,在浓度为1.0 mmol·L-1时的含量比另外两个浓度较高(图6:A);相较而言,各铝浓度处理下细胞质和细胞器中的铝含量均无显著性差异且维持在较低水平(图6)。由图7可知,从各细胞组分的铝分配比例来看,当铝浓度为1.0 mmol·L-1及以下时,茎叶和根系细胞中的铝在细胞壁和液泡中的比例均较高,如当浓度为0.5 mmol·L-1时,根系细胞壁、液泡的铝含量分别占比42%和40%;高铝处理下,铝主要分布在细胞壁中,根系、茎叶的细胞壁铝含量分别占比55%和70%。细胞器和细胞质中铝分配比例较低,分别在20%和10%及以下。总体来看,各细胞组分内的铝含量呈现细胞壁>液泡>细胞器> 细胞质的特征。

  • 3 讨论

  • 铝毒害是酸性土壤(pH<5.5)中限制植物生长发育的主要土壤因子之一,影响许多作物的生长和产量。但也有一些植物对酸铝环境有极强的适应性,如油茶(Sun et al.,2020)、绣球花(Hydrangea macrophylla)(Chen et al.,2022)等,一定浓度(0.15~1.0 mmol·L-1)的铝处理能够促进其根系的生长。本研究发现低浓度铝(0.5 mmol·L-1)可以促进马尾松的生长,这与汪远秀等(2020)和张盛楠等(2016)的研究结果相似。铝虽不是植物生长的必需元素,但有研究表明,低浓度的铝可以维持细胞膜的稳定性,减少细胞的内容物外渗,对植物生长有利(Mukhopadyay et al.,2012;Wang et al.,2022)。只有当铝浓度超过一定阈值时,才会对植物产生毒害。例如,本研究发现当铝浓度≥1.0 mmol·L-1时显著降低了马尾松幼苗的鲜重、总根长、侧根数和苗高(P<0.05);同时,根毛形态也变得弯曲短小,这可能与细胞壁内积累的铝含量有关。有研究表明,过多的铝富集会减弱细胞壁的机械性能,降低根尖细胞的膨胀性和延展性,从而影响根的伸长(Kopittke et al.,2017;Liu et al.,2018;Jiang et al.,2022)。FDA-PI染色结果显示随着铝浓度的升高,红色荧光信号增强,尤其是铝浓度为2 mmol·L-1时,红色荧光信号极强。这与Xiao和Liang(2022)针对水稻(Oryza sativa)的研究有相似发现,可能是由于根尖细胞是铝毒害的主要目标,金属盐AlCl3的解离改变了细胞的离子环境,干扰了细胞的分裂,导致染色体畸变,从而损害了根尖细胞的活性(Zhang et al.,2014)。

  • 图1 不同铝浓度对马尾松生长的影响

  • Fig.1 Effects of different Al concentrations on the growth of Pinus massoniana

  • 植物吸收金属离子后会有选择地在体内分布,以避免过量的金属在某个组织或细胞成分内集中积累损伤细胞功能,进而影响植物的正常代谢(Hou et al.,2013;代亚萍,2017)。本研究发现根系中的铝含量显著高于茎叶(P<0.05),尤其是浓度为0.5 mmol·L-1时,差异极显著(P<0.01)。纪雨薇(2016)分别对马尾松根茎叶的铝含量进行测定,发现当铝浓度为0.8 mmol·L-1时,根系的铝含量比茎叶的高,同样这一现象也出现在山茶(刘元娇,2020)、柑橘(Citrus reticulata)(Guo et al.,2017a,b)、白檀(Symplocos paniculata)(Schmitt et al.,2016)等植物中。Klug等(2015)研究表明根系是与可溶性铝直接接触的器官;Mukhopadyay等(2012)研究发现根系能够吸收并固定住有毒金属离子,限制有毒金属离子向地上部分的转运,从而减轻有毒金属离子对地上部分的伤害。同时本研究还发现不同铝浓度下根系间的铝含量几乎保持不变,这可能是因为根系对铝的吸收已趋于饱和(黄丽媛,2017;Jiang et al.,2022)。而超过一定浓度(≥1.0 mmol·L-1)后,茎叶的铝含量开始增加,马尾松幼苗生长受到抑制,相比根系,茎叶可能对铝胁迫更敏感。Mukhopadyay等(2012)研究显示,铝毒通过降低气孔开放使得气孔导度减小,导致CO2的固定量减少,叶片内部光合作用降低,植物生长受到抑制。

  • 图2 不同铝浓度下马尾松的根毛形态

  • Fig.2 Root hair morphology of Pinus massoniana under different Al concentrations

  • 图3 不同铝浓度下马尾松根尖活细胞染色

  • Fig.3 Live cells staining of Pinus massoniana root tip under different Al concentrations

  • 图4 不同铝浓度下马尾松根系的铝沉积情况

  • Fig.4 Al deposition in Pinus massoniana roots under different Al concentrations

  • 图5 不同铝浓度下茎叶、根系的铝含量

  • Fig.5 Al contents in shoots and roots under different Al concentrations

  • 细胞壁被认为是金属离子进入细胞的第一个屏障,其对金属离子的积累量主要与富含羧基的多糖的量有关(Taylor et al.,2000);当超过细胞壁的承受范围时,金属离子以无毒螯合物的形式储存在对其不敏感的液泡内,以保护细胞内部免受金属离子的毒害(Taylor et al.,2000;Wu et al.,2013)。因此,植物的细胞壁和液泡对缓解铝等金属离子的毒害有重要作用。Gao等(2014)探究茶树中铝的分布情况,发现铝主要分布于细胞壁,其次是液泡,分别占比70%和20%左右,在油茶(黄丽媛,2017)、山茶(刘元娇,2020)中也出现类似结果。本研究同样发现不同浓度下铝均主要分布于细胞壁和液泡中,分别位于40%~70%和15%~40%范围内;高铝处理下的铝主要分布于细胞壁,morin染色验证了这一结果,其可以与细胞壁内的铝形成荧光复合物指示铝的富集程度(Ahn,2002;Riaz et al.,2019)。相较于细胞壁和液泡,细胞质和细胞器内则维持较低的铝含量,由于细胞器和细胞质的功能对铝敏感,较低的铝浓度保证了其功能的正常运转。

  • 图6 不同铝浓度茎叶、根系的细胞组分内的铝含量

  • Fig.6 Al contents in cell components of shoots and roots under different Al concentrations

  • 图7 不同铝浓度茎叶、根系的各细胞组分所占比例

  • Fig.7 Proportions of cell components in shoots and roots of different Al concentrations

  • 4 结论

  • 马尾松可通过调整体内铝的分配适应铝胁迫,进入马尾松体内的铝优先沉积于根系,而细胞水平下的铝则主要分布在细胞壁和液泡中,这有利于使茎叶和细胞质、液泡中的铝维持在较低水平,保护茎叶和细胞功能。以上结果为后续从亚细胞水平进一步阐明马尾松对铝环境的适应机制提供了理论基础。

  • 参考文献

    • AH N SJ, 2002. Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo) [J]. J Exp Bot, 53(376): 1959-1966.

    • BAO SD, 2000. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Publishing House: 239-240. [鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 239-240. ]

    • BLOOM PR, WEAVER RM, MCBRIDE MB, 1978. The spectrophotometric and fluorometric determination of aluminum with 8-hydroxyquinoline and butyl acetate extraction[J]. Soil Sci Soc Am J, 42(5): 713-716.

    • CHEN SS, QI XY, FENG J, et al. , 2022. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals[J]. Plant Physiol Biochem, 185: 268-278.

    • CHEN YM, TSAO TM, LIU CC, et al. , 2011. Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE)) [J]. J Sci Food Agric, 91(6): 1111-1117.

    • ČIAMPOROVÁ M, 2002. Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels [J]. Biol Plant, 45: 161-171.

    • DAI YP, 2017. Study on the characteristics of aluminum enrichment in ferns and its influencing factors[D]. Shanghai: East China Normal University. [代亚萍, 2017. 蕨类植物铝富集特征及影响因素研究[D]. 上海: 华东师范大学. ]

    • FENG YM, LUO GR, QU M, et al. , 2022. Effects of boron on aluminum adsorption and desorption of cell wall components of pea root tips[J]. Plant Nutr Fert Sci, 28(10): 1893-1900. [冯英明, 罗功荣, 曲梅, 等, 2022. 硼对豌豆根尖细胞壁组分对铝吸附解吸的影响[J]. 植物营养与肥料学报, 28(10): 1893-1900. ]

    • GAO HJ, ZHAO Q, ZHANG XC, et al. , 2014. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. J Agric Food Chem, 62(10): 2313-2319.

    • GU XR, JIA H, WANG XH, et al. , 2023. Differential aluminum tolerance and absorption characteristics in Pinus massoniana seedlings colonized with ectomycorrhizal fungi of Lactarius deliciosus and Pisolithus tinctorius[J]. J For Res, 34: 1523-1533.

    • GU XR, NI YL, JIANG YN, et al. , 2018. Effects of Laccaria bicolor on growth, uptake and distribution of nutrients and aluminum of Pinus massoniana seedlings under acid aluminum exposure[J]. Sci Silv Sin, 54(2): 170-178. [辜夕容, 倪亚兰, 江亚男, 等, 2018. 接种双色蜡蘑对酸性铝胁迫下马尾松幼苗生长、养分和铝吸收与分布的影响[J]. 林业科学, 54(2): 170-178. ]

    • GUO P, LI Q, QI YP, et al. , 2017a. Sulfur-mediated-alleviation of aluminum-toxicity in citrus grandis seedlings[J]. Int J Mol Sci, 18(12): 2570.

    • GUO P, QI YP, CAI YT, et al. , 2018. Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance[J]. Tree Physiol, 38(10): 1548-1565.

    • GUO P, QI YP, YANG LT, et al. , 2017b. Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two citrus species with different aluminum-tolerance[J]. Front Plant Sci, 8: 330.

    • HOU M, HU CJ, XIONG L, et al. , 2013. Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensis[J]. Microchem J, 110: 575-578.

    • HUANG LY, 2017. Mechanisms of aluminum uptake and tolerance in Camellia oleifera Abel. [D]. Changsha: Central South University of Forestry and Technology. [黄丽媛, 2017. 油茶对铝的吸收积累及其耐性机理研究[D]. 长沙: 中南林业科技大学. ]

    • INOSTROZA-BLANCHETEAU C, RENGEL Z, ALBERDI M, et al. , 2012. Molecular and physiological strategies to increase aluminum resistance in plants[J]. Mol Biol Rep, 39(3): 2069-2079.

    • JAISWAL SK, NAAMALA J, DAKORA FD, 2018. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia[J]. Biol Fertil Soils, 54(3): 309-318.

    • JI YW, 2016. Study on physiological response mechanism of Pinus massoniana Lamb. to aluminum stress[D]. Chongqing: Southwest University. [纪雨薇, 2016. 马尾松铝胁迫生理响应机制[D]. 重庆: 西南大学. ]

    • JIANG DX, WU HH, CAI H, et al. , 2022. Silicon confers aluminium tolerance in rice via cell wall modification in the root transition zone[J]. Plant Cell Environ, 45(6): 1765-1778.

    • KIDD PS, LLUGANY M, POSCHENRIEDER C, et al. , 2001. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L. ) [J]. J Exp Bot, 52(359): 1339-1352.

    • KLUG B, KIRCHNER T, HORST W, 2015. Differences in aluminium accumulation and resistance between genotypes of the genus Fagopyrum[J]. Agronomy, 5(3): 418-434.

    • KOCHIAN LV, PINEROS MA, LIU J, et al. , 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance[J]. Annu Rev Plant Biol, 66: 571-598.

    • KOPITTKE PM, GIANONCELLI A, KOUROUSIAS G, et al. , 2017. Alleviation of Al toxicity by Si is associated with the formation of Al-Si complexes in root tissues of sorghum[J]. Front Plant Sci, 8: 2189.

    • LI JA, 2021. Alleviation and regulation of exogenous organic acids on aluminum toxicity of Pinus massoniana[D]. Chongqing: Southwest University. [李峻安, 2021. 酸铝环境下外源有机酸对马尾松铝毒害的缓解作用及调控机制[D]. 重庆: 西南大学. ]

    • LI ZY, LU WL, QIAN W, et al. , 2022. Biological characteristics and response to aluminum stress of root border cells in Cunninghamia lanceolata and their response to aluminum stress[J]. Sci Silv Sin, 58(7): 73-81. [李舟阳, 陆文玲, 钱旺, 等, 2022. 杉木根边缘细胞生物学特性及其对铝胁迫的响应[J]. 林业科学, 58(7): 73-81. ]

    • LIU WJ, XU FJ, LV T, et al. , 2018. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L. ) plants[J]. Sci Total Environ, 627: 462-469.

    • LIU YJ, 2020. Physiological and biochemical changes in response to aluminum treatment and aluminum accumulation in the Camellia japonica[D]. Chengdu: Sichuan Agricultural University. [刘元娇, 2020. 山茶对铝的生理生化响应及体内铝累积效应研究[D]. 成都: 四川农业大学. ]

    • LIU YM, 2018. The characteristics and rhizosphere effects in alleviating Al-toxicity of Pinus massoniana root exudation in acid-aluminum environment[D]. Chongqing: Southwest University. [刘玉民, 2018. 酸铝环境马尾松根系分泌物特性及其缓解铝毒的根际效应[D]. 重庆: 西南大学. ]

    • LU MY, 2014. Cell biological mechanisms of aluminum induced on root apex of different aluminum-tolerant fast-growing eucalyptus clones[D]. Nanning: Guangxi University. [陆明英, 2014. 铝诱导不同耐铝型速生桉无性系的根尖细胞生物学响应机制研究[D]. 南宁: 广西大学. ]

    • MUKHOPADYAY M, BANTAWA P, DAS A, et al. , 2012. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L. ) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 25(6): 1141-1154.

    • RIAZ M, YAN L, WU XW, et al. , 2019. Boron supply maintains efficient antioxidant system, cell wall components and reduces aluminum concentration in roots of trifoliate orange[J]. Plant Physiol Biochem, 137: 93-101.

    • SCHMITT M, WATANABE T, JANSEN S, 2016. The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species[J]. AoB Plants, 8: plw065.

    • SU YY, 2021. The physiological response mechanism of acetylcholine regulatingcadmium stress in tobacco (Nicotiana benthamiana)[D]. Xianyang: Northwest A & F University. [苏芸芸, 2021. 乙酰胆碱调节烟草镉胁迫响应的生理机制[D]. 咸阳: 西北农林科技大学. ]

    • SUN CL, LU LL, YU Y, et al. , 2016. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots[J]. J Exp Bot, 67(3): 979-989.

    • SUN LL, ZHANG MS, LIU XM, et al. , 2020. Aluminium is essential for root growth and development of tea plants (Camellia sinensis)[J]. J Integr Plant Biol, 62(7): 984-997.

    • TAYLOR GJ, MCDONALD-STEPHENS JL, HUNTER DB, et al. , 2000. Direct measurement of aluminum uptake and distribution in single cells of Chara corallina[J]. Plant Physiol, 123(3): 987-996.

    • WANG P, ZHOU SJ, LI A, et al. , 2022. Influence of aluminum at low pH on the rhizosphere processes of Masson pine (Pinus massoniana Lamb) [J]. Plant Growth Regul, 97(3): 499-510.

    • WANG SL, WANG P, WANG CY, 2010. Changes in rhizosphere pH and exudation of organic acids of masson pine (Pinus massoniana) seedlings under aluminum stress[J]. J Ecol Rural Environ, 26(1): 87-91. [王水良, 王平, 王趁义, 2010. 铝胁迫下马尾松幼苗有机酸分泌和根际pH值的变化[J]. 生态与农村环境学报, 26(1): 87-91. ]

    • WANG XH, 2020. Fine root morphology, hormone synthesis and secretion characteristics of ectomycorrhizal Pinus massoniana seedlings under acid aluminum stress[D]. Chongqing: Southwest University. [王小河, 2020. 菌根化马尾松幼苗在酸性铝胁迫下的细根形态结构、激素合成与分泌特征[D]. 重庆: 西南大学. ]

    • WANG YX, LI KF, DING GJ, et al. , 2020. Effects of aluminum on growth and nutrient element absorption of mycorrhizal Pinus massoniana seedlings[J]. J For Environ, 40(2): 119-125. [汪远秀, 李快芬, 丁贵杰, 等, 2020. 铝对马尾松菌根苗生长及营养元素吸收的影响[J]. 森林与环境学报, 40(2): 119-125. ]

    • WEIGEL HJ, JAGER HJ, 1980. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiol, 65(3): 480-482.

    • WU Z, MCGROUTHER K, CHEN D, et al. , 2013. Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress[J]. J Agric Food Chem, 61(20): 4715-4722.

    • XIAO HJ, WANG ZY, 2006. Advance on study of aluminum toxicity and plant nutrition in acid soils[J]. SW Chin J Agric Sci, 19(6): 1180-1188. [肖厚军, 王正银, 2006. 酸性土壤铝毒与植物营养研究进展[J]. 西南农业学报, 19(6): 1180-1188. ]

    • XIAO ZX, LIANG YC, 2022. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice[J]. Plant Physiol Biochem, 175: 12-22.

    • YAO HY, LIU YM, ZHANG SN, et al. , 2018. Effects of exogenous citric acid on physiological characteristics of Pinus massoniana under aluminum stress[J]. Sci Silv Sin, 54(7): 155-164. [姚虹宇, 刘亚敏, 张盛楠, 等, 2018. 外源柠檬酸对铝胁迫下马尾松生理特性的影响[J]. 林业科学, 54(7): 155-164. ]

    • YAO HY, ZHANG SN, ZHOU WY, et al. , 2020. The effects of exogenous malic acid in relieving aluminum toxicity in Pinus massoniana[J]. Int J Phytorem, 22(6): 669-678.

    • ZHANG HH, JIANG Z, QIN R, et al. , 2014. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana[J]. BMC Plant Biol, 14: 264.

    • ZHANG SN, LIU YM, LIU YM, et al. , 2016. Impacts of aluminum stress on the growth and physiological characteristics of Pinus massoniana seedlings[J]. Acta Bot Boreal-Occident Sin, 36(10): 2022-2029. [张盛楠, 刘亚敏, 刘玉民, 等, 2016. 马尾松幼苗生长及生理特性对铝胁迫的响应[J]. 西北植物学报, 36(10): 2022-2029. ]

    • ZHANG X, LONG Y, HUANG JJ, et al. , 2019. Molecular mechanisms for coping with Al toxicity in plants[J]. Int J Mol Sci, 20(7): 1551.

    • ZHAO TL, XIE GN, ZHANG XX, et al. , 2013. Process and mechanism of plants in overcoming acid soil aluminum stress[J]. Chin J Appl Ecol, 24(10): 3003-3011. [赵天龙, 解光宁, 张晓霞, 等, 2013. 酸性土壤上植物应对铝胁迫的过程与机制[J]. 应用生态学报, 24(10): 3003-3011. ]

    • ZHOU ZX, 2001. Pinus massoniana in China[M]. Beijing: China Forestry Press: 14-17. [周政贤, 2001. 中国马尾松[M]. 北京: 中国林业出版社: 14-17. ]

    • ZHU GX, XIAO HY, GUO QJ, et al. , 2017. Subcellular distribution and chemical forms of heavy metals in three types of compositae plants from lead-zinc tailings area[J]. Huanjing Kexue, 38(7): 3054-3060.

  • 参考文献

    • AH N SJ, 2002. Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo) [J]. J Exp Bot, 53(376): 1959-1966.

    • BAO SD, 2000. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Publishing House: 239-240. [鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 239-240. ]

    • BLOOM PR, WEAVER RM, MCBRIDE MB, 1978. The spectrophotometric and fluorometric determination of aluminum with 8-hydroxyquinoline and butyl acetate extraction[J]. Soil Sci Soc Am J, 42(5): 713-716.

    • CHEN SS, QI XY, FENG J, et al. , 2022. Biochemistry and transcriptome analyses reveal key genes and pathways involved in high-aluminum stress response and tolerance in hydrangea sepals[J]. Plant Physiol Biochem, 185: 268-278.

    • CHEN YM, TSAO TM, LIU CC, et al. , 2011. Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE)) [J]. J Sci Food Agric, 91(6): 1111-1117.

    • ČIAMPOROVÁ M, 2002. Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels [J]. Biol Plant, 45: 161-171.

    • DAI YP, 2017. Study on the characteristics of aluminum enrichment in ferns and its influencing factors[D]. Shanghai: East China Normal University. [代亚萍, 2017. 蕨类植物铝富集特征及影响因素研究[D]. 上海: 华东师范大学. ]

    • FENG YM, LUO GR, QU M, et al. , 2022. Effects of boron on aluminum adsorption and desorption of cell wall components of pea root tips[J]. Plant Nutr Fert Sci, 28(10): 1893-1900. [冯英明, 罗功荣, 曲梅, 等, 2022. 硼对豌豆根尖细胞壁组分对铝吸附解吸的影响[J]. 植物营养与肥料学报, 28(10): 1893-1900. ]

    • GAO HJ, ZHAO Q, ZHANG XC, et al. , 2014. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. J Agric Food Chem, 62(10): 2313-2319.

    • GU XR, JIA H, WANG XH, et al. , 2023. Differential aluminum tolerance and absorption characteristics in Pinus massoniana seedlings colonized with ectomycorrhizal fungi of Lactarius deliciosus and Pisolithus tinctorius[J]. J For Res, 34: 1523-1533.

    • GU XR, NI YL, JIANG YN, et al. , 2018. Effects of Laccaria bicolor on growth, uptake and distribution of nutrients and aluminum of Pinus massoniana seedlings under acid aluminum exposure[J]. Sci Silv Sin, 54(2): 170-178. [辜夕容, 倪亚兰, 江亚男, 等, 2018. 接种双色蜡蘑对酸性铝胁迫下马尾松幼苗生长、养分和铝吸收与分布的影响[J]. 林业科学, 54(2): 170-178. ]

    • GUO P, LI Q, QI YP, et al. , 2017a. Sulfur-mediated-alleviation of aluminum-toxicity in citrus grandis seedlings[J]. Int J Mol Sci, 18(12): 2570.

    • GUO P, QI YP, CAI YT, et al. , 2018. Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance[J]. Tree Physiol, 38(10): 1548-1565.

    • GUO P, QI YP, YANG LT, et al. , 2017b. Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two citrus species with different aluminum-tolerance[J]. Front Plant Sci, 8: 330.

    • HOU M, HU CJ, XIONG L, et al. , 2013. Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensis[J]. Microchem J, 110: 575-578.

    • HUANG LY, 2017. Mechanisms of aluminum uptake and tolerance in Camellia oleifera Abel. [D]. Changsha: Central South University of Forestry and Technology. [黄丽媛, 2017. 油茶对铝的吸收积累及其耐性机理研究[D]. 长沙: 中南林业科技大学. ]

    • INOSTROZA-BLANCHETEAU C, RENGEL Z, ALBERDI M, et al. , 2012. Molecular and physiological strategies to increase aluminum resistance in plants[J]. Mol Biol Rep, 39(3): 2069-2079.

    • JAISWAL SK, NAAMALA J, DAKORA FD, 2018. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia[J]. Biol Fertil Soils, 54(3): 309-318.

    • JI YW, 2016. Study on physiological response mechanism of Pinus massoniana Lamb. to aluminum stress[D]. Chongqing: Southwest University. [纪雨薇, 2016. 马尾松铝胁迫生理响应机制[D]. 重庆: 西南大学. ]

    • JIANG DX, WU HH, CAI H, et al. , 2022. Silicon confers aluminium tolerance in rice via cell wall modification in the root transition zone[J]. Plant Cell Environ, 45(6): 1765-1778.

    • KIDD PS, LLUGANY M, POSCHENRIEDER C, et al. , 2001. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L. ) [J]. J Exp Bot, 52(359): 1339-1352.

    • KLUG B, KIRCHNER T, HORST W, 2015. Differences in aluminium accumulation and resistance between genotypes of the genus Fagopyrum[J]. Agronomy, 5(3): 418-434.

    • KOCHIAN LV, PINEROS MA, LIU J, et al. , 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance[J]. Annu Rev Plant Biol, 66: 571-598.

    • KOPITTKE PM, GIANONCELLI A, KOUROUSIAS G, et al. , 2017. Alleviation of Al toxicity by Si is associated with the formation of Al-Si complexes in root tissues of sorghum[J]. Front Plant Sci, 8: 2189.

    • LI JA, 2021. Alleviation and regulation of exogenous organic acids on aluminum toxicity of Pinus massoniana[D]. Chongqing: Southwest University. [李峻安, 2021. 酸铝环境下外源有机酸对马尾松铝毒害的缓解作用及调控机制[D]. 重庆: 西南大学. ]

    • LI ZY, LU WL, QIAN W, et al. , 2022. Biological characteristics and response to aluminum stress of root border cells in Cunninghamia lanceolata and their response to aluminum stress[J]. Sci Silv Sin, 58(7): 73-81. [李舟阳, 陆文玲, 钱旺, 等, 2022. 杉木根边缘细胞生物学特性及其对铝胁迫的响应[J]. 林业科学, 58(7): 73-81. ]

    • LIU WJ, XU FJ, LV T, et al. , 2018. Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L. ) plants[J]. Sci Total Environ, 627: 462-469.

    • LIU YJ, 2020. Physiological and biochemical changes in response to aluminum treatment and aluminum accumulation in the Camellia japonica[D]. Chengdu: Sichuan Agricultural University. [刘元娇, 2020. 山茶对铝的生理生化响应及体内铝累积效应研究[D]. 成都: 四川农业大学. ]

    • LIU YM, 2018. The characteristics and rhizosphere effects in alleviating Al-toxicity of Pinus massoniana root exudation in acid-aluminum environment[D]. Chongqing: Southwest University. [刘玉民, 2018. 酸铝环境马尾松根系分泌物特性及其缓解铝毒的根际效应[D]. 重庆: 西南大学. ]

    • LU MY, 2014. Cell biological mechanisms of aluminum induced on root apex of different aluminum-tolerant fast-growing eucalyptus clones[D]. Nanning: Guangxi University. [陆明英, 2014. 铝诱导不同耐铝型速生桉无性系的根尖细胞生物学响应机制研究[D]. 南宁: 广西大学. ]

    • MUKHOPADYAY M, BANTAWA P, DAS A, et al. , 2012. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L. ) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 25(6): 1141-1154.

    • RIAZ M, YAN L, WU XW, et al. , 2019. Boron supply maintains efficient antioxidant system, cell wall components and reduces aluminum concentration in roots of trifoliate orange[J]. Plant Physiol Biochem, 137: 93-101.

    • SCHMITT M, WATANABE T, JANSEN S, 2016. The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species[J]. AoB Plants, 8: plw065.

    • SU YY, 2021. The physiological response mechanism of acetylcholine regulatingcadmium stress in tobacco (Nicotiana benthamiana)[D]. Xianyang: Northwest A & F University. [苏芸芸, 2021. 乙酰胆碱调节烟草镉胁迫响应的生理机制[D]. 咸阳: 西北农林科技大学. ]

    • SUN CL, LU LL, YU Y, et al. , 2016. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots[J]. J Exp Bot, 67(3): 979-989.

    • SUN LL, ZHANG MS, LIU XM, et al. , 2020. Aluminium is essential for root growth and development of tea plants (Camellia sinensis)[J]. J Integr Plant Biol, 62(7): 984-997.

    • TAYLOR GJ, MCDONALD-STEPHENS JL, HUNTER DB, et al. , 2000. Direct measurement of aluminum uptake and distribution in single cells of Chara corallina[J]. Plant Physiol, 123(3): 987-996.

    • WANG P, ZHOU SJ, LI A, et al. , 2022. Influence of aluminum at low pH on the rhizosphere processes of Masson pine (Pinus massoniana Lamb) [J]. Plant Growth Regul, 97(3): 499-510.

    • WANG SL, WANG P, WANG CY, 2010. Changes in rhizosphere pH and exudation of organic acids of masson pine (Pinus massoniana) seedlings under aluminum stress[J]. J Ecol Rural Environ, 26(1): 87-91. [王水良, 王平, 王趁义, 2010. 铝胁迫下马尾松幼苗有机酸分泌和根际pH值的变化[J]. 生态与农村环境学报, 26(1): 87-91. ]

    • WANG XH, 2020. Fine root morphology, hormone synthesis and secretion characteristics of ectomycorrhizal Pinus massoniana seedlings under acid aluminum stress[D]. Chongqing: Southwest University. [王小河, 2020. 菌根化马尾松幼苗在酸性铝胁迫下的细根形态结构、激素合成与分泌特征[D]. 重庆: 西南大学. ]

    • WANG YX, LI KF, DING GJ, et al. , 2020. Effects of aluminum on growth and nutrient element absorption of mycorrhizal Pinus massoniana seedlings[J]. J For Environ, 40(2): 119-125. [汪远秀, 李快芬, 丁贵杰, 等, 2020. 铝对马尾松菌根苗生长及营养元素吸收的影响[J]. 森林与环境学报, 40(2): 119-125. ]

    • WEIGEL HJ, JAGER HJ, 1980. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiol, 65(3): 480-482.

    • WU Z, MCGROUTHER K, CHEN D, et al. , 2013. Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress[J]. J Agric Food Chem, 61(20): 4715-4722.

    • XIAO HJ, WANG ZY, 2006. Advance on study of aluminum toxicity and plant nutrition in acid soils[J]. SW Chin J Agric Sci, 19(6): 1180-1188. [肖厚军, 王正银, 2006. 酸性土壤铝毒与植物营养研究进展[J]. 西南农业学报, 19(6): 1180-1188. ]

    • XIAO ZX, LIANG YC, 2022. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice[J]. Plant Physiol Biochem, 175: 12-22.

    • YAO HY, LIU YM, ZHANG SN, et al. , 2018. Effects of exogenous citric acid on physiological characteristics of Pinus massoniana under aluminum stress[J]. Sci Silv Sin, 54(7): 155-164. [姚虹宇, 刘亚敏, 张盛楠, 等, 2018. 外源柠檬酸对铝胁迫下马尾松生理特性的影响[J]. 林业科学, 54(7): 155-164. ]

    • YAO HY, ZHANG SN, ZHOU WY, et al. , 2020. The effects of exogenous malic acid in relieving aluminum toxicity in Pinus massoniana[J]. Int J Phytorem, 22(6): 669-678.

    • ZHANG HH, JIANG Z, QIN R, et al. , 2014. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana[J]. BMC Plant Biol, 14: 264.

    • ZHANG SN, LIU YM, LIU YM, et al. , 2016. Impacts of aluminum stress on the growth and physiological characteristics of Pinus massoniana seedlings[J]. Acta Bot Boreal-Occident Sin, 36(10): 2022-2029. [张盛楠, 刘亚敏, 刘玉民, 等, 2016. 马尾松幼苗生长及生理特性对铝胁迫的响应[J]. 西北植物学报, 36(10): 2022-2029. ]

    • ZHANG X, LONG Y, HUANG JJ, et al. , 2019. Molecular mechanisms for coping with Al toxicity in plants[J]. Int J Mol Sci, 20(7): 1551.

    • ZHAO TL, XIE GN, ZHANG XX, et al. , 2013. Process and mechanism of plants in overcoming acid soil aluminum stress[J]. Chin J Appl Ecol, 24(10): 3003-3011. [赵天龙, 解光宁, 张晓霞, 等, 2013. 酸性土壤上植物应对铝胁迫的过程与机制[J]. 应用生态学报, 24(10): 3003-3011. ]

    • ZHOU ZX, 2001. Pinus massoniana in China[M]. Beijing: China Forestry Press: 14-17. [周政贤, 2001. 中国马尾松[M]. 北京: 中国林业出版社: 14-17. ]

    • ZHU GX, XIAO HY, GUO QJ, et al. , 2017. Subcellular distribution and chemical forms of heavy metals in three types of compositae plants from lead-zinc tailings area[J]. Huanjing Kexue, 38(7): 3054-3060.