-
瑶药半枫荷(或半荷风、扁荷崩)为半枫荷(Semiliquidambar cathayensis)的干燥地上部分,因富含生物碱、黄酮类、萜类等而具有祛风除湿、活血舒筋等功效(Yang et al.,2019;裘硕等,2020);其野生资源少量分布在我国南部和东南部山区,为国家二级保护植物。目前,用于研究半枫荷群体遗传多样性的分子标记主要有ISSR(黄丽华等,2021)、SSR(叶兴壮等,2020,2021a)和SRAP(叶兴壮等,2021b),表明半枫荷居群结构不稳定,人为干扰、生境破坏等因素导致其濒危。因此,对半枫荷的合理开发和管理都极为重要,新药源的寻找已非常紧迫(傅立国,1991; Ye et al.,2020b)。半枫荷因形态性状上具有异形叶、穗状花序且雌雄同株等特点而归置于金缕梅科(Hamanelidaceae)枫香树亚科(Subfam. Liqquidambaroideae)半枫荷属(广西壮族自治区、中国科学院广西植物研究所,2005)。该属植物在形态上与蕈树科的枫香树属(Liguidambar)和蕈树属(Altingia)相似,在某些地区也将蕈树属的蕈树(Altingia chinensis)作为药材半枫荷使用。由于以半枫荷同名同用途的植物有5科7属14种(谢石杨等,2018),因此亟需对半枫荷类药材正本溯源或开源。分子系统学研究结果表明半枫荷应归置于蕈树科 (Altingiaceae)半枫荷属(Semiliquidambar)(Angiosperm Phylogeny Group,1998; Shi et al.,2001)。目前,涉及半枫荷的分子系统学研究侧重于分析金缕梅科和蕈树科之间或蕈树科属间物种的系统发育关系(Shi et al.,1998,2019; Ickert-Bond &Wen,2006; Wu et al.,2010; Xiang et al.,2019; Tang et al.,2020; Ye et al.,2020a; Zhang et al.,2020)。半枫荷及其近缘类群种间的系统发育关系尚需进一步分析,而探讨半枫荷与蕈树科或金缕梅科植物的系统发育关系有利于对半枫荷及其混伪品进行分子鉴定,从而达到正本清源的目的。此外,蕈树科3个属植物主要分布在我国西南地区,半枫荷及其近缘类群在基因的结构或进化速率上是否有分化,进而对药理疗效存在影响还需进一步分析。
-
通过叶绿体基因组序列的比较分析和系统发育树的构建等方式可评估物种系统发育位置和演化关系(Sloan et al.,2014; Williams et al.,2019)。在此基础上,利用叶绿体编码基因的进化速率差异评估不同植物类群的基因变异与选择压力间的关系,可作为探索新药源的基础(Waldvogel et al.,2020; Zhao et al.,2020)。目前,半枫荷及近缘类群的蕈树科、金缕梅科多个物种的叶绿体基因组已有报道,鉴于此,本研究利用公共数据库中已公开发表的半枫荷及其近缘类群的叶绿体基因组,拟探讨:(1)通过构建系统发育树来揭示半枫荷在蕈树科或金缕梅科的系统发育位置;(2)分析半枫荷及其近缘类群的叶绿体基因的进化位点与选择压力的关系。旨在为半枫荷的鉴定、资源开发提供一定的借鉴。
-
1 材料与方法
-
1.1 数据收集
-
通过NCBI数据库(The National Center for Biotechnology Information)检索半枫荷、蕈树科和金缕梅科等近缘类群的叶绿体基因组序列信息,共检索到蕈树科半枫荷属的半枫荷2个个体序列、蕈树属3个物种、枫香树属4个物种(其中枫香树2个个体序列);另外,选择金缕梅、水丝梨等10个金缕梅科的物种、虎皮楠科1个物种、连香树科1个物种、毛茛科2个物种,总共22个物种的24条叶绿体基因组序列。下载检索到的物种的叶绿体基因组序列、名称、基因组序列号如表1所示。
-
1.2 叶绿体基因组比较分析
-
采用Geneious R9(Kearse et al.,2012)分析并统计蕈树科8个物种叶绿体基因组序列的4个边界(大单拷贝区LSC、小单拷贝区SSC和反向重复区IR)长度和基因数目类型等信息(表1)。采用R软件的IRscope程序(Amiryousefi et al.,2018)对蕈树科8个物种的4个边界的收缩与扩张进行可视化分析。利用mVISTA软件(Frazer et al.,2004)基于基因重排和倒位的全局比对模式(Shuffle-LAGAN)对半枫荷及其近缘类群8个物种叶绿体基因组序列进行同源性比较研究,并利用Geneious R9软件中的Mauve多重基因组比对法对这8个物种的叶绿体基因组序列进行共线性比较。
-
1.3 系统发育分析
-
利用在线MAFFT v7(Katoh et al.,2002)(https://mafft.cbrc.jp/alignment/software/)比对从NCBI上检索到的22个物种的24条叶绿体基因组序列(表1)。利用DMABE v6.4.29对比对序列是否适合用于系统发育研究进行序列替代饱和度分析,评估观测Iss值(index of substitution saturation)是否显著低于Iss.c值(critical index of substitution saturation)(Xia et al.,2003; Xia &Lemey,2009)。其中,Iss.c可分为Iss.cSym(对称性替代饱和指数)和IssAsym(非对称性替代饱和指数)。利用在线网站CIPRES Web Portal2.0(http://www.phylo.org)的RA × ML进行最大似然树(maximum likelihood,ML)的构建。最大似然分析采用GAMMA模型,快速自展法1 000次。利用jModelTest(Posada &Crandall,1998; Darriba et al.,2012)计算AIC值,并为每个数据集选取最优建树模型。利用MrBayes v3.2.6(Ronquist &Huelsenbeck,2003)构建贝叶斯树(Bayesian,BI),运算300万代,每1 000代取样1次,去掉未达到稳态的前25%的树,其余的树用来计算后验概率。
-
利用溯祖模拟去检测不完全谱系分选对于核基因树和叶绿体树的冲突存在多大影响。先在溯祖模型下利用软件DendroPy v4.1.0(Sukumaran &Holder,2010)对24条叶绿体基因组序列模拟得到10 000棵叶绿体物种树,再利用ASTRAL构建物种树作为参考,对这10 000棵模拟树进行汇总,得到各个分支频率(clade frequency)。在不完全谱系分选的情况下,由于任何在经验叶绿体树(empirical plastid tree)中所得系统发育关系都应该在模拟的叶绿体树(simulated plastid tree)中体现,因此各分支应该具有较高支持率;而在杂交情况下,经验叶绿体树的部分分支在模拟基因树中支持率较低甚至不存在(Garía et al.,2017; Morales-Briones et al.,2018)。
-
1.4 适应性进化分析
-
利用Geneious R9将24条叶绿体基因组的各个基因提取后比对,并去掉终止密码子,用EasyCodeML(Gao et al.,2019)将基因组比对序列批量转换成 .pml格式。将基于24条叶绿体基因组构建的最大似然树作为树文件(.nwk格式),利用EasyCodeML软件分别选择进化枝模型(clade model)、枝模型(branch model)和位点模型(stie model)进行适应性进化分析。进化枝模型可以检测整个进化枝或重点关注支系上特异位点的选择约束性;枝模型可以检测所关注支系的选择约束强度;位点模型可以在不考虑支系的情况下检测受到正选择位点的情况。在进化枝模型和枝模型中,将蕈树科分支标记为前景枝。
-
2 结果与分析
-
2.1 半枫荷叶绿体基因组结构的基本特征
-
由表1可知,半枫荷的叶绿体基因组为160 430~160 444 bp,LSC为88 969~88 991 bp,SSC为18 913~18 917 bp, IR为26 261~26 281 bp, GC含量均为37.9%,无差异。半枫荷与蕈树科7个物种的叶绿体基因组相比,基因总数为133个,rRNA为8个(其中4个在IR区),tRNA为37个(其中7个在IR区),蛋白质编码基因数为88个(其中7个在IR区),其中共检测到11个含内含子的蛋白编码基因,即rps16、atpF、rpoC1、ycf3、clpP、petB、petD、rpl16、rpl2、ndhB、ndhA,其中rpl2、ndhB分布在IR区,ycf3和clpP有2个内含子,而内含子长度的变化导致基因长度有变化(表1)。8个物种中matK、ndhK基因的蛋白质编码区序列长度有变化。与之相比,金缕梅科7个物种的基因总数为133个,rRNA为8个(其中4个在IR区),tRNA为37个(其中7个在IR区),蛋白质编码基因数为88个(其中7个在IR区)。
-
注: — 代表该序列已在NCBI上公布但暂时还没有文献发表。
-
Note: — represents that sequence is only published in NCBI.
-
图1 半枫荷及其近缘类群8个物种叶绿体基因组的IR与SC边界比较
-
Fig.1 Comparison of borders of IR and SC regions in eight species of Semiliquidambar cathayensis and its related taxa
-
2.2 半枫荷及其近缘属叶绿体基因组IR与SC边界
-
半枫荷与近缘类群共8个物种的叶绿体基因组在序列长度、基因排序及数量、GC含量等相对保守,IR区和SC区边界的过渡区域上基因排布无差异,仅基因序列长短有差异,具有高度保守性(图1)。IRb与LSC边界除半枫荷在rps19与rpl2的间隔区之外,其余7个物种都在基因rps19上。IR区和SSC区边界均在ycf1上。
-
2.3 半枫荷及其近缘属叶绿体基因组序列变异分析
-
采用mVISTA软件,对半枫荷及蕈树科7个物种的叶绿体基因组序列同源性进行分析,在全局对比模式下检测基因重排和倒位(图2)。图2结果表明,蕈树科8个物种叶绿体基因组4个部分排列顺序保守性高,在非基因编码区有明显变异,而基因编码区变异不明显。SSC和LSC均有明显变异,尤其在LSC区域的基因间隔区变异较高,IR区变异程度相对较低。
-
图2 以半枫荷(参考序列)及其近缘类群8个物种叶绿体基因组比对
-
Fig.2 Alignment of eight species of Semiliquidambar cathayensis (reference sequence) and its related taxa
-
图3 半枫荷及其近缘类群8个物种叶绿体基因组比对
-
Fig.3 Alignment of eight species of Semiliquidambar cathayensis and its related taxa
-
2.4 半枫荷及其近缘属叶绿体基因组共线性分析
-
利用Geneious R9的Mauve比对法检测半枫荷及蕈树科7个物种的叶绿体基因组的重排和共线性(图3),通过多重基因组比对法检测出8个物种的叶绿体基因组之间有1个局部共线块(locally collinear block),这表明蕈树科8个物种之间的基因组具有高度相似性,同时并未检测到重排或倒置。
-
2.5 系统发育分析
-
使用DAMBE对上述叶绿体基因组序列矩阵进行碱基替换饱和度检测,结果表明在随机抽取4个、8个、16个、32个类群时,对称拓扑结构和非对称拓扑结构中的序列替换饱和指数(Iss)都显著小于标准替换饱和指数(Iss.c),可以用于后续系统发育树的构建。筛选出的最佳模型是GTR+I+G,基于24个叶绿体基因组序列构建的最大似然树(ML)和贝叶斯树(BI)拓扑结构基本一致(图4)。蕈树科的物种聚为一类,金缕梅科物种聚为一类。其中,蕈树科物种中半枫荷(Semiliquidambar cathayensis)与蕈树(Altingia chinensis)、枫香树(Liquidambar formosana)、缺萼枫香树(L. acalycina)构成Clade I(99/1.00);细青皮(Altingia excelsa)和云南蕈树(A. yunnanensis)构成Clade II(100/1.00);苏合香(Liquidambar orientalis)和北美枫香(L. styraciflua)构成Clade III(100/1.00);虎皮楠(Daphniphyllum oldhamii)和连香树(Cercidiphyllum japonicum)各自单独成一支,并依次构成蕈树科物种的姐妹类群;所取样的金缕梅科物种可划分为Fothergilleae分支、Hamamelideae分支、Eustigmtaeae分支和Corylopsideae分支。基于溯祖模拟检测不完全谱系分选对于叶绿体树的拓扑结构的影响,多个分支的分支频率较低(图4),表明蕈树科内多个分支的系统位置不排除受到叶绿体不完全谱系分选和杂交的影响。
-
2.6 适应性分化
-
利用枝模型以蕈树科分支为前景枝,检测到3个基因受到选择约束(0<ω<1),即ndhA(ω=0.051,P<0.05)、ndhG(ω=0.024,P<0.01)、rps12(ω=0.000 1,P<0.01)。利用进化枝模型以蕈树科分支为前景枝,检测到12个基因(atpE、atpF、ndhA、ndhJ、psbM、rpl14、rpoC2、rps2、rps3、rps4、rps12、rps14)有明显的选择约束性(表2)。利用位点模型检测叶绿体基因组上各基因的正选择位点,发现accD、atpE、atpF、clpP、ndhA等10个基因受到选择压力,其中有45个位点受到正选择P值大于0.95,28个位点P值大于0.99(表3)。
-
图4 基于24个叶绿体基因组构建的系统发育树
-
Fig.4 Phylogenetic tree based on 24 chloroplast genomes
-
3 讨论与结论
-
3.1 半枫荷属与蕈树属、枫香树属的系统发育关系
-
本研究基于叶绿体基因组对半枫荷属与蕈树属、枫香树属的亲缘关系进行分析,结果表明,半枫荷属、蕈树属和枫香树属3个属的物种均不能各自构成单系类群,支持将半枫荷属归置于蕈树科,这与基于叶绿体基因数据的分子系统学、花粉粒形态等研究结果一致(Ickert-Bond &Wen,2013),但《中国植物志》基于异型叶、花单性等形态性状将半枫荷属、蕈树属和枫香树属归置于金缕梅科的枫香树亚科。这些属的形态鉴别要点,如叶片的长度和形状、叶柄粗细及长度、果序上萼齿的长度等数量性状在同属植物或近缘属中存在连续变异,从而缺少系统性量化标准,加之半枫荷属植物具有同科枫香树属和蕈树属植物的过渡形态性状。因此,很难根据形态性状将半枫荷属植物与蕈树属、枫香树属植物进行区分。
-
Ickert-Bond和Wen(2013)分子系统学结果表明,半枫荷属、蕈树属和枫香树属物种为东亚分支(E. Asia Clade),但分支内各物种亲缘关系模糊不清,可能需要进一步开发高分辨率的分子标记来分析各物种系统发育关系。本研究基于叶绿体基因组比较分析,发现蕈树科8个物种的叶绿体基因组在基因结构、排列和数目,IR和SC连接区均具有较高的保守性,各物种基因组的长度变化主要体现在内含子或编码区序列的长度变化。因此,后续可从叶绿体基因组的编码区间隔区等相对高变异区域开发高分辨率的分子标记用于半枫荷的分子鉴定、遗传分化等研究。
-
3.2 半枫荷及其近缘类群的系统发育关系
-
本研究基于叶绿体基因组对半枫荷及其近缘类群的系统发育关系进行分析,结果表明所取样半枫荷个体没有构成单系类群,半枫荷与蕈树、枫香树、缺萼枫香树构成Clade I(99/1.00),利用溯祖原理的叶绿体基因树的检测结果表明,蕈树科内多个分支的分支频率较低,蕈树科内各分支可能存在杂交或叶绿体不完全谱系分选,说明半枫荷的亲本暂时不能确定。这与前人的分子系统学结果一致,半枫荷与枫香树、缺萼枫香树构成单系分支,但支持率不高,推测半枫荷可能是个杂交种(Shi et al.,2001; Ickert-Bond &Wen,2013)。由于现有研究选用了少量基因片段和不同的样本,半枫荷与枫香树属和蕈树属物种的杂交程度仍然模糊,因此需要在居群水平上研究半枫荷的遗传背景。
-
注:正选择位点中*P>95%,**P>99%。
-
Note: Positively selected sites*P>95%, **P>99%.
-
3.3 蕈树科植物的适应性分化
-
由于环境变化可以促使植物基因的适应性进化(Kelly,2019),因此本研究采取不同的模型检测到蕈树科及其近缘类群有多个基因都可能受到选择压力,以探讨基因位点的选择压力与近缘物种、环境是否存在一定相关性。
-
基于本研究的进化枝模型结果发现,以蕈树科分支作为前景枝时,多个atp基因、ndh基因和rps基因有明显的选择约束性,这些基因在其他植物类群中大多与光合作用、转录翻译等功能相关。例如,ndh类基因家族在光合作用中有着至关重要的作用,同时任何环境改变或是植物受到胁迫等压力,该类基因也会敏感的发生变异(Martín &Sabater,2010; Zhao et al.,2020);核糖体蛋白大小亚基基因rpl和rps是植物转录翻译过程中的重要基因,rps12、atpF等基因的转录本参与叶绿体II型内含子的剪切过程(Vogel et al.,1999),其中ATP合酶基因在光合作用中必不可少;而rpoC2基因编码叶绿体RNA聚合酶的β'亚基,在转录工程中发挥重要作用。蕈树科物种大多分布在我国西南地区,由此推测其光合作用功能可能为了适应相对高温高湿的环境,而与金缕梅科植物存在差异。这与田晓明等(2018)基于半枫荷的转录组数据结果类似,半枫荷转录组中有92个Unigene映射在光合作用调控通路,32个Unigene映射到光合作用—天线蛋白通路。因此,本研究结果可以为在基因水平上研究半枫荷的光照响应提供基础。
-
本研究基于位点模型分析不同基因的氨基酸位点是否经历选择压力,结果表明accD、clpP、rbcL、ycf1和ycf2等10个基因的45个位点受到正选择P值大于0.95,28个位点P值大于0.99,而基因检测到正选择压力的位点数目最多,说明变异程度大,这些基因在植物的光合作用、新陈代谢等多个环节都发挥作用。例如,Slabas和Fawcett(1992)研究结果表明accD基因编码乙酰辅酶A羧化酶的β亚基,在脂肪酸的生物合成中发挥作用,因此在被子植物叶绿体中该基因常会转移或缺失是植物适应环境的结果之一,由此本研究推测该基因的变化可能帮助蕈树科植物适应生境;clpP基因是叶绿体基因组内编码clpP蛋白酶的基因家族成员,能降解多肽,既能帮助控制植物的代谢过程正常进行,又能在植物的生物抗逆胁迫中发挥重要作用(郑春花等,2016),由此本研究推测其在蕈树科物种适应西南地区相对湿热的环境中可能起关键作用;rbcL在植物光合作用中作为光合电子传递的调节器,编码叶绿体中Rubisco的大亚基,该大亚基的C末端区域在光合系统中具有重要意义(Curmi et al.,1992);ycf1和ycf2基因进化速率较快,具有编码叶绿体ATP酶和调控植物果实发育的功能,与其他植物情况类似,说明ycf类基因在植物中普遍存在适应性进化的现象(Zhou et al.,2019)。总之,这些基因可能在蕈树科植物、半枫荷类原植物适应南方的环境气候过程中发挥了重要作用。
-
目前,半枫荷属植物主要集中在我国西南地区,现有研究的取样范围和分子标记选择受限,使得半枫荷属的属间关系仍存在模糊。本研究目前仅基于公开数据库中的叶绿体基因组序列分析了半枫荷及其近缘类群的叶绿体基因组结构差异、系统发育关系和基因位点选择压力,未能很好推测半枫荷与枫香树、缺萼枫香树、蕈树等物种的关系。因此,未来应该扩大半枫荷及其近缘类群的采样范围,选择分辨率较高的分子标记,探讨半枫荷与蕈树属、枫香树属物种的杂交或不完全谱系分选等问题。
-
参考文献
-
AMIRYOUSEFI A, HYVÖNEN J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.
-
ANGIOSPERM PHYLOGENY GROUP, 1998. An ordinal classfication for the families of flowering plants [J]. Ann Mo Bot Gard, 85(4): 531-553.
-
CHOI KS, HA YH, JEONG KS, et al. , 2018. The complete chloroplast genome of Corylopsis coreana (Hamamelidaceae) [J]. Conserv Genet Resour, 11(3): 291-293.
-
CURMI PM, CASCIO D, SWEET RM, et al. , 1992. Crystal structure of the unactivated form of ribulose-1, 5-bisphosphate carboxylase/oxygenase from tobacco refined at 2. 0-A resolution [J]. J Biol Chem, 267(24): 16980-16989.
-
DARRIBA D, TABOADA GL, DOALLO R, et al. , 2012. jModelTest 2: more models, new heuristics and parallel computing [J]. Nat Methods, 9(8): 772.
-
DONG WP, XU C, CHENG T, et al. , 2013. Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales [J]. Genome Biol Evol, 5(5): 989-997.
-
DONG WP, XU C, WU P, et al. , 2018. Resolving the systematic positions of enigmatic taxa: manipulating the chloroplast genome data of Saxifragales [J]. Mol Phylogenet Evol, 126: 321-330.
-
FRAZER KA, PACHTER L, POLIAKOV A, et al. , 2004. VISTA: computational tools for comparative genomics [J]. Nucl Acids Res, 32 (Web Server issue): W273-W279.
-
FU LG, 1991. Red book of Chinese plants: rare and endangered plants [M]. Beijing: Science Press. [傅立国, 1991. 中国植物红皮书稀有濒危植物 [M]. 北京: 科学出版社. ]
-
GAO FL, CHEN CJ, ARAB DA, et al. , 2019. EasyCodeML: A visual tool for analysis of selection using CodeML [J]. Ecol Evol, 9(7): 3891-3898.
-
GARÍA N, FOLK RA, MEEROW AW, et al. , 2017. Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae) [J]. Mol Phylogenet Evol, 111: 231-247.
-
Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 2005. Flora of Guangxi: Vol. 2 [M]. Nanning: Guangxi Science Press: 690-692. [广西壮族自治区、中国科学院广西植物研究所, 2005. 广西植物志: 第2卷 [M]. 南宁: 广西科学出版社: 690-692. ]
-
HUANG LH, CHEN QT, XIAO YS, et al. , 2021. Optimization and primers screening of ISSR-PCR reaction system for Semiliquidambar cathayensis Chang [J]. Mol Plant Breed, 19(20): 6782-6789. [黄丽华, 陈秋婷, 肖雨沙, 等, 2021. 半枫荷ISSR-PCR体系优化及引物筛选 [J]. 分子植物育种, 19(20): 6782-6789. ]
-
ICKERT-BOND SM, WEN J, 2006. Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five noncoding chloroplast regions [J]. Mol Phylogenet Evol, 39(2): 512-528.
-
ICKERT-BOND SM, WEN J, 2013. A taxonomic synopsis of Altingiaceae with nine new combinations [J]. PhytoKeys, 31: 21-61.
-
KATOH K, MISAWA K, KUMA K, et al. , 2002. MAFFT: A novel method for rapid multiple sequence alignment based on a fast Fourier transformation [J]. Nucl Acids Res, 30(14): 3059-3066.
-
KEARSE M, MOIR R, WILSON A, et al. , 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 28(12): 1647-1649.
-
KELLY M, 2019. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes [J]. Philos Trans R Soc Lond B Biol Sci, 374(1768): 20180176.
-
KIM SC, SHIN S, AHN JY, et al. , 2019. Complete chloroplast genome of Corylopsis spicata and phylogenetic analysis [J]. Mitochondrial DNA Part B, 4(2): 2700-2701.
-
LAI JX, LIN FR, HUANG P, et al. , 2020. Characterization of the complete chloroplast genome of Liquidambar acalycina Chang [J]. Mitochondrial DNA Part B, 5(2): 1697-1698.
-
LEE M, PARK JH, GIL J, et al. , 2019. The complete chloroplast genome of Paeonia lactiflora Pall. (Paeoniaceae) [J]. Mitochondrial DNA Part B, 4(2): 2715-2716.
-
LI HL, CHENG XL, CHEN Y, et al. , 2019. Complete plastome sequence of Rhodoleia championii Hook. f. (Hamame-lidaceae) [J]. Mitochondrial DNA Part B, 4(2): 3458-3459.
-
MARTÍN M, SABATER B, 2010. Plastid ndh genes in plant evolution [J]. Plant Physiol Biochem, 48(8): 636-645.
-
MORALES-BRIONES D, LISTON A, TANK DC, 2018. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae) [J]. New Phytol, 218(4): 1668-1684.
-
PENG Y, YANG LM, WEI J, 2020. The complete chloroplast genome of Sycopsis sinensis Oliver [J]. Mitochondrial DNA Part B, 5(3): 2984-2985.
-
POSADA D, CRANDALL KA, 1998. jModeltest: testing the model of DNA substitution [J]. Bioinformatics, 14: 817-818.
-
QIU Q, YANG DJ, XU LH, et al. , 2020. The complete chloroplast genome sequence of Altingia yunnanensis [J]. Mitochondrial DNA Part B, 5(1): 1050-1051.
-
QIU S, CHEN YY, YAN XJ, et al. , 2020. Chemical constituents from the leaves of Semiliquidambar cathayensis [J]. J Chin Med Mat, 43(5): 1136-1139. [裘硕, 陈月圆, 颜小捷, 等, 2020. 金缕半枫荷叶化学成分研究 [J]. 中药材, 43(5): 1136-1139. ]
-
REN XL, DU XM, XIN GL, et al. , 2018. The complete chloroplast genome of Sinowilsonia henryi (Saxifragales: Hamamelidaceae), an endangered relict species [J]. Conserv Genet Resour, 10(4): 643-645.
-
RONQUIST F, HUELSENBECK JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 19(12): 1572-1574.
-
SHI S, CHANG HT, CHEN YQ, et al. , 1998. Phylogeny of the Hamamelidaceae based on the ITS sequences of nuclear ribosomal DNA [J]. Biochem Syst Ecol, 26(1): 55-69.
-
SHI S, HUANG Y, ZHONG Y, et al. , 2001. Phylogeny of the Altingiaceae based on cpDNA matK, PY-IGS and nrDNA ITS sequences [J]. Plant Syst Evol, 230: 13-24.
-
SHI YC, DUAN N, LIU BB, 2019. Complete chloroplast genome sequence of Semiliquidambar cathayensis (Hamamelidaceae), a rare and endangered species endemic to China [J]. Mitochondrial DNA Part B, 4(2): 3252-3253.
-
SLABAS AR, FAWCETT T, 1992. The biochemistry and molecular biology of plant lipid biosynthesis [J]. Plant Mol Biol, 19(1): 169-191.
-
SLOAN DB, TRIANT DA, FORRESTER NJ, et al. , 2014. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae) [J]. Mol Phylogenet Evol, 72: 82-89.
-
SUKUMARAN J, HOLDER MT, 2010. DendroPy: A Python library for phylogenetic computing [J]. Bioinformatics, 26(12): 1569-1571.
-
TANG XH, FAN HH, ZHANG J, et al. , 2020. The complete chloroplast genome of Semiliquidambar cathayensis HT Chang ‘T5’(Hamamelidaceae) [J]. Mitochondrial DNA Part B, 5(2): 1267-1268.
-
TIAN XM, ZENG LZ, YAN LH, et al. , 2018. Study on transcriptome characteristic of Semiliquidambar cathayensis Chang [J]. Hunan For Sci Technol, 45(5): 40-50. [田晓明, 曾玲珍, 颜立红, 等, 2018. 半枫荷叶片转录组特征研究 [J]. 湖南林业科技, 45(5): 40-50. ]
-
VOGEL JC, RUMSEY FJ, RUSSELL SJ, et al. , 1999. Genetic structure, reproductive biology and ecology of isolated populations of Asplenium csikii (Aspleniaceae, Pteridophyta) [J]. Heredity, 83(5): 604-612.
-
WALDVOGEL AM, FELDMEYER B, ROLSHAUSEN G, et al. , 2020. Evolutionary genomics can improve prediction of species′ responses to climate change [J]. Evol Lett, 4(1): 4-18.
-
WANG Y, LI YQ, YUAN XL, et al. , 2019. The complete chloroplast genome sequence of Mytilaria laosensis [J]. Mitochondrial DNA Part B, 4(2): 3916-3917.
-
WILLIAMS AM, FRISO G, VANWIJK KJ, et al. , 2019. Extreme variation in rates of evolution in the plastid Clp protease complex [J]. Plant J, 98(2): 243-259.
-
WU W, ZHOU RC, HUANG YL, et al. , 2010. Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia [J]. J Plant Res, 123(2): 231-239.
-
XIA X, LEMEY P, 2009. Assessing substitution saturation with DAMBE [M] // PHILIPPE L. Phylogenetic handbook: a practical approach to DNA and protein phylogeny. London: Cambridge University Press: 615-630.
-
XIA X, XIE Z, SALEMI M, et al. , 2003. An index of substitution saturation and its application [J]. Mol Phylogenet Evol, 26(1): 1-7.
-
XIANG XG, XIANG KL, ORTIZ RDC, et al. , 2019. Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae [J]. J Biogeogr, 46(11): 2622-2631.
-
XIE SY, YAO KL, WU XJ, 2018. Overview of pharmacological research on Semiliquidambar cathayensis H. T. Chang [J]. J Fujian For Sci Technol, 45(4): 122-127. [谢石杨, 姚凯霖, 吴先基, 等, 2018. 半枫荷药学研究概况 [J]. 福建林业科技, 45(4): 122-127. ]
-
XU Y, XIAO TW, ZHAO N, et al. , 2019. Characterization of the complete plastid genome of an endangered species Fortunearia sinensis (Hamamelidaceae) [J]. Mitochondrial DNA Part B, 4(1): 1432-1434.
-
YANG DJ, QIU Q, XU LH, et al. , 2020. The complete chloroplast genome sequence of Altingia excelsa [J]. Mitochondrial DNA Part B, 5(1): 534-535.
-
YANG L, LIU RH, HE JW, 2019. Rapid analysis of the chemical compositions in Semiliquidambar cathayensis roots by ultra high-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry [J]. Molecules, 24(22): 4098.
-
YE XZ, WEN GW, ZHANG MZ, et al. , 2021a. Genetic diversity and genetic structure of a rare and endangered plant in Semiliquidambar cathayensis Hung T. Chang [J]. Plant Sci J, 39(4): 415-423. [叶兴状, 文国卫, 张明珠, 等, 2021a. 珍稀濒危植物半枫荷的遗传多样性及遗传结构 [J]. 植物科学学报, 39(4): 415-423. ]
-
YE XZ, ZHANG MZ, LIU YP, et al. , 2021b. Analysis on genetic diversity of natural populations of Semiliquidambar cathayensis based on SRAP marker [J]. J Plant Res Environ, 30(4): 60-68. [叶兴状, 张明珠, 刘益鹏, 等, 2021b. 基于SRAP标记半枫荷天然种群的遗传多样性分析 [J]. 植物资源与环境学报, 30(4): 60-68. ]
-
YE XZ, YANG XJ, WANG MQ, et al. , 2020. Analysis of SSR Loci in transcriptome of rare and endangered plants of Semiliquidambar cathayensis [J]. Mol Plant Breed, 18(5): 1585-1592. [叶兴状, 杨先吉, 王妙青, 等, 2020. 濒危珍稀植物半枫荷转录组中SSR位点分析 [J]. 分子植物育种, 18(5): 1585-1592. ]
-
YE XZ, ZHANG MZ, JIANG YT, et al. , 2020a. The complete chloroplast genome of Altingia chinensis (Hamamelidaceae) [J]. Mitochondrial DNA Part B, 5(2): 1808-1809.
-
YE XZ, ZHAO GH, ZHANG MZ, et al. , 2020b. Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period [J]. Forests, 11(4): 434.
-
YU JJ, HU GX, ZHAO F, et al. , 2019. The complete chloroplast genome sequence of Disanthus cercidifolius Subsp. Longipes (Hamamelidaceae) [J]. Mitochondrial DNA Part B, 4(1): 1763-1764.
-
ZHANG MY, WANG XF, GAO J, et al. , 2020. Complete chloroplast genome of Paeonia mairei H. Lév. : characterization and phylogeny [J]. Acta Pharm Sin, 55(1): 168-176. [张明英, 王西芳, 高静, 等, 2020. 美丽芍药叶绿体全基因组解析及系统发育分析 [J]. 药学学报, 55(1): 168-176. ]
-
ZHANG MZ, JIANG YT, YE XZ, et al. , 2020. The complete chloroplast genome of Semiliquidambar cathayensis (Hamamelidaceae) [J]. Mitochondrial DNA Part B, 5(1): 695-696.
-
ZHANG YY, CAI HX, DONG JX, et al. , 2019. The complete chloroplast genome of Loropetalum subcordatum, a national key protected species in China [J]. Conserv Genet Resour, 11(4): 377-380.
-
ZHAO DN, REN Y, ZHANG JQ, 2020. Conservation and innovation: plastome evolution during rapid radiation of Rhodiola on the Qinghai-Tibetan Plateau [J]. Mol Phylogenet Evol, 144: 106713.
-
ZHENG CH, KONG XY, CHEN GX, et al. , 2016. Screening, clustering and response to salinity stress of Clp family genes in peanut (Arachis hypogaea L. ) [J]. Shandong Agric Sci, 48(12): 1-5. [郑春花, 孔祥远, 陈冠旭, 等, 2016. 花生Clp家族成员的筛选、聚类和盐胁迫响应分析 [J]. 山东农业科学, 48(12): 1-5. ]
-
ZHOU T, RUHSAM M, WANG J, et al. , 2019. The complete chloroplast genome of Euphrasia regelii, pseudogenization of ndh genes and the phylogenetic relationships within Orobanchaceae [J]. Front Genet, 10: 444.
-
ZHU SS, YIN PP, YAP ZY, et al. , 2019. Chloroplast genomes of two extant species of Tertiary relict Cercidiphyllum (Cercidiphyllaceae): comparative genomic and phylogenetic analyses [J]. Mitochondrial DNA Part B, 4(1): 1551-1552.
-
摘要
为明确国家二级保护植物半枫荷与近缘类群的系统发育关系,分析叶绿体基因的适应性进化。该研究利用22个物种的24条叶绿体基因组序列构建最大似然树和贝叶斯树,探讨半枫荷及其近缘类群的系统发育关系,并通过不同模型检测半枫荷与近缘类群的叶绿体编码基因的变异位点与选择压力间的关系。结果表明:(1)半枫荷叶绿体基因组具有133个基因,包括蛋白质编码基因88个(其中11个具有内含子)、tRNA基因37个、rRNA基因8个。(2)半枫荷及其近缘属蕈树属、枫香树属8个物种的叶绿体基因组在序列长度、基因数量及组成、GC含量等方面相对保守,反向重复区与小单拷贝区边界高度保守。小单拷贝区和大单拷贝区的变异程度较高,而反向重复区的变异程度较低。(3)半枫荷与蕈树属、枫香树属物种聚成蕈树科分支,并可划分为3个亚分支,亚分支间或物种间可能存在杂交或不完全谱系分选。(4)适应性进化结果显示,在不同模型下蕈树科分支的物种在ndhA等叶绿体基因受选择约束(纯化选择),位点模型也检测到10个基因的28个位点P大于0.99,这些编码基因变异可能与蕈树科植物适应性分化有关。该研究结果支持半枫荷隶属于蕈树科,蕈树科内物种的叶绿体基因可能存在适应性进化,这为同名异物类药材的资源保护和民族药的创新研发提供了参考资料。
Abstract
Semiliquidambar cathayensis is treated as a grade-two protected plant in China. However, its phylogenetic relationships with species from Hamamelidaceae and Altingiaceae remain unclear. In order to analyze the phylogenetic relationships and adaptive evolution of chloroplast genomes between S. cathayensis and its closely related taxa including species from Hamamelidaceae and Altingiaceae, we reconstructed the maximum likelihood tree and the Bayesian tree to discover the phylogenetic relationships between S. cathayensis and its closely related taxa from 24 sequences that representing 22 species, and further detected the correlation between adaptive sites and selective pressure of protein coding genes under varying models including site model, clade model and branch model. Altingiaceae clade was chosen as the foreground clade. The results were as follows: (1) A total of 133 genes were annotated, including 88 protein-coding genes (11 genes with intron), 37 tRNA genes and eight rRNA genes. (2) Eight chloroplast genomes representing eight species from S. cathayensis and Altingia, Liquidambar were relatively conservative in sequence length, gene number and composition, GC content, and there was not obvious diversity in the four boundaries. Relatively high variation interspecific were also detected in LSC and SSC regions among these eight chloroplast genomes, while the IR regions were high conservatism. (3) Phylogenetic trees showed that S. cathayensis and sampled species of Altingiaceae clustered a group, which further divided into three clades, namely Clade I, Clade Ⅱ and Clade Ⅲ. The phylogenetic relationships among these clades remain unclear due to hybridization or incomplete lineage sorting (ILS) according to the results of test of ILS. (4) The chloroplast genes such as ndhA, ndhG and rps12 were subjected to selection pressure under the clade model and branch model. Furthermore, 28 sites of ten genes were detected under positive selection with P-value greater than 0.99 based on the site model, which may be related to the adaptive evolution of Altingiaceae. In this study, the results of plastid phylogenomics supports that S. cathayensis belongs to Altingiaceae. Several coding genes among these species of Altingiaceae may have adaptive evolution. These results will provide data for the further resource protection of homonym drugs and pharmacognostic researches of ethnodrug.
Keywords
Semiliquidambar cathayensis ; Altingiaceae ; chloroplast genome ; phylogeny ; adaptive evolution