-
凤仙花属(Impatiens L.)是凤仙花科(Balsamiaceae)仅有的两个属中的最大属,约有1 200种,主要分布在旧大陆的热带和亚热带地区的山地森林,在非洲、亚洲和欧洲温带及北美洲也有分布,存在着大量的同域分布和特有现象(Waller,1980;Yuan et al.,2004;Janssens et al.,2009;Yu et al.,2016)。凤仙花属是热带和亚热带山林中物种多样性最高的类群,普遍具两侧对称花冠和花距以及雄蕊异熟的花结构,被誉为“双子叶中的兰花” (Yuan et al.,2004;Janssens et al.,2009)。
-
花形态特征在不同地理分布的凤仙花属物种里变化明显,不仅是该属物种鉴定的分类依据 (Yuan et al.,2004;Janssens et al.,2009;Rahelivololona et al.,2018;Abrahamczyk et al.,2021),也是探究其物种分化和传粉生物学适应性演化的主要内容 (Grey-Wilson,1980;Akiyama,1991;Abrahamczyk et al.,2017;Ruchisansakun et al.,2016,2021)。早期研究提出了非洲分布的凤仙花属植物包含着四类传粉综合征,即适应或吸引蝴蝶、蜜蜂、鸟类和天蛾传粉的花结构类型(Grey-Wilson,1980;Wilson &Thomson,1991;Akiyama,1991;Makoto et al.,1991)。其中,非洲高山地区的凤仙花属类群表现出明显的鸟媒传粉综合征(包括红色的喇叭形花冠和分泌花蜜的花距),被证实由当地特有的太阳鸟传粉(Grey-Wilson,1980;Cheek &Fischer,1999;Bartoš &Janeč ek,2014)。然而,有关其他几类传粉综合征的资料较少,该假说难以被证实。这主要是因为花形态在凤仙花属物种里存在着明显的中间过渡类型,不同地域分布的物种普遍吸引多种传粉生物(Heinrich,1977;Rust,1977;Kato,1988;Nienhuis &Stout,2009;Vervoort et al.,2011;Tokuda et al.,2015)。例如,在热带分布的凤仙花属的物种数量远远高于温带地区,尽管物种多样,花形态变异丰富,但大部分物种均由熊蜂传粉(Kulloli et al.,2009,2011)。同时,有研究揭示了非洲以外的凤仙花普遍由蜜蜂传粉(Rust,1977;Schemske,1978;Kato,1988;Kato et al.,1991;Tian et al.,2004;Sreekala et al.,2008,2011;Mohandass,2013),但在亚洲分布的种类可吸引多种昆虫共同传粉,属泛化传粉(Tian et al.,2004;毛志斌等,2011;钟云芳等,2014;Abrahamczyk et al.,2017;Li DF et al.,2021)。东南亚同域分布的7种凤仙花属植物里,花形态特征差异决定了传粉机制的不同(Ruchisansakun et al.,2016),花小且无花距的种类为自花授粉;花大色艳的为异花授粉,其中,具短花距和宽花通道的物种吸引蜜蜂,具长花距和窄花通道的吸引两种以上的昆虫传粉,包括蜜蜂和鳞翅目(Lepidoptera)昆虫,为复合传粉。中国是凤仙花属物种多样性分化中心,约有300种(余胜祥,2012;Tan et al.,2015;Wang et al.,2020;Song et al.,2021;Yuan et al.,2022)。现有资料揭示了产自中国的不同花型和花色的凤仙花属种类均由熊蜂、蜜蜂和天蛾等共同传粉(Tian et al.,2004;肖乐希和刘克明,2009;毛志斌等,2011;Liu &Huang,2013;钟云芳等,2014;Li BZ et al.,2021)。其中,红雉凤仙花(Impatiens oxyanthera)的花距形态是传粉者和盗蜜者共同作用的定向选择结果(Liu et al.,2013)。然而,全世界的凤仙花属物种较多,花形态变异丰富,但关于它们的传粉综合征假说缺乏具体的传粉生物的种类和访花行为等详细资料(Rust,1977;Schemske,1978;Kato,1988;Li &Huang,2021),尤其缺乏同域分布物种间的比较研究(Kato et al.,1991;Ruchisansakun et al.,2016)。因此,关于凤仙花属的传粉生物学和繁育系统等仍需要更多资料来完善补充。
-
黄麻叶凤仙花(Impatiens corchorifolia)和金凤花(I. cyathiflora)均为中国特有种,前者产于云南西北和四川西南的高山林下,后者仅零星分布于云南(陈艺林,2002;于胜祥,2012),关于它们的研究资料比较少。作者近年来调查了云南中部的梁王山的药用植物资源调查(段涵宁等,2022),首次观察到这两种植物为明显的同域分布的伴生种。它们均生长在海拔约2 600 m的华山松林下,具有相似的生境、花型和花期,但无明显的杂交个体植株存在(图1),是开展凤仙花属近缘物种的传粉生物学和繁育系统学的理想材料(Ruchisansakun et al.,2016)。因此,本文以云南中部的梁王山同域分布的黄麻叶凤仙花和金凤花为研究对象,观察它们的开花物候、花形态结构特征、繁育系统、传粉昆虫的种类和访花行为,旨在揭示它们的(1)开花物候特征;(2)种间传粉综合征的分化;(3)传粉昆虫的种类和访花行为差异;(4)繁育系统机制及是否存在种间杂交。
-
1 材料与方法
-
1.1 研究地点和材料
-
梁王山为滇中第一峰(海拔2 000~2 820 m),位于我国云南省澄江县境内,地处昆明市东南和玉溪市东北交界处(102°52′45"—102°55'15" E、24°43′57"—24°27'28" N),属于典型的温带气候,海拔在2 400 m以上的山顶一年四季常有云雾笼罩,蕴藏着大量的珍稀濒危植物(段涵宁等,2022)。黄麻叶凤仙花和金凤花均为一年生草本植物,共同生长在华山松林下。两种植物的居群各有分布范围,彼此紧靠,前者的海拔较低(2 600~2 720 m),后者略高(2 720~2 820 m)。
-
1.2 花形态特征
-
随机取两种植物开放花各30朵,观察记录其花序、花被片、合生雄蕊等器官的形态,比较分析花形态特征在种间的差异。同时,用采用游标卡尺(0.05 mm)测量开放花的花药末端(或柱头末端)距离翼瓣上突起的距离(通道高)、翼瓣两侧间的距离(通道宽)及距到翼瓣形成平面的距离(通道深)(图2)。
-
1.3 传粉昆虫及行为
-
于2021年9—10月,在每种植物的居群里,各选取5个样方(5 m × 5 m)定点观察(包括海拔在2 720 m的比邻生长区域),样方间距至少500 m,共观察了25 d(平均温度18℃)。每天于8:00—18:00期间每小时观测并记录样方内传粉者种类、停留时间和访花行为。统计各传粉者单位时间内访花次数,分析一天中不同昆虫的访花规律,并用捕虫网捕捉传粉昆虫,将昆虫放入装有乙酸乙酯的毒瓶中杀死,测量昆虫的体长、胸高和胸宽。
-
1.4 开花物候
-
1.4.1 花期
-
选择在两种植物的盛花期随机套袋30朵花蕾,观察并记录开花动态,计算单花期。每天8:00—18:00,每1 h观察被套袋的花蕾的形态变化过程,并统计雄性期和雌性期。雄性期为开花第一天至雄蕊脱落,雌性期为柱头露出至完全凋谢。
-
1.4.2 花蜜的测定
-
每种植物随机选择开花植株各30株,套袋隔离访花昆虫干扰。于12:00随机摘取30朵,取唇瓣基部的花距,利用毛细管(规格10 μL)吸取花蜜,测量和记录花蜜量,使用手持折光仪(0~80%)检测花蜜可溶性糖含量(糖度)。
-
花蜜量 =(液柱长/毛细管长) × 毛细管容积。
-
1.5 花粉/胚珠(P/O)比率测定
-
分别测定两种植物的花粉/胚珠(P/O)比值。(1)统计每朵花的花粉数。各取每种植物的即将开放的花蕾30朵,将花药置于1.5 mL离心管内,加1 mol·L-1盐酸(HCL)解离液,形成花粉悬浊液,取100 μL,置于血球计数板,在尼康显微镜(Nikon 750)下观察统计花粉粒数目。每朵花重复测量3次,取平均值。(2)统计胚珠数。取30朵花的子房,在徕卡体式显微镜(Leica M165FC)下解剖观察并记录每个子房的胚珠数。(3)每朵花的花粉胚珠比值由花药中的花粉总数除以该花药所在的花朵子房中的胚珠数而得出。
-
1.6 人工授粉实验
-
(1)盛花期对两种植物的花苞套袋,进行繁育系统授粉实验。处理方式有6种,包括自动自交(检测是否存在自动自花授粉),去雄(检测是否存在无融合生殖),人工自交授粉(花粉来源于同一朵花,以检测自交是否亲和),同株异花授粉(花粉来源于同一花序上的其他花,以检测自交是否亲和),异株异花授粉(花粉来源于10 m外的其他植株),对照(不做任何处理,自然开花结实)。每种处理各30朵花。(2)以两种植物互作为父本和母本进行人工杂交授粉,每种杂交组合各重复30株。作为父本的植株,选择其雄花期时花药刚开裂、活力较高的花粉,母本的材料先去雄处理,待雌蕊成熟后进行人工授粉。对于选定作为种间人工杂交的植株,其花序在开花前至结实的过程中均作套袋处理,避免传粉昆虫干扰。
-
1.7 统计分析方法
-
所有的数据均用SPSS 21统计软件分析。花形态以及花蜜相关数据分析先看是否符合正态分布,如果符合则运用t检验,如果不符合则运用曼惠特尼u检验;坐果率的数据分析运用卡方检验。
-
2 结果与分析
-
2.1 花形态特征
-
野外观察发现,在梁王山分布的黄麻叶凤仙花和金凤花互为紧密的伴生种,出现在华山松林下(图1:A),并且在居群间没有观察到明显的种间自然杂交个体。两种植物株高均为20~80 cm,茎干粗壮肉质,上部分枝明显,花朵大型,两侧对称,均为黄花系且均为雄性先熟的双性花,存在着明显的雌雄花期,各具5枚雄蕊愈合而成的“花药刷”覆盖着晚熟的雌蕊柱头(图2)。然而,它们的花序、花被片特征、花通道大小都有着显著的差异(表1),具体描述如下。
-
第一,两种植物的花序结构不同。黄麻叶凤仙花为蝎尾状花序,花梗纤细,花大,长约6 cm,径约7 cm,花色鲜黄,开放时花冠朝下,多悬垂于叶背(图1:B),侧生萼片4,外面2枚卵状矩圆形,先端渐尖,内面2个小,呈矩圆状披针形或条形(图2:E)。然而,金凤花具总状花序,花梗丝状,具多花,花型较小,长约6 cm,宽约4 cm,为橙黄色(图1:C),开花时自下到上依次开放,侧生萼片2枚,斜卵形或近四方形,顶端具长腺尖(图2:F)。
-
第二,两种植物的花被片结构差异明显。黄麻叶凤仙花的旗瓣圆形,背面中肋有龙骨突,先端具小突尖;翼瓣近无柄,基部裂片圆形,上部裂片较大,宽斧形,背面有较大的耳,构成明显的访花昆虫停留展示台(图2:A,C)。同时,其唇瓣宽囊状,基部延伸为短花距,长为(5.40±0.80)mm且二裂(图2:G)。相反,金凤花的旗瓣圆形僧帽状,中肋背面具明显龙骨状突起(图2:E,F);翼瓣2裂,基部裂片近圆形,上部裂片较长,斧形,顶端钝背部具反折的小耳,唇瓣檐部杯状或漏斗状,基部收狭,向后延伸为较长的细花距,长为(22.70±1.4)mm,末端圆钝(图2:F,H)。数据分析结果表明,它们的花距长具有极显著性差异(U=0.000,P<0.01)。
-
第三,两种植物的花通道特征显著不同。黄麻叶凤仙花的花通道较宽,其中径深(19.6±0.30)mm,高(3.35±0.36)mm,宽(8.66±0.80)mm,具有显眼的红条纹(图2:A,E)。然而,金凤花的花通道较窄,其中径深(15.9±0.48)mm,高(3.86±0.70)mm,宽(7.97±0.93)mm,布满紫红色斑点(图2:B,F)。其花通道的径深(U=240.500,P<0.05)、高度(t=3.023,P<0.05)和宽度(U=250.500,P<0.05)均具显著性差异。
-
2.2 开花物候
-
两种植物的居群花期均集中在8—11月,约120 d。黄麻叶凤仙花的单花期、雌雄花期均比金凤仙长(表1)。它们的单花期分别为(4.83±0.36)、(3.21±0.29) d,两种相差约为1.62 d。雄花期分别为(3.71±0.22)、(2.33±1.23) d,两种相差约为1.38 d。雌花期分别为(1.12±0.32)、(0.88±0.21) d,相差约为0.24 d。
-
2.3 花蜜量及糖含量
-
在居群开花期间,两种植物的花蜜含量差异明显,但花蜜含糖量无显著性差异。平均花蜜含量在黄麻叶凤仙花中较低(4.57±1.43)μL,在金凤花中较高(10.15±3.28)μL,后者是前者的近2~3倍,表现出极显著相异(t=-9.459,P<0.01)。然而,平均花蜜糖含量较为相似,分别为(45.48±2.28)%和(46.12±1.48)%,无显著性差异(t=-1.381,P>0.05)。
-
图1 黄麻叶凤仙花和金凤花的生境和植株形态
-
Fig.1 Habitat and plant morphology of Impatiens corchorifolia and I. cyathiflora
-
图2 黄麻叶凤仙花和金凤花的花通道和花距特征
-
Fig.2 Floral channel and spur characteristics of Impatiens corchorifolia and I. cyathiflora
-
2.4 传粉昆虫及传粉行为
-
本文观察到有6种传粉昆虫访问了黄麻叶凤仙花(3种)和金凤花(6种)(图3,表2)。两种植物均有3种共同传粉昆虫,即中华蜜蜂(Apis cerana)(图3: A,D)、黑盾胡蜂(Vespa bicolor)(图3:B,E)、金环胡蜂(V. mandarinia)(图3: C,F)。同时,金凤花还有另外3种传粉昆虫,即长喙天蛾一种(Macroglossum sp.)(图3: G)、灰熊蜂(Bombus grahami)(图3:H)和三条熊蜂(B. trifasciatus)(图3: I)。观察记录了6种访花昆虫的访花行为,比较分析了它们的访花昆虫体型和花通道结构之间的关系,结合前人经验(钟云芳等,2014),把胸高大于花通道,并且能够进入到花通道内的昆虫视为传粉者(长喙天蛾除外)。因此,本文比较了传粉昆虫的种类、访花行为、昆虫体型特征与两种植物的花通道口大小的关系。其中,金凤花的合生雄蕊偏向一侧,所以传粉昆虫携带花粉也均偏向一侧(图3:D)。
-
第一,中华蜜蜂是两种凤仙花的共同传粉昆虫,其访花频率集中在10:00—16:00之间(图4,图5),但是最高访花频率出现在不同的时间段,其中黄麻叶凤仙花为12:00—13:00之间(图4),高达50 times·h-1,金凤花为15:00—16:00之间(图5),高达92 times·h-1。并且,访花的停留时间也有些许差异,前者访花时较短(3~6 s),后者访花时间较长(7~10 s)。从传粉昆虫体型特征来看,中华蜜蜂胸高约(4.0±0.30) mm,均大于两种植物的传粉通道高 [(3.35±0.36)、(3.86±0.70)mm],可以接触到花粉完成授粉行为,喙长约2.8 mm,有利于取食花距里的花蜜。访花时,花粉会附着在昆虫的翅膀、背部和胸部。第二,黑盾胡蜂和金环胡蜂同样是两种凤仙花的共同传粉昆虫,它们同属于胡蜂属,访花频率仅次于中华蜜蜂,但其访花高峰期时间段与中华蜜蜂保持一致,均在10:00—16:00之间,最高访花频率也出现在不同的时间段,其中黄麻叶凤仙花为12:00—13:00之间(图4),高达23 times·h-1,金凤花为15:00—16:00之间(图5),高达45 times·h-1。并且,两者的胸高分别为(5.80±0.20)、(6.20±0.30) mm,均大于两种凤仙花通道高[(3.35±0.36)、(3.86±0.70)mm],所以访花时,携带的花粉会附着在昆虫的背部以及翅膀上。第三,作为金凤花的传粉者,来自熊峰属的灰熊蜂和三条熊蜂的访花高峰期均集中在13:00—15:00之间(图5),停留时间为7~10 s,访花频率最高时可达4 times· h-1。从昆虫体型来看,灰熊峰和三条熊峰的胸高分别为(6.5±0.50)、(5.70±0.40) mm,均大于金凤花的传粉通道高(3.86±0.70) mm,所以传粉时花粉会附着昆虫的背部以及翅膀上。值得注意的是,两种昆虫喙的长度分别为3.1、7.1 mm,均远远短于金凤花的花距长度(22.7 mm)。第四,作为金凤花的传粉昆虫,长喙天蛾访花高峰期集中在8:00—11:00之间(图5),停留时间为8~28 s,访花频率最高时达4 times·h-1。长喙天蛾是金凤花6种传粉昆虫里体型较大的一种,胸高约有7.10 mm,远大于传粉通道高(3.86±0.70)mm,但是其属于花外传粉,不会进入到花内,所以其传粉效率比较低效。因此,虽然长喙天蛾喙的长达38.8 mm,比金凤花的花距(22.7 mm)还要长,但只能花外传粉,因此其访花行为导致长喙天蛾仅有前半部分身体有机会接触到花粉,包括长喙、头部和复眼等部位。
-
图3 黄麻叶凤仙花和金凤花的传粉昆虫
-
Fig.3 Pollinators for Impatiens corchorifolia and I. cyathiflora
-
图4 黄麻叶凤仙花传粉昆虫的访花频率
-
Fig.4 Visit frequency of pollinators for Impatiens corchorifolia
-
图5 金凤花传粉昆虫的访花频率
-
Fig.5 Visit frequency of pollinators for Impatiens cyathiflora
-
2.5 花粉/胚珠比(P/O)
-
胚珠数、花粉数和花粉胚珠比在两种植物里差异显著。胚珠数在黄麻叶凤仙花 (16.67±1.68)和金凤花(8.97±3.45)呈现极显著性差异(t=10.807,P<0.01),两者的最高值相差近2倍。花粉粒数在黄麻叶凤仙花(135 200±19 694)和金凤花(38 133±14 537)间呈现极显著性差异(t = 21.719,P<0.01),最高值相差近3倍。此外,花粉/胚珠比的数值黄麻叶凤仙花(8 477 ± 2 220)和金凤花(4 440±1 848)间也呈现极显著性差异(t=7.655,P<0.01)。根据Cruden(1977)的标准来判断,两种植物均为专性异交繁育系统。
-
2.6 人工授粉实验
-
2.6.1 繁育系统实验
-
本研究做了6种不同的授粉处理的繁育系统实验,两种凤仙花的坐果率均有明显不同(表3)。由于自动自交和无融合繁殖处理均未观察收集到果实,故不列入分析比较。同时,在人工自交授粉、同株异花授粉、异株异花授粉3种处理方式下,金凤花的坐果率明显比黄麻叶凤仙花高。黄麻叶凤仙花3种处理方式的坐果率分别为46%、56%、63%,均与自然结实率(53%)无显著性差异;虽然金凤花的坐果率普遍增高,分别为73%、86%、90%,但与自然结实率(83%)也均无显著性差异。
-
2.6.2 人工杂交授粉实验
-
为揭示同域分布的两种同属近缘伴生居群间未发现种间自然杂交个体的现象,本研究完成了这两种植物的人工异花授粉杂交实验,结果表明两者的花粉和柱头之间的识别通道有明显障碍,存在着明显的种间杂交不育。人工授粉后,两种植物的花朵均表现为早落,具体表现如下:人工授粉后的第1天,花萼和花瓣凋落,仅剩子房;第2天后子房明显膨大;持续到第5天后,子房膨大停止;第7天时子房干瘪萎蔫凋落,解剖后,没有观察到种子。
-
3 讨论与结论
-
3.1 开花物候对传粉生物学的影响
-
第一,本文增补了黄麻叶凤仙花和金凤花在滇中地区同域分布的新记录,为该属物种多样性及生物地理学研究提供了新资料,也为该属同域分布物种的传粉生物学提供了研究依据。同时,其分布具有垂直海拔分布的特征,这与在四川峨眉山产的14种风仙花的分布现象一致(陈艺林,2002)。
-
第二,本文研究的两种植物的花果期同步,集中在8—11月,花期长达120天,如此长的花期使植物能够有充足的时间进行繁殖,保证植株在面对恶劣环境时能够做出缓冲,降低恶劣的环境对于植株繁衍的影响(周正立等,2005)。植物同步开花行为还被视作调节异交水平的影响因子(Herrerías-Diego et al.,2006),两种凤仙花花期完全重合,相对能增加吸引到的传粉昆虫种类、数量,以此提高每种植物传粉效率和生殖成功的机率。但同时,这也增加了传粉昆虫的竞争机率,从而影响某种植物传粉昆虫的访花频率,从而影响传粉效率(红雨和刘强,2006)。所以两种凤仙花的花果期同步,虽然可以增加其传粉昆虫的种类和数量,但是也加剧了对昆虫资源的竞争压力 (Grey-Wilson,1980;Boas et al.,2013;Ruchisansakun et al.,2016;Singer &Sazima,2001)。
-
3.2 两种凤仙花属植物的传粉综合征分化
-
本文研究的两种植物具有相似的花形态特征,包括株型相似、花型较大、花色为黄色系、均具花距和花蜜、有显著的花通道和雄蕊异熟等特征,表现出明显的吸引传粉昆虫特征 (Grey-Wilson,1980;Wilson &Thomson,1991;Ruchisansakun et al.,2016;Abrahamczyk et al.,2017)。但是,它们依然表现出不同的传粉综合征,主要是由于花距形态差异明显。短花距的黄麻叶凤仙花只表现出明显的蜜蜂传粉综合征,但长花距的金凤花还多吸引了具长口器昆虫的传粉综合征。因此,这两个物种的花距差异性特征决定了它们传粉综合征的分化,这也是同域分布近缘物种保持独立演化的因素之一(Grey-Wilson,1980;Ruchisansakun et al.,2016)。
-
第一,两种凤仙花能够吸引中华蜜蜂和两种胡蜂作为传粉者,因为它们符合蜜蜂传粉综合征,包括开黄色的花、具有漏斗状唇瓣和宽阔的访花通道,旗瓣深宽,翼瓣兜帽状(Grey-Wilson,1980;Wilson &Thomson,1991)。因此,本研究证实了除非洲外的凤仙花属植物,蜜蜂是它们常见的传粉者(Rust,1977;Schemske,1984;Kato,1988;Kato et al.,1991;Wilson,1995;Tian et al.,2004;Sreekala et al.,2008,2011;Ramasubbu et al.,2011;Mohandass,2013)。在我国产的其他凤仙花属植物中,也有报道这两种凤仙花所具有的传粉综合征(Tian et al.,2004;肖乐希,2009;于胜祥,2012;钟云芳等,2014;Li BZ et al.,2021)。值得一提的是,尚未有关于胡蜂属作为凤仙花属植物传粉者的研究,这两种胡蜂均属于膜翅目胡蜂科,身体乌黑发亮,有黄条纹和成对的斑点,为具强螫针的蜂类,当地俗称“大马蜂”或“黄马蜂”,常用于炮制药酒。
-
第二,金凤花除中华蜜蜂和胡蜂为其传粉以外,还有3种特有的传粉者,包括2种熊蜂和1种长喙天蛾。这3种昆虫专性拜访具有长距的金凤花,对具短距的黄麻叶凤仙花视而不见。这是因为前者的花通道较宽,具漏斗状唇瓣且拥有长花距等花形态特征,均符合天蛾传粉综合征和长喙昆虫传粉综合征(Grey-Wilson,1980;Wilson &Thomson,1991),证实了凤仙花属的花距形态是传粉综合征的重要特征之一(Tian et al.,2004;Wang et al.,2013)。此外,有研究认为长距也是凤仙花属植物吸引蝶类的传粉综合征(Grey-Wilson,1980;Wilson &Thomson,1991),但本研究并未观察到蝶类对金凤花的传粉行为。这一点与Vandelook等(2019)研究过的56种凤仙花属植物的传粉综合征类似,即仅凭花形态来预测传粉综合征是不够的,还需要结合野外实地观察来判断。
-
3.3 两种植物的花距差异是传粉综合征分化的重要因素
-
本研究发现,两种植物的花距特征差异显著导致其传粉昆虫种类分化明显。金凤花的花距较长,花蜜量也更高,为传粉昆虫提供了更多的报酬,可以吸引6种传粉昆虫。相比之下,黄麻叶凤仙花的花距较短,花蜜量也较少,仅有3种传粉昆虫。本文认为造成两种凤仙花传粉昆虫种类和访花频率差异的主要原因是它们特殊的花器官——花距(Pyke,1982;Gómez,2003;Liu &Huang,2013;Hořák &Janeč ek,2021)。这是因为花距长度直接影响不同喙长传粉昆虫的访花行为,同时也影响花蜜量(Gómez,2003;Pyke,2016;路广梅等,2021)。在近缘物种中,过低的花蜜量会使传粉者处于竞争劣势(Pyke,1982;Gómez,2003),从而影响传粉者的访花频率(路广梅等,2021)。此外,已有研究表明长花距吸引着长喙传粉昆虫(Willmer,2011;Li DF et al.,2021),故金凤花能吸引长口器熊蜂和天蛾来传粉。花距的长短在这两种同域分布凤仙花属植物的物种分化中发挥了重要作用,也是同域分布环境下近缘物种繁育生殖顺利的补充机制。本文的研究结果不仅证实了花蜜含量影响了昆虫的拜访频率(Vandelook et al.,2109;刘南南等,2020),也支持花距形态是凤仙花属植物传粉综合征的重要组成部分(Tian et al.,2004;肖乐希,2009;于胜祥,2012;钟云芳等,2014;Hořák &Janeč ek,2021)。
-
3.4 两种植物传粉昆虫行为差异的传粉生物学意义
-
本研究证实了亚洲凤仙花属植物的泛化传粉机制(Tian et al.,2004;毛志斌等,2011;钟云芳等,2014;Abrahamczyk et al.,2017;Li BZ et al.,2021),并且两种凤仙花的共享传粉昆虫存在行为差异。本文发现两种凤仙花的共同传粉昆虫访花频率,集中在10:00—16:00之间。其中,最高访花频率出现在不同的时间段,黄麻叶凤仙花为12:00—13:00之间,金凤花为15:00—16:00之间。这样的特殊性访花规律由于动植物之间的协同进化所产生(Varassin et al.,2001;Gegear et al.,2007;Pyke,2016;Stevenson et al.,2017),可以保证同域分布近缘物种的传粉昆虫资源分配最优化,可以最大限度保证传粉昆虫的利用率(Singer &Sazima,2001;Boas et al.,2013)。同时,共同传粉昆虫的访花停留时间在金凤花上更长,这是由于其花距较长拥有更多的花蜜。因此,昆虫访花时吸取花蜜的时间也变长了,借此增加传粉效率(Tian et al.,2004;Wang et al.,2013;Li DF et al.,2021)。此外,熊蜂和长喙天蛾身为金凤花特有的传粉昆虫,但访花频率远低于3种共同的传粉昆虫。熊蜂虽然访花频率低,但其身躯庞大,每次可以携带大量的花粉,是重要的传粉昆虫。长喙天蛾的访花频率集中在早上8:00—10:00,并且在所有传粉昆虫里仅有长喙天蛾为花外传粉,这与瑶山凤仙花(Impatiens macrovexilla)(肖乐希,2009)和侧穗凤仙花(I. lateristachys)(毛志斌等,2011)的观察一致。
-
3.5 两种植物的繁育系统特征
-
第一,本研究结合繁育系统实验和P/O的结果表明,两种植物均为专性异交型,虽自交亲合,但自然状态下无法完成自花自交,可通过传粉者的活动实现同株异花自交,传粉必须依赖传粉者,这与其他凤仙花属植物的研究结果是一致的(肖乐希,2009;钟云芳等,2014; Ruchisansakun et al.,2016)。不过,现有资料表明,在凤仙花属里,具有自交和异交授粉的种类里,P/O的数值并没有明显差异(Lozada-Gobilard et al.,2019)。因此,根据花粉胚珠比值差异来预测植物的繁育系统倾向仍需更多资料来澄清。
-
第二,通过为两种植物进行人工授粉(同株异花、异株异花)可以增加其坐果率,进一步证实了这雌雄异熟的凤仙花属植物依赖于传粉者的访问,并且会受到传粉者的访花频率限制(Stanton &Young,1994)。同时,两种凤仙花的人工自交坐果率均低于对照组,说明它们更倾向于异交优势。在本文完成的自动自交和无融合繁殖实验中,两种凤仙花均未结实。这是由于其特殊的合生雄蕊结构决定了雌雄异熟的繁育特征,无法完成自动自交,构成了植物繁殖过程中的 “自我保护”,防止近亲繁殖的有害影响(Li et al.,2001)。无融合繁殖未结实这一结果表明了这两种凤仙花的传粉成功必需要传粉昆虫的介入。因此,本文揭示了两种凤仙花的生殖规律,即均虽然自交亲和,但无法完成自动自交行为,并且其生殖繁衍需要传粉昆虫作为媒介完成传粉行为,从而实现异交授粉提高坐果率。这在华凤仙(I. chinensis)(肖乐希和刘克明,2009)、瑶山凤仙花(肖乐希,2009)、海南凤仙花(I. hainanensis)(钟云芳等,2014)以及东南亚同域分布的7种凤仙花属植物(Ruchisansakun et al.,2016)的传粉生物学研究中也均得到证实。
-
第三,本文发现两种凤仙花存在生殖隔离机制。虽然其共享3种传粉者,但是其表现为明显的错峰访花,并且花通道差异决定了传粉者携带花粉的部位不一致。因此,这两个同域分布的近缘物种可以通过部分传粉媒介和花形态差异在一定程度上维持生殖隔离。对两种植物的人工杂交授粉实验表明,花粉和柱头识别通道在两个种间存在明显的障碍,存在着同域分布近缘种间杂交不亲和的现象,解释了本文研究的同域分布于梁王山的两种植物居群里没有观察到明显的种间杂交后代个体的原因。同理,Ruchisansakun等(2016)对东南亚同域分布的7种凤仙花和Kato等(1991)对同域分布的4种植物传粉生物学的观察发现,即同域分布的近缘物种对共同传粉者的利用方式差异导致存在生殖隔离现象。因此,本文选择同域分布的凤仙花属近缘物种开展传粉综合征、传粉昆虫行为和繁育系统的对比研究,有助于揭示传粉生态适应性和物种分化之间的关系(Cruden,1977;Lloyd &Yates,1982;Singer &Sazima,2001)。
-
综上所述,本文以中国特有种黄麻叶凤仙花和金凤花的同域分布居群为研究对象,通过野外调查,首次揭示了两种植物的开花物候、传粉综合征、传粉昆虫行为和繁育系统特征。结果表明,花距是同域分布的两种伴生植物传粉综合征的关键组成,决定了它们各自拥有不同的传粉昆虫种类和访花行为异同,均表现出明显的异花授粉繁育系统且种间存在杂交不亲和现象。因此,本文结果验证了亚洲分布凤仙花属植物的泛化传粉机制(Abrahamczyk et al.,2017;Li BZ et al.,2021),以及花距形态是传粉综合征分化的重要因素(Pyke,1982)。鉴于亚洲凤仙花属种类丰富且同域分布现象广泛,若想进一步了解其传粉综合征分化以及传粉昆虫资源分配等问题,还需要开展更多的研究工作。
-
致谢 实验设计得到中国科学院昆明植物研究所任宗昕博士的指导;本文实验材料的物种鉴定得到了中国科学院植物研究所于胜祥博士的帮助。野外调查工作得到西南林业大学在读研究生田琴和段涵宁以及在读本科生邵成艳等同学和澄江市林业和草原局陈敏工程师、市中医院李得医生、市职业中学李翔老师的协助。在此一并谨致谢意。
-
参考文献
-
ABRAHAMCZYK S, HUMPHREYS AM, TRABERT F, et al. , 2021. Evolution of brood-site mimicry in Madagascan Impatiens (Balsaminaceae) [J]. Perspec Plant Ecol Evol Syst, 49: 125590.
-
ABRAHAMCZYK S, LOZADA-GOBILARD S, ACKERMANN M, et al. , 2017. A question of data quality—testing pollination syndromes in Balsaminaceae [J]. PLoS ONE, 12(10): e0186125.
-
AKIYAMA S, 1991. Taxonomic notes of the east Himalayan species of Impatiens (Balsaminaceae) [J]. Himalayan Plants, 2: 67-94.
-
BARTOŠ M, JANEČEK Š, 2014. Pollinator-induced twisting of flowers sidesteps floral architecture constraints [J]. Curr Biol, 24(17): R793-R795.
-
BOAS JCV, FAVA WS, LAROCA S, et al. , 2013. Two sympatric Byrsonima species (Malpighiaceae) differ in phenological and reproductive patterns [J]. Flora, 208(5/6): 360-369.
-
CHEEK M, FISCHER E, 1999. A tuberous and epiphytic new species of Impatiens (Balsaminaceae) from Southwest Cameroon [J]. Kew Bul, 54(2): 471-475.
-
CHEN YL, 2002. Balsaminaceae [M]// QIAN ZS, CHEN HY, LING R, et al. Flora Reipublicae Popularis Sinicae. Beijing: Science Press: 47(2). [陈艺林, 2002. 凤仙花科 [M]//钱崇澍, 陈焕镛, 林鎔, 等. 中国植物志. 北京: 科学出版社: 47(2). ]
-
CRUDEN RW, 1977. Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants [J]. Evolution, 31(1): 32-46.
-
DUAN HN, TIAN Q, WANG YP, et al. , 2022. Diversity and conservation of medicinal vascular plants in Chengjiang County of Yunnan Province [J]. J W Chin For Sci, 51(3): 107-113. [段涵宁, 田琴, 王艳萍, 等, 2022. 云南省澄江县药用维管植物多样性及保护利用初探 [J]. 西部林业科学, 51(3): 107-113. ]
-
GEGEAR RJ, MANSON JS, THOMSON JD, 2007. Ecological context influences pollinator deterrence by alkaloids in floral nectar [J]. Ecol Lett, 10(5): 375-382.
-
GÓMEZ JM, 2003. Herbivory reduces the strength of pollinator-mediated selection in the mediterranean herb Erysimum mediohispanicum: Consequences for plant specialization [J]. Am Nat, 162(2): 242-256.
-
GREY-WILSON C, 1980. Impatiens of Africa [M]. The Netherlands: Balkema: CRC Press.
-
HERRERÍAS-DIEGO Y, QUESADA M, STONER KE, et al. , 2006. Effects of forest fragmentation on phenological patterns and reproductive success of the tropical dry forest tree Ceiba aesculifolia [J]. Conserv Biol, 20(4): 1111-1120.
-
HEINRICH B, 1979. Resource heterogeneity and patterns of movement in foraging bumblebees [J]. Oecologia, 40(3): 235-245.
-
HONG Y, LIU Q, 2006. A study on the pollination biology of Paeonia lactiflora Pall. [J]. Guihaia, 26(2): 120-124. [红雨, 刘强, 2006. 芍药的传粉生物学研究 [J]. 广西植物, 26(2): 120-124. ]
-
HOŘÁK D, JANEČEK Š, 2021. A geographical perspective on the relationship between Impatiens spur lengths and bill lengths of sunbirds in Afrotropical mountains [J]. Ecol Evol, 11(7): 3120-3129.
-
JANSSENS SB, KNOX EB, HUYSMANS S, et al. , 2009. Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change [J]. Mol Phylogenet Evol, 52(3): 806-824.
-
KATO M, 1988. Bumblebee visits to Impatiens spp. : pattern and efficiency [J]. Oecologia, 76(3): 364-370.
-
KATO M, ITINO T, HOTTA M, et al. , 1991. Pollination of four Sumatran Impatiens species by hawkmoths and bees [J]. Tropics, 1(1): 59-73.
-
KULLOLI SK, RAMASUBBU R, SREEKALA AK, et al. , 2009. Reproductive ecology of Impatiens campanulata Wight — a rare and endemic balsam of southern Western Ghats [J]. Ecol Environ Conserv, 15(2): 235-239.
-
KULLOLI SK, SREEKALA AK, PANDURANGAN AG, 2011. Pollination biology and resupination of Impatiens grandis (Balsaminaceae): An endemic balsam of Southern Western Ghats [J]. J Paleolimnol, 47(1): 23.
-
LI BZ, LI ZF, XIANG MD, et al. , 2021. Pollination ecology of Impatiens uliginosa (Balsaminaceae) endemic to China [J]. Taiwania, 66(3): 298-306.
-
LI DF, YAN XC, LIN Y, et al. , 2021. Do flowers removed of either nectar or pollen attract fewer bumblebee pollinators? An experimentaltest in Impatiens oxyanthera [J]. AoB Plants, 13(4): plab029.
-
LI QJ, XU ZF, KRESS WJ, et al, 2001. Flexible style that encourages outcrossing [J]. Nature, 410(6827): 432-432.
-
LIU CQ, HUANG SQ, 2013. Floral divergence, pollinator partitioning and the spatiotemporal pattern of plant-pollinator interactions in three sympatric Adenophora species [J]. Oecologia, 173(4): 1411-1423.
-
LIU NN, XIAO HW, CHEN XH, et al. , 2020. Nectar secretion characteristics and their effects on insect pollination of Goodyera foliosa, a nectar rewarding orchid [J]. J Trop Subtrop Bot, 28(3): 265-270. [刘南南, 肖汉文, 陈兴惠, 等, 2020. 多叶斑叶兰花蜜特征和分泌规律及其对昆虫访花的影响 [J]. 热带亚热带植物学报, 28(3): 265-270. ]
-
LLOYD DG, YATES JMA, 1982. Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified by Wahlenbergia albomarginata (Campanulaceae) [J]. Evolution, 36(5): 903-913.
-
LOZADA-GOBILARD S, WEIGEND M, FISCHER E, et al. , 2019. Breeding systems in Balsaminaceae in relation to pollen/ovule ratio, pollination syndromes, life history and climate zone [J]. Plant Biol, 21(1): 157-166.
-
LU GM, LU NN, MA Y, et al. , 2021. Floral traits and their manipulation of foraging behaviors of pollinators of two sympatric Pedicularis species [J]. J Lanzhou Univ (Nat Sci), 57(3): 338-343. [路广梅, 路宁娜, 马妍, 等, 2021. 同域分布两种马先蒿植物的花特征及其对传粉昆虫访花行为的影响 [J]. 兰州大学学报(自然科学版), 57(3): 338-343. ]
-
MAKOTO K, TAKAO I, MITSURU H, et al. , 1991. Pollination of four sumatran Impatiens species by hawkmoths and bees [J]. Tropics, 1(1): 59-73.
-
MAO ZB, BOEHLER C, GE XJ, 2011. Pollination ecology and breeding system of Impatiens lateristachys (Balsaminaceae) endemic to China [J]. Guihaia, 31(2): 160-166. [毛志斌, Cedric Boehler, 葛学军, 2011. 侧穗凤仙花的传粉生态和繁育系统 [J]. 广西植物, 31(2): 160-166. ]
-
MOHANDASS D, 2013. Pollination ecology of Impatiens rufescens (Balsamineae) — an endemic annual herb from Nilgiri Mountains, Western Ghats, India [J]. Int J Ecol Environ Sci, 39(1): 59-65.
-
NIENHUIS C, STOUT J, 2009. Effectiveness of native bumblebees as pollinators of the alien invasive plant Impatiens glandulifera (Balsaminaceae) in Ireland [J]. J Pollination Ecol: 1-11. DOI: 10. 26786/1920-7603(2009)1.
-
PYKE GH, 2016. Floral nectar: pollinator attraction or manipulation? [J]. Trends Ecol Evol, 31(5): 339-341.
-
PYKE GH, 1982. Local geographic distributions of bumblebees near Crested Butte, Colorado: competition and community structure [J]. Ecology, 63(2): 555-573.
-
RAHELIVOLOLONA EM, FISCHER E, JANSSENS SB, et al. , 2018. Phylogeny, infrageneric classification and species delimitation in the Malagasy Impatiens (Balsaminaceae) [J]. PhytoKeys, (110): 51-67.
-
RUCHISANSAKUN S, MERTENS A, JANSSENS SB, et al. , 2021. Evolution of pollination syndromes and corolla symmetry in Balsaminaceae reconstructed using phylogenetic comparative analyses [J]. Ann Bot, 127(2): 267-280.
-
RUCHISANSAKUN S, VANDER NIET T, JANSSENS SB, et al. , 2016. Phylogenetic analyses of molecular data and reconstruction of morphological character evolution in Asian Impatiens section Semeiocardium (Balsaminaceae) [J]. Syst Bot, 40(4): 1063-1074.
-
RUST RW, 1977. Pollination in Impatiens capensis and Impatiens pallida (Balsaminaceae) [J]. Bull Torrey Bot Club, 104: 361-367.
-
SCHEMSKE DW, 1978. Evolution of reproductive characteristics in Impatiens (Balsaminaeeae): The significance of cleistogamy and chasmogamy [J]. Ecology, 59(3): 596-613.
-
SCHEMSKE DW, 1984. Population structure and local selection in Impatiens pallida (Balsaminaceae), a selfing annual [J]. Evolution, 38(4): 817-832.
-
SINGER RB, SAZIMA M, 2001. The pollination mechanism of three sympatric Prescottia (Orchidaceae: Prescottinae) species in southeastern Brazil [J]. Ann Bot, 88(6): 999-1005.
-
SONG YX, XIAO Y, PENG S, et al. , 2021. Two new species of Impatiens from China, and taxonomic insights into the Longifilamenta Group, which is endemic to China [J]. Plants (Basel, Switzerland), 10(8): 1697.
-
SREEKALA AK, PANDURANGAN AG, RAMASUBBU R, et al. , 2008. Reproductive biology of Impatiens coelotropis Fisher, a critically endangered balsam from the Southern Western Ghats [J]. Curr Sci, 95(3): 386-388.
-
SREEKALA AK, RAMASUBBU R, PANDURANGAN AG, et al. , 2011. Pollination biology of Impatiens cuspidate Wight and Arn. (Balsaminaceae), a rare and endemic balsam of the Western Ghats, India [J]. J Threat Taxa, 3(6): 1818-1825.
-
STANTON ML, YOUNG HJ, 1994. Selecting for floral character associations in wild radish, Raphanus sativus L. [J]. J Evolution Biol, 7(3): 271-285.
-
STEVENSON PC, NICOLSON SW, WRIGHT GA, 2017. Plant secondary metabolites in nectar: impacts on pollinators and ecological functions [J]. Funct Ecol, 31(1): 65-75.
-
TAN YH, LIU YN, JIANG H, et al. , 2015. Impatiens pandurata (Balsaminaceae), a new species from Yunnan, China [J]. Bot Stud, 56(1): 1-6.
-
TIAN JP, LIU KM, HU GW, 2004. Pollination ecology and pollination system of Impatiens reptans (Balsaminaceae) endemic to China [J]. Ann Bot, 93: 167-175.
-
TOKUDA N, HATTORI M, ABE K, et al. , 2015. Demonstration of pollinator-mediated competition between two native Impatiens species, Impatiens noli-tangere and I. textori (Balsaminaceae) [J]. Ecol Evol, 5(6): 1271-1277.
-
VANDELOOK F, JANSSENS SB, GIJBELS P, et al. , 2019. Nectar traits differ between pollination syndromes in Balsaminaceae [J]. Ann Bot, 124(2): 269-279.
-
VARASSIN IG, TRIGO JR, SAZIMA M, 2001. The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil [J]. Bot J Linn Soc, 136(2): 139-152.
-
VERVOORT A, CAWOY V, JACQUEMART AL, 2011. Comparative reproductive biology in co-occurring invasive and native Impatiens species [J]. Int J Plant Sci, 172(3): 366-377.
-
WALLER DM, 1980. Environmental determinants of outcrossing in Impatiens capensis (Balsaminaceae) [J]. Evolution, 34(4): 747-761.
-
WANG JS, LU YF, XU YL, et al. , 2020. Impatiens wuyiensis (Balsaminaceae), a new species from Fujian of Southeast China, based on morphological and molecular evidences [J]. Bot Stud, 61(1): 1-12.
-
WANG Q, LI YX, PU XZ, et al. , 2013. Pollinators and nectar robbers cause directional selection for large spur circle in Impatiens oxyanthera (Balsaminaceae) [J]. Plant Syst Evol, 299(7): 1263-1274.
-
WILLMER P, 2011. Pollination and floral ecology [M]. Princeton: Princeton University Press.
-
WILSON P, 1995. Selection for pollination success and the mechanical fit of Impatiens flowers around bumblebee bodies [J]. Biol J Linn Soc, 55(4): 355-383.
-
WILSON P, THOMSON JD, 1991. Heterogeneity among floral visitors leads to discordance between removal and deposition of pollen [J]. Ecology, 72(4): 1503-1507.
-
XIAO LX, 2009. Studies on pollination biology of four Impatiens L. plants [D]. Changsha: Hunan Normal University. [肖乐希, 2009. 四种凤仙花属(Impatiens L. )植物的传粉生物学研究 [D]. 长沙: 湖南师范大学. ]
-
XIAO LX, LIU KM, 2009. Floral traits and pollination system of Impatiens chinensis (Balsaminaceae) [J]. Bull Bot Res, 29(2): 164-168. [肖乐希, 刘克明, 2009. 华凤仙花部特征和传粉系统研究 [J]. 植物研究, 29(2): 164-168. ]
-
YU SX, 2012. Chinese Impatiens [M]. Beijing: Peking University Press: 1-215. [于胜祥, 2012. 中国凤仙花 [M]. 北京: 北京大学出版社: 1-215. ]
-
YU SX, JANSSENS SB, ZHU XY, et al. , 2016. Phylogeny of Impatiens (Balsaminaceae): integrating molecular and morphological evidence into a new classification [J]. Cladistics, 32(2): 179-197.
-
YUAN TH, CHEN Y, YU S, et al. , 2022. Impatiens liupanshuiensis (Balsaminaceae), a new species from Guizhou, China [J]. PhytoKeys, 192: 37-44.
-
YUAN YM, SONG YI, GEUTEN K, et al. , 2004. Phylogeny and biogeography of Balsaminaceae inferred from ITS sequences [J]. Taxon, 53(2): 391-404.
-
ZHONG YF, ZHANG Z, SONG XQ, et al. , 2014. Pollination biology of Impatiens hainanensis (Balsaminaceae) populations at different altitudes [J]. Biodivers Sci, 22(4): 467-475. [钟云芳, 张哲, 宋希强, 等, 2004. 海南凤仙花不同海拔种群的传粉生物学 [J]. 生物多样性, 22(4): 467-475. ]
-
ZHOU ZL, LI ZJ, GONG WJ, et al. , 2005. Study on flowering biological characteristics of Populus euphratica and Populus euphratica [J]. J Wuhan Bot Res, 23 (2): 163-168. [周正立, 李志军, 龚卫江, 等, 2005. 胡杨、灰叶胡杨开花生物学特性研究 [J]. 武汉植物学研究, 23(2): 163-168. ]
-
摘要
中国是凤仙花属物种多样性分布中心之一,存在着大量的特有和同域分布现象。为更好地理解同域分布近缘种的传粉综合征分化以及传粉昆虫资源分配问题,该文以中国特有种黄麻叶凤仙花(Impatiens corchorifolia)和金凤花(I. cyathiflora)为研究对象,通过野外调查和实验完成传粉生物学的相关研究,比较分析了这两个种的开花物候、花形态结构、传粉昆虫的种类及访花行为和人工授粉实验等方面的异同。结果表明:(1)两种凤仙花的花距不同,花距的长度与花蜜量呈正比,但与花蜜含糖量无关。花距类型决定了两种植物的传粉昆虫种类的分化。具短花距的黄麻叶凤仙花的花蜜含量为(4.57±1.43) μL,花蜜糖含量为(45.48±2.28)%,由蜜蜂和胡蜂为其传粉。拥有长花距的金凤花的花蜜含量为(10.15±3.28) μL,花蜜糖含量为(46.12±1.48)%,除蜜蜂和胡蜂传粉外,天蛾和熊蜂也为其传粉昆虫。(2)两种植物虽然共享3种传粉者,但表现为明显的错峰访花,传粉行为和花通道的差异决定了传粉者携带花粉的部位不一致。(3)繁育系统实验表明,两种植物均表现出明显的种间杂交障碍和异花授粉偏好性。因此,花距形态差异显著导致了传粉综合征分化明显和传粉昆虫行为各异。两种植物授粉均需要传粉昆虫且均无法自花授粉,呈现异交优势;并且可以通过部分传粉昆虫、花形态差异以及杂交不亲和等情况维持生殖隔离。该研究结果为理解凤仙花属的传粉综合征、同域分布近缘物种传粉昆虫资源分配等方面提供了新资料。
Abstract
The genus Impatiens exhibits some varied floral features with a dichogamous reproductive system, in which pollination biology plays a key role in speciation and adaptive evolution. China is one of the centers of Impatiens species, including a large number of endemic and sympatric distributions, but there are few data on their pollination biology. Comparative pollination biology of two Chinese endemic and sympatric species, Impatiens corchorifolia and I. cyathiflora, were investigated, including flowering phenology, floral features, pollinators, behavior of pollinators, and as well as breeding systems. The results were as follows: (1) Morphology of spur was varied in two species, which played a key role in different floral syndromes. The spurs in I. corchorifolia and I. cyathiflora could produced a similar nectar sugar content, (45.48 ± 2.28)% and (46.12 ± 1.48)%, respectively. They could share two pollinators, Apis cerana and Vespa. However, the short spur in I. corchorifolia produced less amount of (4.57 ± 1.43) μL nectar while the long spur in I. cyathiflora yielded more nectar content of (10.15 ± 3.28) μL. And then, the latter also could be pollinated by the other insects including one species of Macroglossum and two species of Bombus. (2) The behavior of the common pollinators shared in I. corchorifolia and I. cyathiflora were obviously distinguished by their staggered flower visits and differential sizes of flower channels for visitors with inconsistent positions of pollens carried. (3) Breeding system experiments showed that species possessed obvious hybridization barriers and obvious cross-pollination. Thus, significant differences in spur morphology lead to distinct pollination syndrome differentiation and different pollinator behavior. Both species prefer cross-pollination to self-fertiliation, which greatly depend on the effective pollinators. Reproductive isolation could be maintained by different flower visiting behavior of shared pollinators, differences in floral morphology, and heterozygous discordance. It provides new evidence for a better understanding the relationships between pollination syndrome, pollinators behavior, and cross-breeding stystem in Impatiens.