en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

夏英(1997—),硕士研究生,主要研究方向为植物逆境生理,(E-mail)2530532517@qq.com。

通讯作者:

张习敏,正高级实验师,硕士生导师,主要研究方向为杜鹃病虫害,(E-mail)zhxm409@163.com。

中图分类号:Q945

文献标识码:A

文章编号:1000-3142(2024)04-0710-11

DOI:10.11931/guihaia.gxzw202210084

参考文献
BENNETT AC, MCDOWELL NG, ALLEN CD, et al. , 2015. Larger trees suffer most during drought in forests worldwide [J]. Nat Plants, 1(10): 15139.
参考文献
BLACKMAN CJ, CREEK D, MAIER C, et al. , 2019. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure [J]. Tree Physiol, 39(6): 910-924.
参考文献
BLANKE MM, LOVATT CJ, 1993. Anatomy and transpiration of the avocado inflorescence [J]. Ann Bot, 71(6): 543-547.
参考文献
BRODRIBB TJ, CARRIQUI M, DELZON S, et al. , 2017. Optical measurement of stem xylem vulnerability [J]. Plant Physiol, 174(4): 2054-2061.
参考文献
BRODRIBB TJ, BIENAIME D, MARMOTTANT P, et al. , 2016a. Revealing catastrophic failure of leaf networks under stress [J]. Proc Natl Acad Sci USA, 113(17): 4865-4869.
参考文献
BRODRIBB TJ, SKELTON RP, MCADAM S, et al. , 2016b. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure [J]. New Phytol, 209(4): 1403-1409.
参考文献
CARDOSO AA, BATZ TA, MCADAM S, et al. , 2020. Xylem embolism resistance determines leaf mortality during drought in Persea americana [J]. Plant Physiol, 182(1): 547-554.
参考文献
CHARRIER G, TORRES-RUI JM, BADEL E, et al. , 2016. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension [J]. Plant Physiol, 172(3): 1657-1668.
参考文献
DIXON HH, 1938. The croonian lecture: transport of substances in plants [J]. R Soc London, 125(838): 1-25.
参考文献
DUKE NC, KOVACS JM, GRIFFITHS AD, et al. , 2017. Large-scale dieback of mangroves in Australia's Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event [J]. Mar Freshwater Res, 68(10): 1816-1829.
参考文献
FENG F, LOSSO A, TYREE M, et al. , 2021. Cavitation fatigue in conifers: a study on eight European species [J]. Plant Physiol, 186(3): 1580-1590.
参考文献
FORKMANN G, 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering [J]. Plant Breed, 106(1): 1-26.
参考文献
GUILLERMINA DS, ALEJANDRO MM, COCHARD H, et al. , 2011. Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir [Pseudotsuga menziesii (Mirb. )] [J]. Ann For Sci, 68(4): 747-757.
参考文献
HAN H, XI B, WANG Y, et al. , 2022. Lack of phenotypic plasticity in leaf hydraulics for 10 woody species common to urban forests of North China [J]. Tree Physiol, 42(6): 1203-1215.
参考文献
HEURSEL J, 1981. Diversity of flower colours in Rhododendron simsii Planch. and prospects for breeding [J]. Euphytica, 30(1): 9-14.
参考文献
HOCHBERG U, WINDT CW, PONOMARENKO A, et al. , 2017. Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems [J]. Plant Physiol, 174(2): 764-775.
参考文献
JOHNSON KM, LUCANI C, BRODRIBB TJ, et al. , 2021. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death [J]. New Phytol, 233(1): 207-218.
参考文献
LECHTHALER S, COLANGELI P, GAZZZBIN M, et al. , 2019. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves [J]. J Exp Bot, 70(21): 6195-6201.
参考文献
LENS F, GLEASON SM, BORTOLAM G, et al. , 2022. Functional xylem characteristics associated with drought-induced embolism in angiosperms [J]. New Phytol, 236(6): 2019-2036.
参考文献
LEVIONNOIS S, JANSEN S, WANDJIRT, et al. , 2021. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees [J]. New Phytol, 229(3): 1453-1466.
参考文献
LI R, JIANG ZM, ZHANG SX, et al. , 2015. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plant Ecol, 39(8): 838-848. [李荣, 姜在民, 张硕新, 等, 2015. 木本植物木质部栓塞脆弱性研究新进展 [J]. 植物生态学报, 39(8): 838-848. ]
参考文献
LI S, KLEPSCH M, JANSEN S, et al. , 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem [J]. Iawa J, 37(2): 152-171.
参考文献
LU ST, CHEN S, LI Y, et al. , 2021. Relationship between water transport, anatomical structure and mechanical strength of stem and root xylem of three species of plants in the family Pinus spp. [J]. Chin J Plant Ecol, 45(6): 659-669. [陆世通, 陈森, 李彦, 等, 2021. 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系 [J]. 植物生态学报, 45(6): 659-669. ]
参考文献
LUO L, 2022. World meteorological organization releases《the state of the global climate 2021》 [N]. China Meteorological News, (3). [罗澜, 2022. 世界气象组织发布《2021年全球气候状况》 [N]. 中国气象报, (3). ]
参考文献
NOLF M, CREEK D, DUURSMA R, et al. , 2015. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species [J]. Plant Cell Environ, 38(12): 2652-2661.
参考文献
PAN XJ, ZHANG WE, YANG XY, et al. , 2010. Correlation between drought resistance and leaf anatomical structure of wild Vitis quinquangularis seedlings in karst mountainous areas [J]. Guizhou Agric Sci, 38(9): 176-178. [潘学军, 张文娥, 杨秀永, 等, 2010. 喀斯特山区野生葡萄实生苗叶片解剖结构与抗旱性的关系 [J]. 贵州农业科学, 38(9): 176-178. ]
参考文献
REGAL PJ, 1977. Ecology and evolution of flowering plant dominance [J]. Science, 196(4290): 622-629. PRIMACK RB, 1985. Longevity of individual flowers [J]. Ann Rev Ecol Syst, 16(16): 15-37.
参考文献
RATHCKE BJ, 2003. Floral longevity and reproductive assurance: seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae) [J]. Am J Bot, 90(9): 1328-1332.
参考文献
RODDY AB, DAWSON TE, 2012. Determining the water dynamics of flowering using miniature sap flow sensors [J]. Acta Hortic, (951): 47-53.
参考文献
RODDY AB, GUILLIAMS CM, LILITTHAM T, et al. , 2013. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny [J]. J Exp Bot, 64(13): 4081-4088
参考文献
RODRIGUEZ D, CARINS M, LUCANI C, et al. , 2018. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots [J]. New Phytol, 218(3): 1025-1035.
参考文献
ROOD SB, BRAATNE JH, HUGHES FM, 2003. Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration [J]. Tree Physiol, 23(16): 1113-1124.
参考文献
SHARMA A, POUDEL RC, LI A, et al. , 2014. Genetic diversity of Rhododendron delavayi var. delavayi (C. B. Clarke) Ridley inferred from nuclear and chloroplast DNA: implications for the conservation of fragmented populations [J]. Plant Syst Evol, 300(8): 1853-1866.
参考文献
SKELTON RP, DAWSON TE, THOMPSON SE, et al. , 2018. Low vulnerability to xylem embolism in leaves and stems of North American oaks [J]. Plant Physiol, 177(3): 1066-1077.
参考文献
SOLTIS PS, SOLTIS DE, 2014. Flower diversity and angiosperm diversification [J]. Meth Mol B, 1110: 85-102.
参考文献
SONG YB, YANG YH, DUAN PJ, et al. , 2022. Comparison of 6 tomato leaf epidermal preparation methods [J]. J Agric, 12(1): 45-52. [宋艳波, 杨云浩, 段鹏军, 等, 2022. 6种番茄叶表皮制片方法比较 [J]. 农学学报, 12(1): 45-52. ]
参考文献
SOREK Y, GREENSTEIN S, NETZER Y, et al. , 2020. Increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes [J]. New Phytol, 229(4): 1955-1965.
参考文献
TAO XH, YUAN Y, XU YQ, et al. , 2015. Anthocyptide composition analysis of hyacinth petals [J]. Acta Hortic Sin, 42(2): 301-310. [陶秀花, 袁媛, 徐怡倩, 等, 2015. 风信子花瓣花色苷组成分析 [J]. 园艺学报, 42(2): 301-310. ]
参考文献
TOMASELLA M, CASOLO V, NATALE S, et al. , 2021. Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra [J]. New Phytol, 231(1): 108-121.
参考文献
TYREE MT, EWERS FW, 1991. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 119(3): 345-360.
参考文献
TYREE MT, SPERRY JS, 1989. Vulnerability of xylem to cavitation and embolism [J]. Ann Rev Plant Physiol, 40: 19-36.
参考文献
WANG ZC, WANG L, ZHOU MY, et al. , 2021. Comparison of leaf structure characteristics and branch water conduction function of three thin-shelled pecan cultivars [J]. J Plant Resour Environ, 30(3): 38-45. [王兆成, 王磊, 周梦钰, 等, 2021. 3个薄壳山核桃品种叶片结构特征和枝条导水功能比较 [J]. 植物资源与环境学报, 30(3): 38-45. ]
参考文献
XIA Y, LI JT, TANG J, et al. , 2023. Comparative study on embolism vulnerability in petals and leaves of Camellia japonica and Rhododendron hybridum [J]. Acta Bot Boreal-Occident Sin, 43(1): 79-87. [夏英, 李婕婷, 唐婧, 等, 2023. 山茶和西洋杜鹃花瓣及叶片的栓塞脆弱性比较 [J]. 西北植物学报, 43(1): 79-87. ]
参考文献
ZHANG FP, BRODRIBB TJ, 2017. Are flowers vulnerable to xylem cavitation during drought? [J]. Proc Biol Sci, 284(1854): 20162642.
参考文献
ZIMMERMANN MH, 1983. The hydraulic architecture of plants [J]. Springer Berlin Heidelberg. DOI: 10. 1007/97836622262785.
目录contents

    摘要

    气候变化引发的干旱频度和强度严重影响植物生长发育,在全球气候变化背景下,量化植物木质部抗栓塞的能力对评估植物耐旱性尤为重要。为评价杜鹃品种间的耐旱性及筛选强抗旱性品种,该文以锦绣杜鹃‘紫鹤’(Rhododendron × pulchrum ‘zihe’)、西洋杜鹃‘杨梅红’(Rhododendron × hybridum ‘yangmeihong’)、映山红(R. simsii)3种灌木杜鹃为材料,利用光学技术构建花瓣和叶片栓塞脆弱性曲线,测定花瓣和叶片解剖结构性状,并分析木质部水力功能和解剖结构性状的相关性。结果表明:(1)锦绣杜鹃‘紫鹤’、西洋杜鹃‘杨梅红’、映山红3种杜鹃花瓣的P12P50P88值(分别发生12%、50%和88%栓塞时对应的水势值)大于叶片。(2)3种杜鹃的花瓣和叶片栓塞脆弱性存在一定的变异,花瓣和叶片发生栓塞的快慢不一致,这种变异可能是杂交园艺花卉植物的重要特征。(3)P50值与其形态特征相关性分析显示,叶片P50值与叶片栅栏组织厚度呈负相关,花瓣P50值与花瓣厚度呈正相关。综上认为,3种杜鹃花瓣栓塞脆弱性高于叶片,干旱胁迫下植物优先牺牲花瓣从而保护叶片,栓塞脆弱性可能与叶片栅栏组织厚度和花瓣厚度相关。该研究为干旱地区筛选、培育抗旱性强的杜鹃品种及园林杜鹃植物选择和树种配置提供了科学依据。

    Abstract

    Climate change has been observed to increase the frequency and intensity of drought, which can adversely affect plant growth and development. Therefore, it is crucial to quantify plant xylem resistance to embolism, particularly in the context of global climate change, to study the process of plant response to drought. In this study, we aimed to evaluate the drought tolerance of Rhododendron cultivars and select those with strong drought resistance by using three species of shrub Rhododendron, namely Rhododendron × pulchrum ‘zihe’, Rhododendron × hybridum ‘yangmeihong’ and R. simsii, as the materials. We used optical techniques to construct embolism vulnerability curves in petal and leaf tissues, and measured petal and leaf anatomical structural traits, and also analyzed the correlation between xylem hydraulic function and anatomical structural traits. The results were as follows: (1) The P12, P50 and P88 values (water potential values corresponding to the occurrence of 12%, 50% and 88% embolism) of petals in Rhododendron × pulchrum ‘zihe’, Rhododendron × hybridum ‘yangmeihong’ and R. simsii were higher than those of leaves. (2) The embolism vulnerability of petal and leaf tissues varied among the three species, and the speed of petal and leaf embolism occurrence did not coincide, which may be an important characteristic of hybridized horticultural flowering plants. (3) The correlation analysis between P50 values and their morphological characteristics showed that the P50 values of leaves were negatively correlated with leaf palisade tissue thickness, and the P50 values of petals were positively correlated with petal thickness. In conclusion, the study suggests that the petal embolism vulnerability of the three shrubs of Rhododendron is higher than that of the leaves, and the plants preferentially sacrifice the petals to protect the leaves under drought stress. Furthermore, the embolism vulnerability may be related to the leaf palisade tissue thickness and petal thickness. Our findings provide scientific references for screening and cultivating drought-resistant Rhododendron varieties, and selecting and configuring tree species of Rhododendron plants in arid areas.

  • 世界气象组织在《2021年全球气候状况》的报告中指出,2020年全球二氧化碳浓度达到413.2 mg·kg-1,为工业化前水平的149%,达到历史新高。全球平均气温比工业化前水平高出约(1.11±0.13)℃,并且未来全球将会持续变暖(罗澜,2022)。全球气候变暖,特别是极端干旱事件的发生频率增加,导致大规模树木死亡和森林退化,严重影响全球森林生态系统结构和功能(Bennett et al.,2015; Duke et al.,2017; Blackman et al.,2019)。据报道,全球干旱导致的灾害占全部自然灾害的5%,干旱导致的损失约占全部自然灾害损失的30%(何斌等,2011)。更严重的是,由于人类活动,未来气候变化预计可能加剧全球水文循环,导致很多地区出现更加频繁和严重的干旱事件。根据内聚力-张力学说(Dixon,1938),蒸腾拉力驱动水分在植物木质部导管中传输,当蒸腾拉力超过木质部内部水柱抗张力强度时,栓塞形成(Tyree &Sperry,1989),即水分在导管内呈现不连续的传输。木质部栓塞是干旱期间植物存活或者死亡的一个十分重要的决定性因素(Cardoso et al.,2020),因此,可以通过木质部栓塞抗性来评估植物抗旱性。通常情况下,栓塞脆弱性越大,植物越不耐旱;反之亦然。鉴于此,栓塞脆弱性已经被广泛应用于评价很多物种之间的耐旱性(Brodribb et al.,2016a; Hochberg et al.,2017; Sorek et al.,2020; Johnson et al.,2021)。例如,Zhang和Brodribb(2017)对桃金娘叶远志(Pologala myrtifolia)、香蕉百香果(Passiflora tarminiana)、豌豆(Pisum sativum)和番茄(Solanum lycopersicum) 4种不同植物叶片进行栓塞脆弱性研究,比较了4种植物的抗旱性;Brodribb 等(2016b)对桃金娘科(Myrtaceae)、海桐科(Pittosporaceae)、合椿梅科(Cunoniaceae)、菊科(Asteraceae)的被子植物叶片研究表明,叶片水力导度与栓塞形成有关;Han 等(2022)测量了10种植物(乔木和灌木)的栓塞抗性和形态指标,比较了它们的抗旱能力。

  • 花是被子植物繁殖、进化和多样性的重要器官(Regal,1977; Soltis &Soltis,2014),延长花期可以使植物吸引更多的传粉者,从而增加繁殖成功率(Rathcke,2003)。植物花期除了受环境温度、光照等生境因子影响外(Primack,1985),水分条件也是影响花期的非生物因子之一。当开花期间面临土壤环境水分不足或干旱胁迫时,花瓣组织因缺水而呈现萎蔫,甚至导致花朵掉落。因此,花的生长发育需要大量的水分供给(Roddy &Dawson,2012)。根据木质部分割理论,在干旱期间树木成本相对较低的器官(如叶)木质部比成本高的器官(如茎)更脆弱(Tyree &Ewers,1991)。例如,在水分匮缺下,葡萄叶片器官先脱落,从而保护茎(Charrier et al.,2016); 与茎相比,叶片和花瓣在干旱条件下的脆弱性更高(Noif et al.,2015;Zhang &Brodribb,2017);在水分胁迫期间,与树干相比,顶端新生枝条更容易遭受胁迫(Rood et al.,2003)。

  • 杜鹃花属于杜鹃花科(Ericaceae)、杜鹃花属(Rhododendron)植物,是我国及世界名花之一,广泛分布于世界各地(Sharma et al.,2014)。在中国西南地区(贵州、重庆、云南、四川)分布了许多杜鹃资源,对该地区的旅游发展具有重要的作用(如贵州百里杜鹃景区)。近年来,全球气候变暖引发的干旱对植物生存造成严重的威胁。叶片和花瓣作为植物水分交换的末端组织,它们在控制水分散失中发挥了重要的作用。以往通过栓塞抗性研究植物耐旱性主要集中在植物茎(Brodribb et al.,2017; Levionnois et al.,2021; Feng et al.,2021)和叶片组织(Brodribb et al.,2016a; Skelton et al.,2018; Lechthaler et al.,2019),对花瓣栓塞脆弱性的报告较少(李荣等,2015)。作为观赏花卉资源,育种学家对杜鹃花进行种间杂交并获得了不同花色的园艺观赏品种,这些品种已经在市场上进行推广,为了能更好地对这些品种进行培育和推广,对杜鹃花品种之间的耐旱性评估则极为重要。为此,本研究以锦绣杜鹃(Rhododendron × pulchrum)、西洋杜鹃(Rhododendron × hybridum、映山红(R. simsii)为研究对象,采用光学技术方法,构建3种灌木杜鹃花瓣和叶片栓塞脆弱性曲线并计算P50值(木质部发生50%栓塞时对应的水势值),拟探讨下列问题:(1)比较3种灌木杜鹃木质部的栓塞脆弱性差异,评估其耐旱性;(2)探究干旱条件下杜鹃花瓣组织是否发生栓塞;(3)分析花瓣和叶片形态性状特征与P50之间的关系。以期为干旱地区园林杜鹃植物选择和树种配置提供理论支持,为评估杜鹃植物耐旱性大小建立抗旱指标体系。

  • 1 材料与方法

  • 1.1 植物材料

  • 西洋杜鹃‘杨梅红’(Rhododendron × hybridum ‘yangmeihong’)、锦绣杜鹃‘紫鹤’(Rhododendron × pulchrum ‘zihe’)、映山红(R. simsii)购买于贵州省黔南州惠水县花卉基地(各15盆,每盆一株植物),带有花瓣的植株于贵州师范大学植物生理与发育调控重点实验室温室内(光周期12 h,温度22℃,光照强度350 μmol· m-2·s-1,相对湿度60%~70%)培养至部分花朵完全开放(图1),之后进行实验处理。

  • 1.2 花瓣和叶片的光学栓塞脆弱性曲线构建

  • 栓塞脆弱性曲线参考Brodribb等(2016b)的光学技术方法略有修改。先将带有叶片和花瓣的枝条剪下(约10 cm长),立即插入盛有水的烧杯中吸水至饱和。再将叶片(枝条顶端往下第5片)或花瓣放置在立体显微镜(XTL-6745TJ4-T1000,苏州倍特嘉光电科技有限公司)的载物台上,叶片或者花瓣展开铺平后,用透明胶带固定。在上述温室条件下每隔60 s捕获一张图像,直到观察叶片或花瓣褐变。另外,采用上述相同的方法剪取其他枝条顶端往下第5至第8片叶片吸水饱和,在上述温室条件进行自然干旱,采用露点水势仪(WP4-T,Gene Company Limited,USA)每隔20~60 min测量一次叶片或花瓣的水势,每个物种测定3个生物学重复。使用ImageJ(National Institute of Health,New York,NY,USA)软件中的图像减法来识别和量化栓塞。利用Weibull函数 [V=(x-100)log(1-x/100)]对水势和栓塞百分比进行拟合,获得栓塞脆弱性曲线(Tomasella et al.,2021)。

  • 1.3 花瓣和叶片形态特征测量

  • 取正常生长叶片(枝条顶端往下第5至第8片)和花瓣,在主脉中部剪切面积约0.5 cm × 0.5 cm的组织块,制成石蜡切片,显微镜下拍照,用ImageJ图像分析软件测量花瓣和叶片厚度、上表皮厚度、下表皮厚度、叶片栅栏组织厚度、叶片海绵组织厚度(王兆成等,2021)。叶脉密度测定参照Roddy 等(2013)的方法,用2%的NaOH溶液将花瓣和叶片脱色至透明后置于显微镜下拍照,用ImageJ软件测量叶脉密度。叶脉密度=选取范围内叶脉长度之和/选取面积。气孔密度参照宋艳波等(2022)的方法,在花瓣和叶片背面涂上薄薄一层透明指甲油,静置30 min,用镊子轻轻撕取油膜,置于显微镜下观察,记录气孔数量。气孔密度=气孔数量/视野面积。

  • 图1 研究使用的3种灌木杜鹃

  • Fig.1 Three studied species of shrub Rhododendron

  • 1.4 木质部导管结构测量

  • 距叶片基部0.2 cm处,截取长度约为0.5 cm的主脉,参考陆世通等(2021)的方法制作永久装片,并于显微镜下拍照,用ImageJ软件测定解剖结构性状,然后通过以下公式计算相关参数。

  • (1) 导管密度 N= 横截面所有导管数量 横截面的面积 ;

  • (2)导管直径D=4A11式中A为导管面积;

  • (3)导管内径跨度b=A1+A22×4式中A1和A2分别为相邻导管面积;

  • (4)(t/b2,式中t为相邻导管间的垂直距离,b为导管内径跨度。

  • 1.5 数据处理

  • 所有数据采用SPSS 25中单因素方差进行显著性分析(P<0.05),采用皮尔森相关性分析解剖性状与栓塞抗性之间的相关性。

  • 2 结果与分析

  • 2.1 3种灌木杜鹃花瓣和叶片光学栓塞脆弱性

  • 利用光学脆弱性方法,可以从时间和空间上观察花瓣和叶片栓塞传播。从栓塞发生时间来看,3种杜鹃栓塞出现均为叶片早于花瓣(图2)。在种内,3种植物花瓣的P50值(木质部发生50%栓塞时对应的水势值)均高于叶片(图3,表1),表明在自然干旱下,花瓣比叶片的栓塞脆弱性高,更容易发生栓塞。在种间,花瓣的P50表现为锦绣杜鹃‘紫鹤’最低,西洋杜鹃‘杨梅红’最高;叶片的P50则表现为映山红最低,西洋杜鹃‘杨梅红’最高(表1)。此外,P12P88在不同种间也存在类似的变化(P<0.05)(表1)。

  • 图2 自然干旱下3种灌木杜鹃花瓣和叶片的光学图像和彩色图谱

  • Fig.2 Optical images and color atlases of petals and leaves in three species of shrub Rhododendron under natural drought

  • 图3 3种灌木杜鹃花瓣和叶片的光学栓塞脆弱性曲线

  • Fig.3 Optical embolization vulnerability curves of petals and leaves in three species of shrub Rhododendron

  • 表1 3种杜鹃花瓣和叶片P12P50P88

  • Table1 P12, P50 and P88 values of the petals and leaves in three species of shrub Rhododendron

  • 注:同一组织在不同种间的不同小写字母表示差异显著(P<0.05)。下同。

  • Note: Different lowercase letters in the same organization of different species indicate significant differences (P<0.05) . The same below.

  • 2.2 花瓣和叶片形态结构特征

  • 由表2可知,3种杜鹃种间花瓣厚度、上表皮厚度、下表皮厚度存在显著性差异(P<0.05),而叶脉密度无显著性差异(P>0.05),同时,在花瓣上均没有观察到气孔的分布。另外,3种杜鹃种间叶片的各种形态结构存在很大差异(P<0.05)(表2)。

  • 2.3 木质部导管结构特征

  • 叶片木质部导管结构性状结果表明,3种杜鹃种间的导管密度、导管直径、导管内径跨度、管壁厚度存在显著性差异(P<0.05),而(t/b2 无显著性差异(P>0.05)(表3)。

  • 2.4 花瓣和叶片栓塞脆弱性与形态特征相关性分析

  • 3 种杜鹃花瓣和叶片形态结构与P50值相关性分析显示,花瓣P50值与上表皮厚度、下表皮厚度、叶脉密度无显著相关性 (P>0.05)(图4),仅与花瓣厚度呈显著正相关性(r2=0.45,P=0.02)(图4:A)。另外,叶片P50值与栅栏组织厚度呈显著负相关(r2=0.45,P=0.02)(图4:D),与其他形态结构无显著相关性(P>0.05)(图4)。同样,叶片P50值与叶片木质部导管结构之间也没有显著的相关性(P>0.05)(图5)。

  • 3 讨论与结论

  • 3.1 杜鹃花瓣栓塞脆弱性高于叶片且存在变异

  • 应用光学可视化技术,在杜鹃品种中成功观察到叶片和花瓣木质部栓塞时空变化,该技术前期已经用于杜鹃植物和其他物种的耐旱性评价(夏英等,2023)。在本研究中,观察到杜鹃花瓣和叶片的栓塞脆弱性在品种之间存在一定的变异,例如,叶片栓塞脆弱性为映山红最弱,而花瓣则是锦绣杜鹃‘紫鹤’最弱。这与前期Rodriguez等(2018)报道的橄榄植物结果不太一致,他们认为栓塞抗性最强的植物个体,根和叶片也表现出较强的栓塞抗性。对于本研究中杜鹃花瓣和叶片的栓塞脆弱性在品种之间存在一定的变异,推测这可能是由于杜鹃品种之间花瓣颜色存在差异所致,植物花瓣花色呈现与花青素的种类和含量有关(Heursel,1981; 陶秀花等,2015),花青素可作为渗透调节剂提高植物抗旱性(Forkmann,1991)。因此,不同颜色的花瓣中,花青素含量的差异可能影响花瓣的抗旱性,因而导致花瓣的栓塞脆弱性出现一定的变异。

  • 表2 3种灌木杜鹃花瓣和叶片形态特征

  • Table2 Morphological characteristics of petals and leaves in three species of shrub Rhododendron

  • 表3 3种灌木杜鹃叶片木质部导管结构特征

  • Table3 Structural characteristics of xylem vessel in three species of shrub Rhododendron leaves

  • 图4 3种灌木杜鹃花瓣和叶片P50值与形态特征的相关性分析

  • Fig.4 Correlation analysis between P50 values and morphological characteristics of petals and leaves in three species of shrub Rhododendron

  • 本研究的一个重要目标是分析花在木质部脆弱性谱中的地位,特别是水力分割理论。在本研究中,锦绣杜鹃‘紫鹤’、西洋杜鹃‘杨梅红’、映山红花瓣的P12P50P88值均大于叶片,说明杜鹃花瓣比叶片更加脆弱,即在干旱条件下,花瓣组织最容易受到损伤。这与水力分割理论的观点一致,表明在水分缺乏时,杜鹃植物可能优先牺牲重要性较小和投资成本较低的花瓣,保护生存和繁殖至关重要的叶片器官(Zimmermann,1983;Zhang &Brodribb,2017),这种策略对于多年生的杜鹃植物个体来说,非常有利于它们的长期生存和繁衍后代。

  • 3.2 杜鹃品种叶片和花瓣栓塞脆弱性与形态结构的关系

  • 导管是输送水分的重要组织,导管特性(如导管长度、导管直径、导管类型、纹孔膜的超微结构等)直接影响木质部栓塞的形成。另外,木质部栓塞脆弱性受到解剖结构(如气孔、叶片组织厚度等)的影响。在本研究中,解剖结构性状与栓塞脆弱性的相关性分析结果表明,杜鹃叶片栅栏组织厚度与P50成负相关性,说明杜鹃叶片栅栏组织越厚,抗旱性越强。原因可能是较厚的栅栏组织可防止和缓解水分快速蒸发(潘学军等,2010),从而增强植物的抗旱能力。本研究观察到栓塞脆弱性与木质部导管密度、导管直径、导管内径跨度、导管壁厚、(t/b2等结构之间无相关性。猜测可能是由于干旱诱发栓塞形成与木质部的许多结构有关,如木质部汁液组成、导管壁的化学性质、纹孔膜性状、细胞类型等都可能影响木质栓塞(Guillermina et al.,2011; Li et al.,2016; Lens et al.,2022)。当前研究未涉及到上述相关指标,后期需要开展更多关于解剖结构特征的研究,分析它们与栓塞脆弱性的关系。

  • 图5 3种灌木杜鹃叶片P50与叶片木质部导管结构的相关性分析

  • Fig.5 Correlation analysis of between P50 values and xylem vessel structure of leaves in three species of shrub Rhododendron

  • 与叶片不同,在3种灌木杜鹃花瓣上、下表皮上都没有观察到气孔,因此认为花瓣可能通过角质层进行水分散失。在本研究中,从最初栓塞发生的时间来看,花瓣出现栓塞的时间较晚于叶片,可能是由于角质层控制水分散失比气孔控制水分散失较慢,延缓了花瓣中栓塞的形成。本研究结果与Zhang 和 Brodribb (2017)报道的结果不一致,他们在研究桃金娘叶远志、香蕉百香果、豌豆和番茄花瓣和叶片时发现,在这些植物花瓣上观察到气孔分布,栓塞出现时间稍微早于叶片。因此,本研究结果认为杜鹃花瓣上角质层对花瓣木质部栓塞脆弱性有一定的贡献。

  • 在3种灌木杜鹃中,自然干旱下,花瓣和叶片均能发生栓塞且花瓣栓塞脆弱性强于叶片。另外,花瓣和叶片栓塞脆弱性在3种灌木杜鹃之间存在一定的变异,这种变异可能是杂交园艺花卉植物的重要特征。本研究发现,栓塞脆弱性与叶片栅栏组织厚度呈负相关,和花瓣厚度呈正相关。本研究结果对未来选择耐旱杜鹃物种具有重要意义,为干旱地区造林树种的选择和树种配置提供了理论支持。

  • 参考文献

    • BENNETT AC, MCDOWELL NG, ALLEN CD, et al. , 2015. Larger trees suffer most during drought in forests worldwide [J]. Nat Plants, 1(10): 15139.

    • BLACKMAN CJ, CREEK D, MAIER C, et al. , 2019. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure [J]. Tree Physiol, 39(6): 910-924.

    • BLANKE MM, LOVATT CJ, 1993. Anatomy and transpiration of the avocado inflorescence [J]. Ann Bot, 71(6): 543-547.

    • BRODRIBB TJ, CARRIQUI M, DELZON S, et al. , 2017. Optical measurement of stem xylem vulnerability [J]. Plant Physiol, 174(4): 2054-2061.

    • BRODRIBB TJ, BIENAIME D, MARMOTTANT P, et al. , 2016a. Revealing catastrophic failure of leaf networks under stress [J]. Proc Natl Acad Sci USA, 113(17): 4865-4869.

    • BRODRIBB TJ, SKELTON RP, MCADAM S, et al. , 2016b. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure [J]. New Phytol, 209(4): 1403-1409.

    • CARDOSO AA, BATZ TA, MCADAM S, et al. , 2020. Xylem embolism resistance determines leaf mortality during drought in Persea americana [J]. Plant Physiol, 182(1): 547-554.

    • CHARRIER G, TORRES-RUI JM, BADEL E, et al. , 2016. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension [J]. Plant Physiol, 172(3): 1657-1668.

    • DIXON HH, 1938. The croonian lecture: transport of substances in plants [J]. R Soc London, 125(838): 1-25.

    • DUKE NC, KOVACS JM, GRIFFITHS AD, et al. , 2017. Large-scale dieback of mangroves in Australia's Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event [J]. Mar Freshwater Res, 68(10): 1816-1829.

    • FENG F, LOSSO A, TYREE M, et al. , 2021. Cavitation fatigue in conifers: a study on eight European species [J]. Plant Physiol, 186(3): 1580-1590.

    • FORKMANN G, 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering [J]. Plant Breed, 106(1): 1-26.

    • GUILLERMINA DS, ALEJANDRO MM, COCHARD H, et al. , 2011. Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir [Pseudotsuga menziesii (Mirb. )] [J]. Ann For Sci, 68(4): 747-757.

    • HAN H, XI B, WANG Y, et al. , 2022. Lack of phenotypic plasticity in leaf hydraulics for 10 woody species common to urban forests of North China [J]. Tree Physiol, 42(6): 1203-1215.

    • HEURSEL J, 1981. Diversity of flower colours in Rhododendron simsii Planch. and prospects for breeding [J]. Euphytica, 30(1): 9-14.

    • HOCHBERG U, WINDT CW, PONOMARENKO A, et al. , 2017. Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems [J]. Plant Physiol, 174(2): 764-775.

    • JOHNSON KM, LUCANI C, BRODRIBB TJ, et al. , 2021. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death [J]. New Phytol, 233(1): 207-218.

    • LECHTHALER S, COLANGELI P, GAZZZBIN M, et al. , 2019. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves [J]. J Exp Bot, 70(21): 6195-6201.

    • LENS F, GLEASON SM, BORTOLAM G, et al. , 2022. Functional xylem characteristics associated with drought-induced embolism in angiosperms [J]. New Phytol, 236(6): 2019-2036.

    • LEVIONNOIS S, JANSEN S, WANDJIRT, et al. , 2021. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees [J]. New Phytol, 229(3): 1453-1466.

    • LI R, JIANG ZM, ZHANG SX, et al. , 2015. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plant Ecol, 39(8): 838-848. [李荣, 姜在民, 张硕新, 等, 2015. 木本植物木质部栓塞脆弱性研究新进展 [J]. 植物生态学报, 39(8): 838-848. ]

    • LI S, KLEPSCH M, JANSEN S, et al. , 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem [J]. Iawa J, 37(2): 152-171.

    • LU ST, CHEN S, LI Y, et al. , 2021. Relationship between water transport, anatomical structure and mechanical strength of stem and root xylem of three species of plants in the family Pinus spp. [J]. Chin J Plant Ecol, 45(6): 659-669. [陆世通, 陈森, 李彦, 等, 2021. 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系 [J]. 植物生态学报, 45(6): 659-669. ]

    • LUO L, 2022. World meteorological organization releases《the state of the global climate 2021》 [N]. China Meteorological News, (3). [罗澜, 2022. 世界气象组织发布《2021年全球气候状况》 [N]. 中国气象报, (3). ]

    • NOLF M, CREEK D, DUURSMA R, et al. , 2015. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species [J]. Plant Cell Environ, 38(12): 2652-2661.

    • PAN XJ, ZHANG WE, YANG XY, et al. , 2010. Correlation between drought resistance and leaf anatomical structure of wild Vitis quinquangularis seedlings in karst mountainous areas [J]. Guizhou Agric Sci, 38(9): 176-178. [潘学军, 张文娥, 杨秀永, 等, 2010. 喀斯特山区野生葡萄实生苗叶片解剖结构与抗旱性的关系 [J]. 贵州农业科学, 38(9): 176-178. ]

    • REGAL PJ, 1977. Ecology and evolution of flowering plant dominance [J]. Science, 196(4290): 622-629. PRIMACK RB, 1985. Longevity of individual flowers [J]. Ann Rev Ecol Syst, 16(16): 15-37.

    • RATHCKE BJ, 2003. Floral longevity and reproductive assurance: seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae) [J]. Am J Bot, 90(9): 1328-1332.

    • RODDY AB, DAWSON TE, 2012. Determining the water dynamics of flowering using miniature sap flow sensors [J]. Acta Hortic, (951): 47-53.

    • RODDY AB, GUILLIAMS CM, LILITTHAM T, et al. , 2013. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny [J]. J Exp Bot, 64(13): 4081-4088

    • RODRIGUEZ D, CARINS M, LUCANI C, et al. , 2018. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots [J]. New Phytol, 218(3): 1025-1035.

    • ROOD SB, BRAATNE JH, HUGHES FM, 2003. Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration [J]. Tree Physiol, 23(16): 1113-1124.

    • SHARMA A, POUDEL RC, LI A, et al. , 2014. Genetic diversity of Rhododendron delavayi var. delavayi (C. B. Clarke) Ridley inferred from nuclear and chloroplast DNA: implications for the conservation of fragmented populations [J]. Plant Syst Evol, 300(8): 1853-1866.

    • SKELTON RP, DAWSON TE, THOMPSON SE, et al. , 2018. Low vulnerability to xylem embolism in leaves and stems of North American oaks [J]. Plant Physiol, 177(3): 1066-1077.

    • SOLTIS PS, SOLTIS DE, 2014. Flower diversity and angiosperm diversification [J]. Meth Mol B, 1110: 85-102.

    • SONG YB, YANG YH, DUAN PJ, et al. , 2022. Comparison of 6 tomato leaf epidermal preparation methods [J]. J Agric, 12(1): 45-52. [宋艳波, 杨云浩, 段鹏军, 等, 2022. 6种番茄叶表皮制片方法比较 [J]. 农学学报, 12(1): 45-52. ]

    • SOREK Y, GREENSTEIN S, NETZER Y, et al. , 2020. Increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes [J]. New Phytol, 229(4): 1955-1965.

    • TAO XH, YUAN Y, XU YQ, et al. , 2015. Anthocyptide composition analysis of hyacinth petals [J]. Acta Hortic Sin, 42(2): 301-310. [陶秀花, 袁媛, 徐怡倩, 等, 2015. 风信子花瓣花色苷组成分析 [J]. 园艺学报, 42(2): 301-310. ]

    • TOMASELLA M, CASOLO V, NATALE S, et al. , 2021. Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra [J]. New Phytol, 231(1): 108-121.

    • TYREE MT, EWERS FW, 1991. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 119(3): 345-360.

    • TYREE MT, SPERRY JS, 1989. Vulnerability of xylem to cavitation and embolism [J]. Ann Rev Plant Physiol, 40: 19-36.

    • WANG ZC, WANG L, ZHOU MY, et al. , 2021. Comparison of leaf structure characteristics and branch water conduction function of three thin-shelled pecan cultivars [J]. J Plant Resour Environ, 30(3): 38-45. [王兆成, 王磊, 周梦钰, 等, 2021. 3个薄壳山核桃品种叶片结构特征和枝条导水功能比较 [J]. 植物资源与环境学报, 30(3): 38-45. ]

    • XIA Y, LI JT, TANG J, et al. , 2023. Comparative study on embolism vulnerability in petals and leaves of Camellia japonica and Rhododendron hybridum [J]. Acta Bot Boreal-Occident Sin, 43(1): 79-87. [夏英, 李婕婷, 唐婧, 等, 2023. 山茶和西洋杜鹃花瓣及叶片的栓塞脆弱性比较 [J]. 西北植物学报, 43(1): 79-87. ]

    • ZHANG FP, BRODRIBB TJ, 2017. Are flowers vulnerable to xylem cavitation during drought? [J]. Proc Biol Sci, 284(1854): 20162642.

    • ZIMMERMANN MH, 1983. The hydraulic architecture of plants [J]. Springer Berlin Heidelberg. DOI: 10. 1007/97836622262785.

  • 参考文献

    • BENNETT AC, MCDOWELL NG, ALLEN CD, et al. , 2015. Larger trees suffer most during drought in forests worldwide [J]. Nat Plants, 1(10): 15139.

    • BLACKMAN CJ, CREEK D, MAIER C, et al. , 2019. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure [J]. Tree Physiol, 39(6): 910-924.

    • BLANKE MM, LOVATT CJ, 1993. Anatomy and transpiration of the avocado inflorescence [J]. Ann Bot, 71(6): 543-547.

    • BRODRIBB TJ, CARRIQUI M, DELZON S, et al. , 2017. Optical measurement of stem xylem vulnerability [J]. Plant Physiol, 174(4): 2054-2061.

    • BRODRIBB TJ, BIENAIME D, MARMOTTANT P, et al. , 2016a. Revealing catastrophic failure of leaf networks under stress [J]. Proc Natl Acad Sci USA, 113(17): 4865-4869.

    • BRODRIBB TJ, SKELTON RP, MCADAM S, et al. , 2016b. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure [J]. New Phytol, 209(4): 1403-1409.

    • CARDOSO AA, BATZ TA, MCADAM S, et al. , 2020. Xylem embolism resistance determines leaf mortality during drought in Persea americana [J]. Plant Physiol, 182(1): 547-554.

    • CHARRIER G, TORRES-RUI JM, BADEL E, et al. , 2016. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension [J]. Plant Physiol, 172(3): 1657-1668.

    • DIXON HH, 1938. The croonian lecture: transport of substances in plants [J]. R Soc London, 125(838): 1-25.

    • DUKE NC, KOVACS JM, GRIFFITHS AD, et al. , 2017. Large-scale dieback of mangroves in Australia's Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event [J]. Mar Freshwater Res, 68(10): 1816-1829.

    • FENG F, LOSSO A, TYREE M, et al. , 2021. Cavitation fatigue in conifers: a study on eight European species [J]. Plant Physiol, 186(3): 1580-1590.

    • FORKMANN G, 1991. Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering [J]. Plant Breed, 106(1): 1-26.

    • GUILLERMINA DS, ALEJANDRO MM, COCHARD H, et al. , 2011. Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir [Pseudotsuga menziesii (Mirb. )] [J]. Ann For Sci, 68(4): 747-757.

    • HAN H, XI B, WANG Y, et al. , 2022. Lack of phenotypic plasticity in leaf hydraulics for 10 woody species common to urban forests of North China [J]. Tree Physiol, 42(6): 1203-1215.

    • HEURSEL J, 1981. Diversity of flower colours in Rhododendron simsii Planch. and prospects for breeding [J]. Euphytica, 30(1): 9-14.

    • HOCHBERG U, WINDT CW, PONOMARENKO A, et al. , 2017. Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems [J]. Plant Physiol, 174(2): 764-775.

    • JOHNSON KM, LUCANI C, BRODRIBB TJ, et al. , 2021. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death [J]. New Phytol, 233(1): 207-218.

    • LECHTHALER S, COLANGELI P, GAZZZBIN M, et al. , 2019. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves [J]. J Exp Bot, 70(21): 6195-6201.

    • LENS F, GLEASON SM, BORTOLAM G, et al. , 2022. Functional xylem characteristics associated with drought-induced embolism in angiosperms [J]. New Phytol, 236(6): 2019-2036.

    • LEVIONNOIS S, JANSEN S, WANDJIRT, et al. , 2021. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees [J]. New Phytol, 229(3): 1453-1466.

    • LI R, JIANG ZM, ZHANG SX, et al. , 2015. A review of new research progress on the vulnerability of xylem embolism of woody plants [J]. Chin J Plant Ecol, 39(8): 838-848. [李荣, 姜在民, 张硕新, 等, 2015. 木本植物木质部栓塞脆弱性研究新进展 [J]. 植物生态学报, 39(8): 838-848. ]

    • LI S, KLEPSCH M, JANSEN S, et al. , 2016. Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem [J]. Iawa J, 37(2): 152-171.

    • LU ST, CHEN S, LI Y, et al. , 2021. Relationship between water transport, anatomical structure and mechanical strength of stem and root xylem of three species of plants in the family Pinus spp. [J]. Chin J Plant Ecol, 45(6): 659-669. [陆世通, 陈森, 李彦, 等, 2021. 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系 [J]. 植物生态学报, 45(6): 659-669. ]

    • LUO L, 2022. World meteorological organization releases《the state of the global climate 2021》 [N]. China Meteorological News, (3). [罗澜, 2022. 世界气象组织发布《2021年全球气候状况》 [N]. 中国气象报, (3). ]

    • NOLF M, CREEK D, DUURSMA R, et al. , 2015. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species [J]. Plant Cell Environ, 38(12): 2652-2661.

    • PAN XJ, ZHANG WE, YANG XY, et al. , 2010. Correlation between drought resistance and leaf anatomical structure of wild Vitis quinquangularis seedlings in karst mountainous areas [J]. Guizhou Agric Sci, 38(9): 176-178. [潘学军, 张文娥, 杨秀永, 等, 2010. 喀斯特山区野生葡萄实生苗叶片解剖结构与抗旱性的关系 [J]. 贵州农业科学, 38(9): 176-178. ]

    • REGAL PJ, 1977. Ecology and evolution of flowering plant dominance [J]. Science, 196(4290): 622-629. PRIMACK RB, 1985. Longevity of individual flowers [J]. Ann Rev Ecol Syst, 16(16): 15-37.

    • RATHCKE BJ, 2003. Floral longevity and reproductive assurance: seasonal patterns and an experimental test with Kalmia latifolia (Ericaceae) [J]. Am J Bot, 90(9): 1328-1332.

    • RODDY AB, DAWSON TE, 2012. Determining the water dynamics of flowering using miniature sap flow sensors [J]. Acta Hortic, (951): 47-53.

    • RODDY AB, GUILLIAMS CM, LILITTHAM T, et al. , 2013. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny [J]. J Exp Bot, 64(13): 4081-4088

    • RODRIGUEZ D, CARINS M, LUCANI C, et al. , 2018. Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots [J]. New Phytol, 218(3): 1025-1035.

    • ROOD SB, BRAATNE JH, HUGHES FM, 2003. Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration [J]. Tree Physiol, 23(16): 1113-1124.

    • SHARMA A, POUDEL RC, LI A, et al. , 2014. Genetic diversity of Rhododendron delavayi var. delavayi (C. B. Clarke) Ridley inferred from nuclear and chloroplast DNA: implications for the conservation of fragmented populations [J]. Plant Syst Evol, 300(8): 1853-1866.

    • SKELTON RP, DAWSON TE, THOMPSON SE, et al. , 2018. Low vulnerability to xylem embolism in leaves and stems of North American oaks [J]. Plant Physiol, 177(3): 1066-1077.

    • SOLTIS PS, SOLTIS DE, 2014. Flower diversity and angiosperm diversification [J]. Meth Mol B, 1110: 85-102.

    • SONG YB, YANG YH, DUAN PJ, et al. , 2022. Comparison of 6 tomato leaf epidermal preparation methods [J]. J Agric, 12(1): 45-52. [宋艳波, 杨云浩, 段鹏军, 等, 2022. 6种番茄叶表皮制片方法比较 [J]. 农学学报, 12(1): 45-52. ]

    • SOREK Y, GREENSTEIN S, NETZER Y, et al. , 2020. Increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes [J]. New Phytol, 229(4): 1955-1965.

    • TAO XH, YUAN Y, XU YQ, et al. , 2015. Anthocyptide composition analysis of hyacinth petals [J]. Acta Hortic Sin, 42(2): 301-310. [陶秀花, 袁媛, 徐怡倩, 等, 2015. 风信子花瓣花色苷组成分析 [J]. 园艺学报, 42(2): 301-310. ]

    • TOMASELLA M, CASOLO V, NATALE S, et al. , 2021. Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra [J]. New Phytol, 231(1): 108-121.

    • TYREE MT, EWERS FW, 1991. The hydraulic architecture of trees and other woody plants [J]. New Phytol, 119(3): 345-360.

    • TYREE MT, SPERRY JS, 1989. Vulnerability of xylem to cavitation and embolism [J]. Ann Rev Plant Physiol, 40: 19-36.

    • WANG ZC, WANG L, ZHOU MY, et al. , 2021. Comparison of leaf structure characteristics and branch water conduction function of three thin-shelled pecan cultivars [J]. J Plant Resour Environ, 30(3): 38-45. [王兆成, 王磊, 周梦钰, 等, 2021. 3个薄壳山核桃品种叶片结构特征和枝条导水功能比较 [J]. 植物资源与环境学报, 30(3): 38-45. ]

    • XIA Y, LI JT, TANG J, et al. , 2023. Comparative study on embolism vulnerability in petals and leaves of Camellia japonica and Rhododendron hybridum [J]. Acta Bot Boreal-Occident Sin, 43(1): 79-87. [夏英, 李婕婷, 唐婧, 等, 2023. 山茶和西洋杜鹃花瓣及叶片的栓塞脆弱性比较 [J]. 西北植物学报, 43(1): 79-87. ]

    • ZHANG FP, BRODRIBB TJ, 2017. Are flowers vulnerable to xylem cavitation during drought? [J]. Proc Biol Sci, 284(1854): 20162642.

    • ZIMMERMANN MH, 1983. The hydraulic architecture of plants [J]. Springer Berlin Heidelberg. DOI: 10. 1007/97836622262785.