-
植物繁育系统已成为生态学和进化生物学研究中最为活跃的领域之一,通常是指代表所有影响后代遗传组成的有性特征(Wyatt,1983)。花的形态特征、开放式样、花各部位的寿命、传粉者种类和频率、自交亲和程度和交配系统等都与其繁育系统密切相关(何亚平和刘建全,2003;曹孟会等,2022)。在长期进化过程中,被子植物为了适应不良传粉环境及保障繁殖成功,进化出了多种多样的花部特征(Spigler &Kalisz,2013)。这些特征影响其对传粉者的吸引、花粉传播、传粉者访花行为、自花/异花授粉程度以及雌雄适合度,进而影响植物的交配格局和种群扩散能力(Barrett &Harder,1996;张大勇,2004)。已有的研究表明,繁育系统作为连接植物有性繁殖的桥梁,不仅在决定植物遗传多样性及遗传结构上起着重要作用(Loveless &Hamrick,1984),还对物种的表型变异和进化路线至关重要(Wyatt,1983;张大勇,2004;曹孟会等,2022)。因此,植物繁育系统及其多样化的研究对揭示植物各类群进化、探讨物种的形成、种群扩张及对环境的适应具有重要意义(戴国礼等,2013)。
-
鸢尾科(Iridaceae)是被子植物单子叶植物纲中种类较多的一个科,共有77属1 630余种,主要分布于热带亚热带及温带、非洲南部、热带美洲及欧洲地中海等地区(Goldblatt,1990;黄威廉,2014)。我国共有11属71种,其中新疆有5个属(崔乃然等,1996)。该科植物大多是优良的宿根花卉资源,不仅具有很高的观赏价值,还具有重要的药用、食用及经济价值(Rahmani et al.,2017;翁慧琳等,2018)。此外,鸢尾科植物的生长环境比较复杂,大多数物种生长在干旱、半干旱荒漠环境中或山地林缘、湿地和岛屿等地(Scott &Panetta,1993;郭彩霞等,2011),从而造成复杂多样化的繁育系统。目前,国际上对该科植物的繁殖生态学研究主要集中在开花生物学(Tarasjev,1997;尚方剑和王玲,2014)、花部综合征(Ascough et al.,2011;黄威廉,2014)、传粉者种类和传粉机制(Goldblatt &Manning,2006;Watts et al.,2013)以及交配系统(Ishii &Sakai,2001;张洋和谭敦炎,2009;Paula et al.,2018)等方面。这些研究表明,该科植物具有开花时间较长、花部形态特殊、传粉策略和交配系统多样化等特点,是研究植物繁殖特性的理想类群。因此,这些类群繁殖特性的研究,不仅可以解释该科植物的生活史特征、环境适应等繁殖特性,还可为我国鸢尾科植物的栽培育种及物种保护提供重要的理论依据。
-
膜苞鸢尾(Iris scariosa)为鸢尾科鸢尾属(Iris L.)的多年生春季开花植物,主要分布在哈萨克斯坦、俄罗斯、西伯利亚地区和中国新疆(崔乃然等,1996)。在新疆,该物种主要分布于阿勒泰、塔城、哈密、伊宁等地区海拔520~1 500 m的前山干旱石质山坡、林间草地和山间冲积砾石堆等地(崔乃然等,1996)。其花较大,花被裂片为6瓣,内外排成2轮,每轮3瓣,呈交互辐射状,雄蕊3枚,乳白色,基部和外轮花被片合生,花药位于花柱外侧,紧贴着花柱分枝,具有特殊的花部形态和观赏价值,是选育优良观赏花卉的重要种质资源。目前,对膜苞鸢尾的研究主要集中在抗炎活性(卞娅等,2018;常利华等,2020)、化学成分(杨阳等,2013,2020)以及种子休眠与萌发特性等方面(张云等,2016),而有关其繁殖生物学特性的研究还少见报道(马玉梅等,2017)。为此,本研究通过对该物种开花物候、花部综合征、传粉特性及繁育系统进行了详细研究,旨在探讨以下问题:(1)该物种的开花物候有何特点;(2)其花部形态特征和开花过程如何;(3)该物种的繁育系统属于哪种类型;(4)其传粉特性有何特点,花被片上的须毛对传粉者访花有何影响。通过此研究,以期为该物种的人工繁殖和产业化生产提供科学依据。
-
1 材料与方法
-
1.1 地点和材料
-
研究地点位于新疆乌鲁木齐市西郊新疆农业大学实验地,地理坐标为87°32′24.7″ E、43°48′55.4″ N,海拔850 m,属于准噶尔盆地南缘的天山前山带冲积扇平原,所处区域的年最低气温-32.8℃(1月),最高气温40.5℃(7月),年均降水量234 mm,年均蒸发量达2 219 mm(吉乃提汗·马木提等,2018)。
-
膜苞鸢尾植株由地下根状茎、基生叶、花序和花等部分组成。该物种一般在每年3月中旬萌芽,4月底至5月初为始花期,5月中旬进入盛花期,5月下旬为末花期,6—7月为果实成熟,果实为蒴果。
-
1.2 研究方法
-
1.2.1 开花物候与花期的温湿度检测
-
在观测点随机设置了3个1 m × 1 m的样方,自开花当日起,每日观察记录各样方内的总开花数,计算出始花期、盛花期和末花期的开始时间和持续时间。同时用EL-USB-2温湿度记录仪(Lascar、中国)检测膜苞鸢尾花期环境的温湿度。
-
1.2.2 花部综合征和开花过程
-
随机选取10个处于盛花期的植株,在每个植株上随机标记1朵完全开放的花,观察其颜色、有无气味和花蜜,用电子数显卡尺(桂州广陆数字测控有限公司,桂林,中国)测量花大小、内外花被片大小、雌雄蕊长度(包括花丝、花药、子房和花柱长、宽度)等。此外,在10个处于盛花期的植株上各标记1朵即将开放的花(共10朵花),将各花中未散粉的花药放入5 mL的EP管中捣碎,加入FAA 定容至5 mL,每次取5 μL 涂片置于Olympus BH-2 型光学显微镜( Olympus Cor.,Tokyo,Japan)下统计花粉数n,每花重复5次。每花的花粉数N=n×1 000。在测量花粉数的同时,将子房用解剖针划开,在解剖镜下统计胚珠数。
-
在盛花期,随机标记10个即将开花的花苞,观测单花开花过程、每天开花和闭合时间及单花开放持续时间(单花寿命)等情况。
-
1.2.3 花粉活力和柱头可授性
-
花粉活力检测参考Dafni等(2005)的方法。在盛花期标记即将开放的花并套袋至单花花期结束。自花开放起,每12 h从不同植株中选取10朵花的花药,充分混合均匀之后,取少量花粉置于一张载玻片上经过高温灭活后用0.5%四甲基偶氮唑盐(MTT)染色作为对照,其余花粉直接加入1 μL的MTT在常温下染色10 min后置于Olympus BH-2型光学显微镜下观察,着色花粉呈紫黑色为有活力,未着色呈黄色为无活力。每制片随机选择6个视野并统计着色花粉粒和花粉粒总数目,计算具有活性花粉的百分比。在测定花粉活力的同时,将每朵花的花柱分别侵入MTT染液中检测柱头可授性,若柱头被染色表明具有可授性,未被染色则无可授性。
-
1.2.4 人工授粉实验
-
于盛花期随机选择生长势良好的25个植株,在每一个植株上标记3朵花,将75朵花分成5组(每组15朵),并进行如下处理:①自然授粉,检测自然条件下的授粉结实、结籽情况(对照,NP);②不去雄直接套袋,检测是否存在自主自花授粉(FB);③去雄后套袋,检测是否存在无融合生殖(BE);④去雄后人工自花授粉,检测自交是否亲和(ASP);⑤去雄后人工授异株异花花粉,检测异交情况(ACP)。待所有处理的花授粉完成或开始结实后摘取纸袋,在果实成熟且尚未开裂时检测各处理的结实、结籽率。
-
1.2.5 传粉特性
-
在膜苞鸢尾盛花期的3个晴朗的天气里,每天在10个植株上各随机标记3个即将开放的花(共30朵),并在每天10: 00—18: 00连续观察,详细记录访花昆虫种类和访花行为,并计算其访花频率(times·flower-1·h-1)。为避免观测者对访花昆虫的干扰,所有观测均保持1 m以上的观测距离。同时,用便携式温湿度仪在距地面约50 cm处(与植株高度一致)观测温湿度,并记录每天天气状况,分析昆虫活动与天气变化的关系。此外,观察结束后捕捉每种访花昆虫5只带回实验室制成标本进行种类鉴定。
-
1.2.6 须毛对传粉者访花的影响
-
在盛花期,从15个植株上各随机标记1个即将开放的花(共15朵)在不损伤外花被片的情况下,轻轻刮掉外花被片上的须毛,并在3个晴朗的天气里,自早晨花开放时起,连续观察传粉昆虫的种类及其访花行为、每小时内传粉者在每朵花上的访花次数,并计算其访花频率。
-
1.3 数据分析
-
数据采用SPSS 22.0统计软件对数据进行分析,广义线性模型(generalized linear model,GLM)中的正态分布模型-恒定函数用于比较须毛对传粉者访花频率的影响。采用GLM二项式分布-Logistic关联函数来比较不同授粉处理下的结实结籽率。所有统计数据用平均值±标准误差表示,使用Sigma plot 14.0软件作图。
-
2 结果与分析
-
2.1 开花物候与花期的温湿度
-
在观测点,膜苞鸢尾5月5日进入始花期,5月10日进入盛花期,5月17日进入末花期,开花持续时间为16 d(图1)。该物种每天集中在清晨8: 00—12:00开花,盛花期集中在9: 00—10: 00,凋谢时间集中在17: 00—19: 00。膜苞鸢尾进入始花期时的环境温湿度分别为(12.44±0.28)℃ 和(58.73±2.49)%,随后随着温度的升高和相对湿度的缓慢下降,每天的开花数逐渐增多,在开花第6天到达开花盛花期,盛花期持续时间为4 d,呈现出同步开花现象,此时温度为(21.05±0.82)℃,相对湿度为(40.89±1.99)%(图1),此后开花速度明显下降。
-
图1 膜苞鸢尾日开花总数与花期环境平均温湿度变化
-
Fig.1 Total number of daily open flowers and mean daily temperature and relative humidity during anthesis of Iris scariosa
-
2.2 花部特征和开花过程
-
膜苞鸢尾的花两性,蓝紫色(图2: A,B),有特殊气味和少量花蜜;花冠直径为(53.97±2.20) mm,外轮花被片倒卵形,中脉上有黄色须毛状的附属物,内轮花被片倒披针形,花柱分枝为淡紫色,是一种具观赏价值的野生花卉。该物种的花部形态特征参数结果见表1。单花花粉数量为(59 042±3 184)粒,胚珠数为(52±4)个,花粉胚珠比(P/O比)为1 035.42。
-
膜苞鸢尾在晴朗天气里的早上8: 00开始开放。开花之前花苞先膨大(图3:C),花药和柱头无明显的分离现象; 开花时,一个外轮花被片开始绽开,随后两个外轮花被片同时绽开,呈向下弯折状,而内轮花被片仍旧缠绕着花柱分枝,随后内轮花被片逐渐开放(图3:D、E),单花开花过程需要(2.03±0.10) h,单花花期为(2.50±0.20) d。在开花过程中,雄蕊始终紧贴花柱外侧。完成授粉的花闭合时,内轮花被片和外轮花被片失水并向中心萎缩,柱头干枯卷曲(图3:F)。
-
图2 膜包鸢尾植株、单花、传粉者及果实
-
Fig.2 Plants, single flower, pollinator and fruits of Iris scariosa
-
2.3 花粉活力和柱头可授性
-
膜苞鸢尾在开花阶段花粉活力持续时间约为60 h,花药刚散粉时花粉活力可达(84.20±0.55)%,花粉释放48 h时50%以上的花粉具有活力,随后逐渐下降,60 h时花萎蔫花粉活力降至(28.26±3.79)%(图4)。
-
MTT试剂染色结果表明,膜苞鸢尾刚开花至开花36 h时柱头呈深紫色,表明处于最佳的可授期;至48 h柱头呈淡紫色,表明其可授性已降低;60 h时花萎蔫时柱头不被染色,表明其可授性丧失。
-
2.4 人工授粉实验
-
膜苞鸢尾不去雄套袋、去雄套袋和去雄授自花花粉处理下均不结实;该物种自然授粉和人工异株异花授粉处理下的结实率和结籽率显著高于其他3种处理(结实率:Wald-χ2=1 018.33,d. f.=4,P<0.001;结籽率:Wald-χ2 = 2 338.44,d. f. = 4,P<0.001),但自然授粉和人工异株异花授粉间不存在显著性差异(图5),说明膜苞鸢尾属于典型的异交繁育系统。
-
2.5 传粉特性
-
在开花期间,膜苞鸢尾的访花昆虫主要有意大利蜜蜂(Apis mellifera)(图1:C)、中华蜜蜂(A. cerana)、隧蜂(Halictus sp.)、苍蝇(Muscidae)和菜粉蝶(Pieris rapae)等。其中,意大利蜜蜂、中华蜜蜂和隧蜂体表均携带膜包鸢尾的花粉,而苍蝇和蝴蝶体表上并未观察到该物种的花粉。可见,意大利蜜蜂、中华蜜蜂和隧蜂均为传粉昆虫。在晴朗天气里,意大利蜜蜂访花频率最高,为(0.57±0.05) times·flower-1·h-1,中华蜜蜂次之,为(0.42±0.04) times·flower-1·h-1,隧蜂最低,为(0.19±0.03) times·flower-1·h-1(图6:A)。
-
图3 膜包鸢尾开花过程
-
Fig.3 The flowering process of Iris scariosa
-
图4 膜包鸢尾花粉活力动态曲线(平均值±标准误差)
-
Fig.4 Dynamic curve of pollen viability of Iris scariosa ()
-
在观测点,意大利蜜蜂和中华蜜蜂的日活动时间集中在10: 00—17: 00,隧蜂出现在11: 00—16: 00时。意大利蜜蜂和中华蜜蜂在10: 00 时开始频繁地出现,活动最早,而隧蜂在11: 00时开始活动,12: 00—15: 00时环境温度较高,传粉昆虫活动较为活跃,说明这些传粉者活动和访花频率与其环境温度密切相关(图6:B)。
-
2.6 须毛对传粉者访花的影响
-
从日总访花频率来看,在每日不同时间段,传粉昆虫在具须毛花(完整花)的总访花频率均显著高于去须毛花(P<0.05)(图7),并且传粉昆虫在无须毛花朵上出现时间为11: 00—16: 00。传粉昆虫在具须毛花朵上一次访问停留的时间通常为5~15 s,有时可达20 s,但停留在去须毛花上的时间通常小于5 s。
-
图5 不同授粉处理下膜苞鸢尾的结实率和结籽率
-
Fig.5 Fruit set and seed set of Iris scariosa under different pollination treatments
-
3 讨论与结论
-
花是被子植物的繁殖器官,其主要功能是进行有性繁殖(刘德鑫等,2022)。开花特性是影响植物适合度的重要因子之一,主要包括开花数、开花时间和开花持续时间等,它不仅影响个体和种群的繁殖成功(Wu et al.,2021),还影响与传粉者的数量、种类和访花行为等(Weiss,1991;戴攀峰和谭敦炎,2011)。植物的开花特性往往受到光照和温度等非生物因子的影响(何亚平等,2005)。在新疆北部干旱环境中,由于受冬季低温和融雪时间的影响,大多数植物的开花时间集中在融雪后的春季或夏季。在本文中,膜苞鸢尾在积雪消融后的5月初开花,此时气温均高于10℃,相对湿度均低于60%,为该物种的开花结实提供了良好的环境条件。该物种进入盛花期前,样方内每天的开花数目随着温度的升高和相对湿度的缓慢下降而增多,在开花第6天到达开花盛花期,盛花期持续时间为4 d,随后开花速度明显下降,并呈现了同步开花现象。根据Gentry(1974)的观点,该开花模式称为“集中开花模式”(mass-flowering pattern),这有利于在相对集中的开花期内快速增大花展示吸引更多的传粉者访花并增加其异交的机会(张丽芳和裘利洪,2017;叶家桐等,2022)。该结果与Szöllösi等(2011)对鸢尾属植物Iris sibirica的研究结果一致。因此,膜苞鸢尾的开花特性更有利于其对不良环境的适应。
-
图6 传粉昆虫访花频率及环境温度与湿度日变化曲线
-
Fig.6 Daily visiting frequency of pollinators of Iris scariosa and diurnal variation curves of temperature and relative humidity during observation periods
-
图7 传粉昆虫访问膜苞鸢尾具须毛和去须毛花的频率
-
Fig.7 Visiting frequency by pollinator in flowers with and without beard of Iris scariosas
-
花部综合征是植物在长期进化过程进化而表现出的对传粉者的适应对策(Goodwillie et al.,2010),主要包括花设计和花展示,其中花设计是指花结构、颜色、气味和给访花者提供的报酬等特征;而花展示是花在某一时刻开放的数量和在花序上的排列方式、花开放速度及花寿命等(张大勇,2004;哈里布努尔等,2022)。在传粉过程中,花色的唯一目的就是吸引传粉者(张大勇,2004)。通常认为,颜色明亮的花对传粉者的吸引能力更强(Sobrevila et al.,1989)。花大小作为植物向传粉者提供的视觉信号,在传粉者吸引中起着重要作用(张伟等,2019)。膜苞鸢尾花蓝紫色,花冠直径较大(约6 cm),花柱3裂并特化成花瓣状,进一步增大了单花的花展示,为传粉者访花提供登陆平台且具有气味和花蜜等报酬。此外,外花被片上具有须毛状附属物,这些特点可吸引传粉者并提高传粉者的访花频率,从而增加该物种成功传粉的机会。这与张伟等(2019)认为西南鸢尾(I. bulleyana)特殊花部特征是一种吸引传粉者的重要视觉信号观点基本相似。此外,膜苞鸢尾单花寿命为2.5~3.0 d,先开花后散粉,其花粉活力和柱头可授性的持续时间较长且花粉最高活力期和柱头最佳可授期基本吻合,有利于花粉的输出以及柱头接受花粉,可保障其授粉成功(Harder &Wilson,1994;王丽和谭敦炎,2011)。总之,该物种花具有的鲜艳颜色、较大的花展示、特殊的花部结构、给传粉者提供的报酬以及高度同步的花粉活力和柱头可授期等特点是为了保障繁殖成功进化出的花部综合征。
-
异交是可避免因自交导致的近交衰退,以提高种子质量、子代适合度和遗传多样性的有性繁殖策略(彭德力等,2012)。从人工授粉实验结果看,膜苞鸢尾不去雄套袋、去雄套袋和去雄授自花花粉处理下均不结实,说明其不存在无融合生殖和自主自交机制且自交不亲和,属于专性异交的繁育系统。在鸢尾属中许多物种是自交不亲和,如I. bismarckiana (Segal et al.,2006)以及Oncocyclus 组中的I. atropurpurea、I. hermona 和I. haynei等(Sapir et al.,2005)。该物种有性繁殖的过程中自交不亲和可以避免近交衰退,促进异交以提高雌性适合度(Fornoni et al.,2016;Fachinetto et al.,2018)。该结果与Watts等(2013)对I. atropurpurea繁育系统的研究结果一致,但与分布于北美东北部的自交亲和物种变色鸢尾(I. versicolor)不同,该物种具有种类丰富的传粉昆虫,不仅能进行异交,还能通过风媒进行自花授粉(Kron et al.,1993)。此外,膜包鸢尾自然授粉和异株异花授粉处理花的结实结籽率间均不存在显著性差异,说明该物种在自然状态下不存在花粉限制。由此可见,膜苞鸢尾为了保障繁殖成功,在繁殖特性上进化出了异交繁育系统,这可能与其特殊的花部特征有关。
-
传粉是开花植物有性繁殖过程中的一个重要环节,由于开花植物固着生长,其花粉传递需要一定的传粉媒介来完成,这些媒介主要包括动物、风及水等(张大勇,2004)。有关研究表明,地球上约87.5%的有花植物依赖动物来传递花粉(Ollerton et al.,2011)。鸢尾属的大多数植物具有典型的动物传粉特征,即花形复杂、花色多变、常含丰富的花部报酬等。这些特征能够吸引更多传粉者的访问(张伟等,2019),并促进异交繁殖成功。意大利蜜蜂、中华蜜蜂和隧蜂是膜苞鸢尾的主要传粉昆虫,说明该物种具有泛化的传粉系统,可接受多种传粉者的访问。该传粉策略可增加植株被传粉的次数,以避免繁殖失败(Suzuki et al.,2007)。这与张伟等(2019)报道的鸢尾属中许多物种的传粉系统相一致。已有研究表明,传粉昆虫的种类、数量、行为和频率与光照、温度、风速、阴雨天气等环境因子密切相关(Pellissier et al.,2010;胡红岩等,2012)。在本文中,意大利蜜蜂和中华蜜蜂通常在10: 00开始访问花,而隧蜂在11: 00开始访问花,前者的开始访花时间早于后者,这可能与传粉昆虫的生活习性有关。从传粉昆虫日活动特点看,在晴朗天气里,膜苞鸢尾的3种传粉昆虫在12: 00—15: 00环境温度较高且湿度较低时活动最为活跃,说明这些传粉者活动与其环境温湿度密切相关。此外,本文研究表明,去花须毛后传粉者访花频率及停留时间均显著降低,这可能与膜苞鸢尾外花被片中脉上的黄色须毛状附属物可为传粉者进入花冠内的传粉通道提供更精准的视觉信号指引,以提高访花频率有关(Olvera et al.,2008;张伟等,2019)。
-
参考文献
-
BARRETT SCH, HARDER LD, 1996. Ecology and evolution of plant mating [J]. Trends Ecol Evol, 11: 73-79.
-
BIAN Y, LIU MS, ZHANG LY, et al. , 2018. Determination of six active ingredients in different parts of Belamcanda chinensis and Iris tectorum and their anti-inflammatory activity [J]. Chin J Chin Mat Med, 43(1): 119-122. [卞娅, 刘孟生, 张丽媛, 等, 2018. 射干、鸢尾不同部位6种活性成分定量分析及抗炎作用初探 [J]. 中国中药杂志, 43(1): 119-122. ]
-
CAO MH, ZHAO QY, WEI CM, et al. , 2022. Study on the flowering traits and breeding systems of three Impatiens species [J]. Plant Sci J, 40(3): 291-301. [曹孟会, 赵秋燕, 魏春梅, 等, 2022. 凤仙花属3种植物的开花性状和繁育系统研究 [J]. 植物科学学报, 40(3): 291-301. ]
-
CHANG LH, NAN XZ, ZHANG MR, et al. , 2020. Evaluation of anti-inflammatory activity of different polar parts of Iris scariosa Willd [J]. Biol Chem Eng, 6(4): 97-99. [常利华, 南禧辰, 张曼瑞, 等, 2020. 膜苞鸢尾不同极性部位的抗炎活性研究 [J]. 生物化工, 6(4): 97-99. ]
-
CUI NR, CUI DF, LIU GJ, et al. , 1996. Flora Xinjiang: Vol. 6. [M]. Urumqi: Xinjiang Sciences Technology & Hygiene Publishing House: 562-579. [崔乃然, 崔大方, 刘国钧, 等, 1996. 新疆植物志: 第6卷. [M]. 乌鲁木齐: 新疆科技卫生出版社: 562-579. ]
-
DAFNI A, KEVAN PG, HUSBAND BC, 2005. Practical pollination biology [M]. Cambridge: Enviroquest Ltd: 130-141.
-
DAI GL, QIN K, CAO YL, et al. , 2013. Characteristics of floral dynamic and breeding system of Lycium ruthenicum [J]. Guihaia, 33(1): 126-132. [戴国礼, 秦垦, 曹有龙, 等, 2013. 黑果枸杞的花部结构及繁育系统特征 [J]. 广西植物, 33(1): 126-132. ]
-
DAI PF, TAN DY, 2011. Floral biological characteristics of Saussurea involucrate in relation to ecological adaptation [J]. Chin J Plant Ecol, 35(1): 56-65. [戴攀峰, 谭敦炎, 2011. 雪莲的开花生物学特性及其生态适应意义 [J]. 植物生态学报, 35(1): 56-65. ]
-
FACHINETTO J, KALTCHUK SE, INACIO CD, et al. , 2018. Multidisciplinary approaches for species delimitation in Sisyrinchium (Iridaceae) [J]. Plant Spec Biol, 33(1): 3-15.
-
FORNONI J, ORDANO M, PEREZ-ISHIWARA R, et al. , 2016. A comparison of floral integration between selfing and outcrossing species: a meta-analysis [J]. Ann Bot, 117(2): 299-306.
-
GENTRY AH, 1974. Flowering phenology and diversity in tropical Bignoniaceae [J]. Biotropica, 6(1): 64-68.
-
GOLDBLATT P, 1990. Phylogeny and classification of Iridaceae [J]. Ann Mo Bot Gard, 77(4): 607-627.
-
GOLDBLATT P, MANNING JC, 2006. Radiation of pollination systems in the Iridaceae of sub Saharan Africa [J]. Ann Bot, 97: 317-344.
-
GOODWILLIE C, SARGENT RD, ECKERT CG, et al. , 2010. Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation [J]. New Phytol, 185: 311-321.
-
GUO CX, CHEN LQ, TAN Q, et al. , 2011. Introduction experiment of several Iris in Wuhan [J]. J Anhui Agric Sci, 39(2): 731-733. [郭彩霞, 陈龙清, 谭庆, 等, 2011, 几种鸢尾属植物在武汉地区的引种试验 [J]. 安徽农业科学, 39(2): 731-733. ]
-
HALIBUNUER, ABDUKIRIM G, MAIMAITITUERXUN R, et al. , 2022. Flower syndrome and pollination characteristics of two flower morphs in Lycium ruthenicum (Solanaceae) [J]. Chin J Plant Ecol, 46(9): 1050-1063. [哈里布努尔, 古丽扎尔·阿不都克力木, 热依拉穆·麦麦提吐尔逊, 等, 2022. 黑果枸杞两种花型的花部综合征与传粉特性 [J]. 植物生态学报, 46(9): 1050-1063. ]
-
HARDER LD, WILLSON WG, 1994. Floral evolution and male reproductive success: optimal dispensing schedules for pollen dispersal by animal-pollinated plants [J]. Evol Ecol, 8: 542-559.
-
HE YP, FEI SM, LIU JQ, et al. , 2005. A preliminary review of studies of alpine plant breeding system [J]. J Sichuan Agric Sci Technol, 26(4): 43-49. [何亚平, 费世民, 刘建全, 等, 2005. 高山植物繁育系统研究进展初探 [J]. 四川林业科技, 26(4): 43-49. ]
-
HE YP, LIU JQ, 2003. A review on recent advances in the studies of plant breeding system [J]. Acta Pharmacol Sin, 27(2): 151-163. [何亚平, 刘建全, 2003. 植物繁育系统研究的最新进展和评述 [J]. 植物生态学报, 27(2): 151-163. ]
-
HU HY, CHEN H, XU HL, 2012. Main pollinators and their foraging behaviors on a sand-fixing legume, Thermopsis lanceolata, in Mu Us Sandland [J]. Biodivers Sci, 20(3): 354-359. [胡红岩, 陈欢, 徐环李, 2012. 毛乌素沙地固沙植物披针叶黄华主要传粉昆虫及其访花行为 [J]. 生物多样性, 20(3): 354-359. ]
-
HUANG WL, 2014. The classification of tribus genus and geographic distribution of world Iridaceae [J]. Guizhou Sci, 32(2): 16-30. [黄威廉, 2014. 鸢尾科植物族属分类及地理分布 [J]. 贵州科学, 32(2): 16-30. ]
-
ISHII HS, SAKAI S, 2001. Implications of geitonogamous pollination for floral longevity in Iris gracilipes [J]. Funct Ecol, 15: 633-641.
-
KRON P, STEWART SC, BACK A, 1993. Self-compatibility, autonomous self-pollination, and insect-mediated pollination in the clonal species, Iris versicolor [J]. Can J Bot, 71(11): 1503-1509.
-
LIU DX, WANG QF, YANG CF, 2022. Flower diversity and pollination strategy in Araceae [J]. Biodivers Sci, 30(3): 21426. [刘德鑫, 王青锋, 杨春锋, 2022. 天南星科植物的花多样性与传粉策略 [J]. 生物多样性, 30(3): 21426. ]
-
LOVELESS MD, HAMRICK JL, 1984. Ecological determinants of genetic structure in plant populations [J]. Ann Rev Ecol Syst, 15: 65-95.
-
MAMUT J, CHENG XJ, TAN DY, 2018. Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb [J]. Biodivers Sci, 26(5): 498-509. [吉乃提汗·马木提, 成小军, 谭敦炎, 2018. 荒漠短命植物异喙菊的小花异形性及繁殖特性 [J]. 生物多样性, 26(5): 498-509. ]
-
MA YM, ZHANG Y, QIN JY, et al. , 2017. Pollen morphology, viability and stigma receptivity of Iris scariosa Willd [J]. Xinjiang Agric Sci, 54(1): 110-116. [马玉梅, 张云, 秦景逸, 等, 2017. 膜苞鸢尾花粉形态、活力与柱头可授性研究 [J]. 新疆农业科学, 54(1): 110-116. ]
-
OLLERTON J, WINFREE R, TARRANT S, 2011. How many flowering plants are pollinated by animals? [J]. Oikos, 120: 321-326.
-
OLVERA HF, SMETS E, VRIJDAGHS A, 2008. Floral and inflorescence morphology and ontogeny in Beta vulgaris, with special emphasis on the ovary position [J]. Ann Bot, 102(4): 643-651.
-
PAULA B, TATIANA SC, OLIVIER H, et al. , 2018. Cytological and genome size data analyzed in a phylogenetic frame, evolutionary implications concerning Sisyrinchium taxa (Iridaceae, Iridoideae) [J]. Genet Mol Biol, 41: 288-307.
-
PELLISSIER L, POTTIER J, VITTOZ P, 2010. Spatial pattern of floral morphology: possible insight into the effects of pollinators on plant distributions [J]. Oikos, 119: 1805-1813.
-
PENG DL, ZHANG ZQ, NIU Y, et al. , 2012. Advances in the studies of reproductive strategies of alpine plants [J]. Biodivers Sci, 20(3): 286-299. [彭德力, 张志强, 牛洋, 等, 2012. 高山植物繁殖策略的研究进展 [J]. 生物多样性, 20(3): 286-299. ]
-
RAHMANI AH, KHAN AA, ALDEBASI YH, 2017. Saffron (Crocus sativus) and its active ingredients, role in the prevention and treatment of disease [J]. Pharmacogn J, 9(6): 873-879.
-
SAPIR Y, SHMIDA A, NE′EMAN G, 2005. Pollination of Oncocyclus irises (Iris: Iridaceae) by night-sheltering male bees [J]. Plant Biol, 7(4): 417-424.
-
SCOTT JK, PANETTA FD, 1993. Predicting the Australian weed status of southern African plants [J]. J Biogeogr, 20: 87-93.
-
SEGAL B, SAPIR Y, CARMEL Y, 2006. Fragmentation and pollination crisis in the self-incompatible Iris bismarckiana (Iridaceae), with implications for conservation [J]. Isr J Ecol Evol, 52(2): 111-122.
-
SHANG FJ, WANG L, 2014. Biological characteristics of flowering and pollination of Iris sanguinea [J]. Pratac Sci, 31(5) : 892-897. [尚方剑, 王玲, 2014. 溪荪开花及传粉生物学特性 [J]. 草业科学, 31(5): 892-897. ]
-
SOBREVIL AC, WOLFE LM, MURCIA C, 1989. Flower polymorphism in the beach plant, Ipomoea imperati (Vahl. ) Grisebach (Convolvulaceae) [J]. Biotropica, 21: 84-88.
-
SPIGLER RB, KALISZ S, 2013. Phenotypic plasticity in mating system traits in the annual Collinsia verna [J]. Botany, 91: 597-604.
-
LIU DX, WANG QF, YANG CF, 2022. Flower diversity and pollination strategy in Araceae [J]. Biodivers Sci, 30(3): 21426. [刘德鑫, 王青锋, 杨春锋, 2022. 天南星科植物的花多样性与传粉策略 [J]. 生物多样性, 30(3): 21426. ]
-
LOVELESS MD, HAMRICK JL, 1984. Ecological determinants of genetic structure in plant populations [J]. Ann Rev Ecol Syst, 15: 65-95.
-
MAMUT J, CHENG XJ, TAN DY, 2018. Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb [J]. Biodivers Sci, 26(5): 498-509. [吉乃提汗·马木提, 成小军, 谭敦炎, 2018. 荒漠短命植物异喙菊的小花异形性及繁殖特性 [J]. 生物多样性, 26(5): 498-509. ]
-
MA YM, ZHANG Y, QIN JY, et al. , 2017. Pollen morphology, viability and stigma receptivity of Iris scariosa Willd [J]. Xinjiang Agric Sci, 54(1): 110-116. [马玉梅, 张云, 秦景逸, 等, 2017. 膜苞鸢尾花粉形态、活力与柱头可授性研究 [J]. 新疆农业科学, 54(1): 110-116. ]
-
OLLERTON J, WINFREE R, TARRANT S, 2011. How many flowering plants are pollinated by animals? [J]. Oikos, 120: 321-326.
-
OLVERA HF, SMETS E, VRIJDAGHS A, 2008. Floral and inflorescence morphology and ontogeny in Beta vulgaris, with special emphasis on the ovary position [J]. Ann Bot, 102(4): 643-651.
-
PAULA B, TATIANA SC, OLIVIER H, et al. , 2018. Cytological and genome size data analyzed in a phylogenetic frame, evolutionary implications concerning Sisyrinchium taxa (Iridaceae, Iridoideae) [J]. Genet Mol Biol, 41: 288-307.
-
PELLISSIER L, POTTIER J, VITTOZ P, 2010. Spatial pattern of floral morphology: possible insight into the effects of pollinators on plant distributions [J]. Oikos, 119: 1805-1813.
-
PENG DL, ZHANG ZQ, NIU Y, et al. , 2012. Advances in the studies of reproductive strategies of alpine plants [J]. Biodivers Sci, 20(3): 286-299. [彭德力, 张志强, 牛洋, 等, 2012. 高山植物繁殖策略的研究进展 [J]. 生物多样性, 20(3): 286-299. ]
-
RAHMANI AH, KHAN AA, ALDEBASI YH, 2017. Saffron (Crocus sativus) and its active ingredients, role in the prevention and treatment of disease [J]. Pharmacogn J, 9(6): 873-879.
-
SAPIR Y, SHMIDA A, NE′EMAN G, 2005. Pollination of Oncocyclus irises (Iris: Iridaceae) by night-sheltering male bees [J]. Plant Biol, 7(4): 417-424.
-
SCOTT JK, PANETTA FD, 1993. Predicting the Australian weed status of southern African plants [J]. J Biogeogr, 20: 87-93.
-
SEGAL B, SAPIR Y, CARMEL Y, 2006. Fragmentation and pollination crisis in the self-incompatible Iris bismarckiana (Iridaceae), with implications for conservation [J]. Isr J Ecol Evol, 52(2): 111-122.
-
SHANG FJ, WANG L, 2014. Biological characteristics of flowering and pollination of Iris sanguinea [J]. Pratac Sci, 31(5) : 892-897. [尚方剑, 王玲, 2014. 溪荪开花及传粉生物学特性 [J]. 草业科学, 31(5): 892-897. ]
-
SOBREVIL AC, WOLFE LM, MURCIA C, 1989. Flower polymorphism in the beach plant, Ipomoea imperati (Vahl. ) Grisebach (Convolvulaceae) [J]. Biotropica, 21: 84-88.
-
SPIGLER RB, KALISZ S, 2013. Phenotypic plasticity in mating system traits in the annual Collinsia verna [J]. Botany, 91: 597-604.
-
SZÖLLÖSI R, MEDVEGY A, BENYES E, et al. , 2011. Flowering phenology, floral display and reproductive success of Iris sibirica [J]. Acta Bot Hung, 53: 409-422.
-
SUZUKI K, DOHZONO I, HIEI K, 2007. Evolution of pollinator generalization in bumblebee-pollinated plants [J]. Plant Spec Biol, 22: 141-159.
-
TARASJEV A, 1997. Flowering phenology in natural populations of Iris pumila [J]. Ecography, 20: 48-54.
-
WANG L, TAN DY, 2011. Floral syndrome and secondary pollen presentation in Codonopsis clematidea (Campanulaceae) [J]. Biodivers Sci, 19(1): 24-33. [王丽, 谭敦炎, 2011. 新疆党参的花部综合征与次级花粉呈现 [J]. 生物多样性, 19(1): 24-33. ]
-
WATTS S, SAPIR Y, SEGAL B, et al. , 2013. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators [J]. Ann Bot, 111(3): 395-407.
-
WEISS MR, 1991. Floral colour changes as cues for pollinators [J]. Nature, 354(6350): 227-229.
-
WENG HL, LI YH, WANG HM, et al. , 2018. Overview of research progress on Iris lactea Pall. var. chinensis [J]. Anim Husb Feed Sci, 39(2): 48-50. [翁慧琳, 李彦慧, 王怀民, 等, 2018. 马蔺的研究概况 [J]. 畜牧与饲料科学, 39(2): 48-50. ]
-
WU Y, DUAN XY, LIU GL, et al. , 2021. Vegetation context modifies selection on flowering start and plant height in an orchid perennial herb [J]. J Plant Ecol, 14(5): 934-944.
-
WYATT R, 1983. Pollinator-plant interactions and the evolution of breeding systems [M]// REAL L. Pollination biology. Orlando: Academic Press: 51-95.
-
YANG Y, CHEN JJ, WANG H, et al. , 2013. Chemical constituents from Iris scariosa and Iris halophila var. sogdiana [J]. Chin Tradit Herbal Drugs, 44(11): 1371-1375. [杨阳, 陈洁君, 王辉, 等, 2013. 膜苞鸢尾和蓝花喜盐鸢尾的化学成分研究 [J]. 中草药, 44(11): 1371-1375. ]
-
YANG Y, ZHANG XJ, GAO WY, et al. , 2020. Purification of total flavonoids from Iris scariosa by polyamide resin [J]. Contemp Chem Ind, 49 (7): 1281-1289. [杨阳, 张小杰, 高文运, 等, 2020. 聚酰胺纯化膜苞鸢尾中总黄酮的工艺研究 [J]. 当代化工, 49(7): 1281-1289. ]
-
YE JT, MAO SZ, HU XH, et al. , 2022. Flowering biological characteristics and breeding system of Ardisia humilis [J]. Guihaia, 43(2): 377-387. [叶家桐, 毛世忠, 胡兴华, 等, 2022. 矮紫金牛的开花生物学与繁育系统研究 [J]. 广西植物, 43(2): 377-387. ]
-
ZHANG DY, 2004. Plant life-history evolution and reproductive ecology [M]. Beijing: Science Press: 153. [张大勇, 2004. 植物生活史进化与繁殖生态学 [M]. 北京: 科学出版社: 153. ]
-
ZHANG LF, QIU LH, 2017. Flowering phenology, floral traits and breeding system of Platycrater arguta [J]. Guihaia, 37(10): 1301-1311. [张丽芳, 裘利洪, 2017. 蛛网萼开花物候、花部特征及繁育系统研究 [J]. 广西植物, 37(10): 1301-1311. ]
-
ZHANG W, HE CB, GONG YB, 2019. Pollinator attraction and outcrossing strategies in Iris [J]. Plant Sci J, 37(5): 672-681. [张伟, 何承斌, 龚燕兵, 2019. 鸢尾属植物的传粉者吸引及异交策略 [J]. 植物科学学报, 37(5): 672-681. ]
-
ZHANG Y, TAN DY, 2009. Breeding system and pollination biology of Crocus alatavicus (Iridaceae), a geocarpic subalpine plant of the western Tianshan Mountains [J]. Biodivers Sci, 17 (5): 468-475. [张洋, 谭敦炎, 2009. 地下结实植物白番红花的繁育系统与传粉生物学 [J]. 生物多样性, 17(5): 468-475. ]
-
ZHANG Y, MA YM, QIN JY, et al. , 2016. The study on seed dormancy and germination characteristics of Iris scariosa [J]. Acta Agr Sin, 24(5): 1062-1067. [张云, 马玉梅, 秦景逸, 等, 2016. 膜苞鸢尾种子休眠及萌发特性研究 [J]. 草地学报, 24(5): 1062-1067. ]
-
摘要
膜苞鸢尾(Iris scariosa)为鸢尾科鸢尾属的多年生春季开花植物,具有重要的观赏价值。为了探究该物种的花部综合征和繁育系统特性,促进其杂交选育和种质资源挖掘利用,该研究以膜苞鸢尾为研究材料,采用野外观测和控制性实验相结合的方法,对其开花物候、花部综合征、繁育系统及传粉特性等方面进行了研究。结果表明:(1)该物种于5月初进入始花期,5月中旬进入盛花期,5月下旬进入末花期,开花持续时间为16 d。(2)花为蓝紫色,具有特殊气味和少量花蜜,单花花期为2.5~3.0 d。(3)人工授粉实验结果表明,该物种属于专性异交的繁育系统,不存在无融合生殖和自主自交能力。(4)该物种属于泛化传粉系统,意大利蜜蜂、中华蜜蜂、隧蜂是主要传粉者,访花频率分别为(0.57±0.05)、(0.42±0.04)、(0.19±0.03)times·flower-1·h-1。膜苞鸢尾花具有的艳丽颜色、较大的花展示、昆虫访花高峰期与花粉活力最高时期及柱头最佳授粉期相吻合,外花被片中脉上的黄色须毛状附属物等特征对保证其传粉过程的顺利完成并促进异交繁殖成功具有重要意义。该研究结果为膜苞鸢尾的资源利用与种质创新提供了重要的理论资料。
Abstract
Iris scariosa is a perennial spring flowering Iridaceae species with important ornamental value. To explore the floral syndrome and breeding system and promote the utilization of this germplasm, flowering phenology, floral syndrome, breeding system and pollination traits of this species were studied in field and controlled experiments. The results were as follows: (1) I. scariosa began to flowering in early-May, peak flowering period was at mid-May, and final flowering period was at late-May, the duration of flowering was 16 d. (2) Its blue-purple flowers had scent and a small amount of nectar, and individual flower duration was 2.5-3.0 d. (3) Results of pollination experiments suggested that the breeding system of I. scariosa is obligate xenogamy, without apomixes and the ability of spontaneous self-pollination. (4) I. scariosa has a generalist pollination system, with Apis mellifera, A. cerana and Halictus sp. being pollinators. These insects initiated pollination while foraging for pollen, and their visitation frequencies were (0.57±0.05), (0.42±0.04) and (0.19±0.03) times·flower-1·h-1, respectively. Floral traits of this species, such as bright flower colors, large flower display, the peak of insect visitation overlapping with the period of highest pollen viability and the optimal stigma receptivity of pollen, yellow beard appendage on the outer tepals, etc., ensure the completion of the pollination process and enhance the successful outcrossing. This study provides an important theoretical information for the resource utilization and germplasm innovation of I. scariosa.
Keywords
Iris scariosa ; spring-flowering plant ; floral syndrome ; breeding system ; outcrossing