DOI: 10.11931/guihaia.gxzw201708005

引文格式:杨艳,高渐飞.冷饭团不同部位挥发性成分及抗氧化活性分析 [J].广西植物,2018,38(7):943-952 YANG Y, GAO JF. Volatile components and their antioxidant activities in different parts of *Kadsura coccinea* [J]. Guihaia, 2018, 38(7):943-952

冷饭团不同部位挥发性成分及抗氧化活性分析

杨 艳,高渐飞*

(1.贵州省中国科学院天然产物化学重点实验室,贵阳550014;2.贵州省山地资源研究所,贵阳550001)

摘 要:为较全面地认识冷饭团(Kadsura coccinea)植株挥发性成分及其抗氧化活性,该研究以其根、茎、叶为材料,采用水蒸气蒸馏提取法(方法 a)和顶空-固相微萃取法(SPME)(方法 b)结合气相色谱-质谱联用技术(GC-MS)与计算机检索技术,对冷饭团植株各部位挥发性成分进行了提取分析,并采用 DPPH 法对其抗氧化活性进行测试。结果表明:(1)两种提取方法检测出的挥发性成分种类及含量存在一定差异,用方法 a 和方法 b 分别在根、茎、叶中共鉴定出挥发性化合物 98 和 117 种;其中根中分别有 59 与 68 种(占总挥发性物质的 83.5%, 93.8%)、茎中 54 和 56 种(占总挥发性物质的 88.9%, 94.9%)、叶中 36 和 42 种(占总挥发性物质的 89.6%, 97.7%)。(2)根、茎、叶中两种方法检出共同化合物种类及含量基本相同,主要有石竹烯、蒎烯、榄香烯、毕澄茄油烯、古巴烯、毕澄茄烯、d-苦橙花醇等,这些成分也是各部分挥发物的主要成分(含量超过 70%)。(3)根、茎、叶中挥发性物质质量浓度达到 20 mg·mL⁻¹时,清除 DPPH 自由基效率均超过 97%,表现出很好的抗氧化活性。

关键词:冷饭团植株,GC-MS,SPME,抗氧化活性,挥发性成分

中图分类号: 0946 文献标识码: A 文章编号: 1000-3142(2018)07-0943-10

Volatile components and their antioxidant activities in different parts of *Kadsura coccinea*

YANG Yan, GAO Jianfei*

(1. Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China; 2. Guizhou Mountainous Resources Institute, Guiyang 550001, China)

Abstract: Volatile components antioxidant activities of *Kadsura coccinea* and were comprehensively studied. The volatile compounds from three different parts which were roots, stems and leaves of *K. coccinea* were extracted by steam distillations (Method a) and headspace solid phase micro-extraction (SPME) (Method b). Volatile components of *K. coccinea* were analyzed by combining gas chromate-graphy-mass spectrometry (GC-MS) and the technology of computer retrieva. Antioxidant activities of volatile components were tested by DPPH free radical scavenging activity. The results were

收稿日期: 2017-11-30

基金项目: 贵州省科技支撑计划项目([2013]3173 号) [Supported by Key Program of Science and Technology of Guizhou Province [2013]3173)]。

作者简介:杨艳(1984-),女,贵州贵阳人,硕士,助理研究员,主要从事分析化学研究,(E-mail) yishideyangzi@163.com。 通信作者:高渐飞,硕士,高级工程师,主要从事退化生态环境恢复与资源开发利用研究,(E-mail) gaojf2010@163.com。

as follows: (1) There were some differences between species and contents of volatile components. And 98 and 117 volatile compounds were identified from three parts of K. coccinea through methods a and b. Among them, there were 59 and 68 kinds volatile components (accounting for 83.5%, 93.8% of root total content) in root, 54 and 56 species volatile components (accounting for 88.9%, 94.9% of stem total content) in the stem and 36 and 42 species in the leaf (accounting for 89.6%, 97.7% of leaf total content). (2) Species and contents of volatile components of three parts of K. coccinea through methods a and b were basically the same. The main volatile components were caryophyllene, pinene, elemene, cubebene, copaene, cadinene and d-Nerolidol (contents $\geq 70\%$). (3) Scavenging efficiency for DPPH free radical was more than 97% when the concentration of volatile components of root, stem and leaf of K. coccinea reached 20 mg·mL⁻¹, and volatile components of K. coccinea showed good antioxidant activity.

Key words: Kadsura coccinea, GC-MS, SPME, antioxidant activity, volatile component

冷饭团(Kadsura coccinea),别名黑老虎,系木 兰科南五味子属植物,是我国原产的一种集食用、 药用、观赏、绿化于一体的珍稀植物资源。主要分 布于贵州、湖南、云南、四川、广西、广东等地;为多 年生常木质藤本,全株无毛;叶腊质,长圆形至卵 状披针形,长 7~8 cm,宽 5~15 cm,全缘;根肉质, 有香味;雌雄同株,单性花,全年均有花,花呈粉红 色或深红色;无设施栽培条件下4月底至5月初开 花能正常结果;果实为集合果,单果重 50~480 g, 近球形,表面似足球,幼果青绿色,成熟时红色或 紫红色,果实 10 月底—11 月上旬成熟。研究证 实,冷饭团根茎提取物具有不同程度的降低胆固 醇、降血脂,抗肝纤维化、消炎、抗血小板、抗 HIV 病毒、抗衰老(李志春等,2011;李文胜等,2010;李 艳等,2014;艾菁和李于善,2005;方林其,2014; 陈敏等, 2014; Yeon et al, 2014; 朱辉等, 2015; 刘玖石等, 2014; 刘海涛等, 2014) 等多种药理作 用,从而受到药用领域的广泛关注。近几年,因其 果实外观型状奇特、色泽艳丽吸引了大量消费者, 并引发一定程度的种植热:研究者也从营养成分、 微量元素等方面证实冷饭团是一种保健和药用价 值较高的水果(高渐飞等,2016;彭富全和邓慧怡, 2006),这为冷饭团作为水果开发提供很好的支 持,当前种植面积就正在逐年加速扩大。

冷饭团药用部位主要是根(陈道峰等,1993;李晓光和罗焕敏,2003;里二和郭绍荣,1995;陈奇,1998),其他部位开发利用还未见到报道。冷饭团根中的化学成分和挥发油已有关注过(艾菁和李于善,2005;彭富全和邓慧怡,2006),但由于产地不

同,样品处理及研究方法不同,研究结果间对照和可比性不强;测试部位也未涉及到茎和叶。从资源可持续角度考虑,根的利用必然会诱导资源的采挖,从而威胁种质资源的安全。此外,伴随着冷饭团人工栽植面积的扩大,每年修剪遗弃的枝叶量也逐年剧增,这些枝叶有何利用价值?如何利用?都是丞待解决的问题。为此,本研究以同一产地同一批样品为材料,通过水蒸气蒸馏提取法和SPME法,结合 GC-MS 技术,全面解析植株各部位(根、茎、叶)挥发性成分,并进一步研究其抗氧化活性,为其资源综合充分利用提供更为全面的数据支持。

1 材料与方法

1.1 材料与仪器

材料:冷饭团植株来源于贵州省锦屏县,为已结实野生植株,经鉴定为木兰科南五味子属植物冷饭团(Kadsura coccinea)。

仪器: GC-MS 联用仪(美国, Agilent 公司, HP 6890/HP 5975 C); 弹性石英毛细管色谱柱(ZB-5MSI, 30 m × 0.25 mm × 0.25 μm); 手动固相微萃取装置(美国, Supelco 公司); 萃取纤维头(2 cm ~ 50/30 μm); JA-2003 精密电子天平(上海恒平科技有限公司); 挥发油萃取装置; SB25-12DTD 型超声波(宁波新芝生物科技有限公司), 恒温水浴锅, 挥发油提取器。试剂: 纯净水, 乙醚(分析纯), 正己烷(分析纯), 无水硫酸镁(分析纯)。

1.2 方法

1.2.1 挥发性物质提取 水蒸气蒸馏提取法(方法

a):将新鲜的冷饭团根、茎、叶捣碎,准确称取 500 g于圆底烧瓶中加入2 000 mL 的蒸馏水,浸泡过夜,超声 30 min,热回流提取 4 h,得到黄色的油状液体,分别将冷饭团根、茎、叶挥发油用乙醚萃取,无水硫酸钠处理后过滤,收集冷饭团根、茎、叶部分的挥发油,分别称重为 2.67、2.98、3.15 g,将处理好的挥发油进行 GC-MS 分析。

SPME 法(方法 b):将新鲜的冷饭团植株根、茎、叶分离,进行捣碎,分别称取 5 g 置于固相微萃取仪中,插入纤维头手动进样器,120 $^{\circ}$ 萃取 50 min,移出萃取头,插入气相色谱仪进样口(250 $^{\circ}$)中,热解吸 6 min 左右,进样完成,进行 GC-MS 分析。

GC-MS 分析条件包括(1)GC: 进样口温度为 250 ℃, 载气为高纯度氮气, 流速为 1.0 mL· min⁻¹;柱前压为 0.053 MPa 左右,不分流进样,溶 剂延迟 1 min 左右,采用归一法计算各化合物的相 对含量。(2) MS: EI 源, 质量范围为 m/z 29~450 amu, 电子能量为 70 eV, 四级杆温度为 150 ℃, 倍 增器电压为1 247 V; 谱库, Wiley 275 和 NIST 05。 1.2.2 抗氧化活性测试 以 Vc 为抗氧化标准物 质,通过 DPPH 自由基的清除率体现冷饭团各部 位挥发性成分的抗氧化活性。将冷饭团根、茎和 叶提取的挥发油用无水乙醇充分溶解,配成1、2、 4、8、10、20、40 mg·mL⁻¹的供试样品,准确移取供 试样品溶液 2 mL 于 10 mL 具塞试管中,加入 2 mL 的 DPPH 溶液(C_{DPPH} 2 mmoL·L⁻¹),摇匀,避光水 浴 30 min,用紫外可见分光光度计测定最大吸收 波长为517 nm,并在该波长下测定样品的吸光度 Ai (以 80% 乙醇溶液为参比)。同时测定 2 mL DPPH 与 2 mL 80%乙醇溶液混合后的吸光度 Ac, 以及 2 mL 供试样品与 2 mL 80% 乙醇溶液混合后 的吸光度 Ai。平行测定 2~3 次,根据公式计算抑 制率。抑制率越大,则表示该试样的抗氧化活性 越强。抑制率= $[1-(Ai-Ai)/Ac]\times 100\%$ 。

2 结果与分析

2.1 不同部位挥发性成分

通过方法 a 得到冷饭团根、茎、叶的出油率分别为 0.534%、0.596%和 0.630%。挥发油鉴定出

化合物 98 种,其中根中 59 种>茎中 54 种>叶中 36 种;其化合物含量比例高低与之相反,具体为根 (83.5%)<茎(88.9%)<叶(89.6%)。三个部分相同化合物 18 种,主要为石竹烯、毕澄茄烯、蒎烯、蛇床烯等 15 种烯类化合物以及 d-苦橙花醇,这些化合物占方法 a 检测到的总挥发成分的 73.1%,是植株主要的挥发性成分。

通过方法 b 检测鉴定出化合物 117 种,其中根中检测到 68 种>茎中 56 种>叶中 42 种,其化合物含量比例高低表现为根(93.9%)<茎(95.0%)<叶(97.7%)。相同化合物 20 种,主要化合物与方法a 检测结果基本一致,共同化合物占方法 b 检测到的总挥发成分的 72. 01%,亦是冷饭团植株主要的挥发性成分。与方法a 相比,方法 b 多检出 19 种化合物;其中根中 10 种,其含量总和为 0.10%;茎中 3 种,含量为 0.12%;叶中 6 种,含量为 0.08%,这些成分含量都较低。

从归属种类看,两种方法的挥发性成分种类 无明显差异,都以烯类化合最多,不同部位含量均 超过73.0%,其次是醇、烷、醛、酮、酯、酚。方法 a 在三个部分中没有解析得到酚类物质(图1-图3 和表1)。

两种方法检出结果存在异同性,方法 b 检出化合物数量、含量、种类均高于方法 a,但两种方法在不同部位检出的化合物数量及含量的差异规律一致,主要构成化合物也相同。存在差异的原因可能是方法 a需要较多的原料,浸泡不充分或者提取温度达不到其穿透植物细胞的能力,含量偏低的挥发性成分提取不出。另外,方法 a 中挥发油的收率相对低,所需时间较长,难保持挥发油完整的香味也是可能原因之一。

2.2 不同部位抗氧化活性

由图 4 可知,冷饭团根、茎、叶对 DPPH 自由基清除率在 1~10 mg·mL⁻¹范围内呈现明显的剂量—效应关系,之后随着质量浓度的继续提高,超过 10 mg·mL⁻¹以后趋于平缓;各部位均能达到91%以上清除效果,但清除率能力存在微小的差距,具体表现为根<茎<叶。在质量浓度为 20 mg·mL⁻¹时,清除效率稳定在 95.6%~98.6%;浓度升高至40mg·mL⁻¹各部位清除效率均超过97.2%。冷

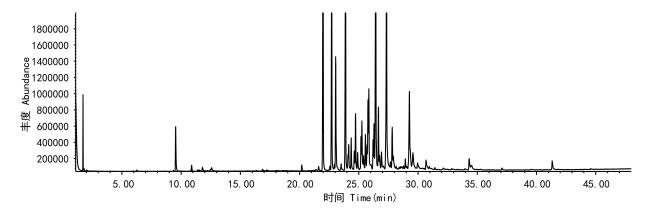


图 1 冷饭团根挥发性成分总离子图

Fig. 1 Total ion chromatogram for volatile components from root of Kadsura coccinea (TIC)

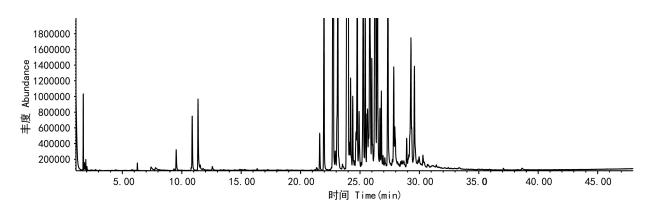


图 2 冷饭团茎挥发性成分总离子流图

Fig. 2 Total ion chromatogram for volatile components from stem of Kadsura coccinea (TIC)

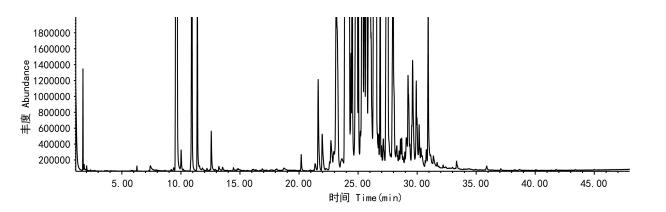


图 3 冷饭团叶挥发性成分的总离子流图

Fig. 3 Total ion chromatogram for volatile components from leaf of Kadsura coccinea (TIC)

表 1 冷饭团植株挥发性成分化学组成及其相对含量的测定

Table 1 Determination of volatile components and their relative contents of Kadsura coccinea

					相对台	含量 Relat	ive conten	nt (%)	
编号 Number	分子式 Molecular formula	英文名 Name	中文名称 Chinese name	根 Root (b)	根 Root (a)	茎 Stem (b)	茎 Stem (a)	叶 Leaf (b)	叶 Leaf (a)
1	C_2H_4O	Acetaldehyde	乙醛	0.022	0.01	_	_	_	_
2	C_2H_6O	Ethanol	乙醇	0.002	0.001	0.039	0.023	_	_
3	C_3H_6O	2-Propanone	丙酮	0.022	0.020	0.038	0.019	0.011	_
4	$\mathrm{CH_2Cl_2}$	Dichloromethane	二氯甲烷	0.001	_	_	_	_	_
5	$\mathrm{CH_{3}NO_{2}}$	Nitromethane	硝基甲烷	0.008	_	_	_	_	_
6	C_4H_6O	Methacrolein	异丁烯醛	_	_	_	_	0.001	_
7	$\mathrm{C_6H_{12}O}$	N-Hexanal	己醛	_	_	0.017	0.002	_	_
8	$\mathrm{C_6H_{12}O}$	Z-3-Hexenol	Z-3-己烯醛	_	_	_	_	0.039	_
9	$\mathrm{C_6H_{12}O}$	(Z)-3-Hexen-1-ol	(Z)-3-己烯-1-醇	_	_	0.132	0.102	_	_
10	$C_{10}H_{16}$	tricyclene	三环烯	_	_	_	_	0.007	_
11	$C_{10}H_{16}$	Thujene	崖柏烯	0.020	0.003	0.153	0.101	0.016	0.006
12	$C_{10}H_{16}$	Pinene	蒎烯	2.621	1.962	2.759	2.008	9.650	8.260
13	$C_{10}H_{16}$	L-Camphene	崁烯	0.020	0.003	0.021	0.003	0.082	0.016
14	$C_{10}H_{16}$	Sabinene	桧烯	0.011	0.008	0.019	0.006	_	_
15	$C_{10}H_{16}$	4-methylene-1-(1-methylethyl) - Cyclohexene	4-亚甲基-1-异丙基-环己烯	_	_	_	_	1.852	0.876
16	$C_{10}H_{16}$	Myrcene	月桂烯	0.175	0.124	2.787	2.586	0.645	0.423
17	$C_{10}H_{16}$	Phellandrene	水芹烯	0.340	0.301	0.195	0.185	0.01	_
18	$C_{10}H_{16}$	Terpinene	萜品烯	0.023	0.020	0.051	0.042	0.027	0.015
19	$C_{10}H_{14}$	Para Cymene	甲基异丙基苯	0.107	0.096	_	_	_	_
20	$C_{10}H_{16}$	Limonene	柠檬烯	0.036	0.024	_	_	0.176	0.143
21	$C_{10}H_{16}$	transBetaOcimene	transBeta罗勒烯	_	_	0.032	0.021	0.024	0.020
22	$C_{10}H_{16}$	Terpinolene	异松油烯	0.007	0.002	0.026	0.023	0.016	0.012
23	$C_{10}H_{18}O$	trans-1-methyl-4-(1-methylethyl)- 2-Cyclohexen-1-ol	trans-1-甲基-4-(1-异丙基) - 2-环己烷-1-醇	0.001	_	_	_	_	_
24	$C_{10}H_{16}O$	trans-Pinocarveol	trans-松香芹醇	_	_	0.053	0.012	_	_
25	$C_{10}H_{16}O$	Camphor	莰酮	0.002	_	_	_	_	_
26	C ₁₀ H ₁₈ O	1-Borneol	莰醇	0.009	0.001	_	_	_	_
27	C ₁₀ H ₁₈ O	Borneol	茨 醇	0.058	0.040	_	_	_	_
28	C ₁₀ H ₁₆ O	Isopinocamphone	异蒎莰酮	_	_	0.021	0.020	_	_
29	$C_{10}H_{16}O$	Terpinene-4-ol	萜品烯-4-醇	0.045	0.025	0.021	0.016		
30	$C_{10}H_{18}O$ $C_{13}H_{22}O_2$	linalyl propanoate	3,7-二甲基-1,6-辛二烯-3-醇	0.003	— —	— —	_	_	_
31	$C_{10}H_{14}O$	(-)-Verbenone	丙酸酯 马鞭烯酮	0.002	_	_	_	_	_
32	$C_{10}H_{20}O$	betaCitronellol	beta香茅醇	_	_	_	_	0.021	_
33	$C_{12}H_{20}O_2$	Bicyclo [2.2.1] heptan-2-ol, 1, 7,7-trimethyl-, 2-acetate	二环 [2.2.1] 庚-2-醇,1,7,7-三甲基,2-乙酸盐	_	_	_	_	0.072	0.023

续表1

编号 Number				相对含量 Relative co			ive conten	tent (%)		
	分子式 Molecular formula	英文名 Name	中文名称 Chinese name	根 Root (b)	根 Root (a)	茎 Stem (b)	茎 Stem (a)	叶 Leaf (b)	叶 Leaf (a)	
34	$C_{12}H_{20}O_{2}$	2-bromobornyl Acetic acid ester	2-溴代崁基乙酸酯	0.032	0.025	_	_	_	_	
35	$C_{12} H_{20} O_2$	Bornyl acetate	乙酸龙脑酯	0.201	0.200	_	_	_	_	
36	$C_{10}H_{14}O$	Thymecamphor	百里酚	0.019	0.020	_	_	_	_	
37	$C_{15}H_{24}$	Elixene	甘香烯	_	_	0.019	0.015	_	_	
38	$C_{15} H_{26} O$	Elemol	榄香醇	0.016	0.012	0.016	0.018	_	_	
39	$C_{15}H_{24}$	Aromadendrene	香橙烯	1.934	2.031	1.757	1.523	1.524	1.523	
40	$C_{15}H_{24}$	Bicycloelemene	双环榄香烯	_	_	0.572	0.526	0.538	0.502	
41	$C_{15}H_{24}$	Elemene	榄香烯	0.904	1.02	6.364	3.261	0.047	0.026	
42	$C_{15}H_{24}$	Cubebene	毕澄茄油烯	11.591	8.563	2.152	1.963	0.274	0.254	
43	$C_{15}H_{24}$	(-) -Isoledene	(-)-异喇叭烯	_	_	0.018	0.018	0.037	0.036	
44	$C_{15}H_{24}$	alphaYlangene	alpha衣兰烯	_	_	0.018	0.015	_	_	
45	$C_{15}H_{24}$	Copaene	古巴烯	9.686	9.563	9.089	9.006	0.272	0.345	
46	$C_{15}H_{24}$	b-Elemen	1-乙烯基-1-甲基-2,4-双(1-甲	_	_	_	_	2.286	1.893	
47	$C_{15}H_{24}$	Valencene	基乙烯基)环己烯 朱栾倍半萜	_	_	0.034	0.032	_	_	
48	$C_{15}H_{24}$	Isocaryophillene	异丁子香烯	0.232	0.214	_	_	_	_	
49	$C_{15}H_{24}$	Gurjunene	古芸烯	0.071	0.050	0.034	0.019	0.151	0.152	
50	$C_{15}H_{24}$	Caryophyllene	石竹烯	11.009	11.590	24.616	28.569	33.287	30.569	
51	$C_{15}H_{24}$	(3AS,3BR,4S,7R,7AR)-7- methyl-3-methylidene-4- (propan-2-yl) oc- tahydro1Hcyclopenta [1,3] cycl-opropa [1,2] benzene	(3AS,3BR,4S,7R,7AR)-7-甲基-3-亚甲基-4-(丙-2-基 S) 八氢环戊 [1,3]环丙烷 [1,2]苯	_	_	0.098	_	_	_	
52	$C_{15}H_{24}$	Epi-Bicyclosesquiphellandrene	表-双环倍半水芹烯	_	_	0.067	0.053	_	_	
53	$C_{15}H_{24}$	alpha-bergamotene	alpha-香柠檬烯	_	_	0.685	0.563	_	_	
54	$C_{15}H_{24}$	Germacrene B	大根香叶烯	0.666	0.436	1.933	1.203	0.871	0.563	
55	$C_{15}H_{24}$	10s, 11s-Himachala-3 (12), 4-diene	10s,11s-雪松-3(12)-4-二烯	_	_	0.798	0.698	_	_	
56	$C_{15}H_{24}$	alphaGuaiene	alpha愈创烯	_	_	_	_	0.203	0.153	
57	$C_{15}H_{24}$	Farnesene	金合欢烯	_	_	1.851	1.826	_	_	
58	${\rm C_{15}H_{24}}$	(-) -Isoledene	异喇叭烯	_	_	0.261	0.243	_	_	
59	${\rm C_{15}H_{24}}$	Cadinene	毕澄茄烯	12.365	10.563	17.191	15.289	12.117	11.983	
60	$C_{15}H_{24}$	alphaHumulene	alpha蛇麻烯	1.130	1.230	1.676	1.628	_	_	
61	${\rm C_{15} H_{24}}$	Selinene	蛇床烯	2.758	2.369	3.293	3.028	9.977	10.230	
62	$C_{15}H_{24}$	(1A,4AA,8AA)-1,2,3,4,4α, 5,6,8α-Octahydro-7-methyl-4- methylene-1-(1-methylethyl)- naphthalene	(1A,4AA,8AA)-1,2,3,4,4α, 5,6,8α 八氢-7-甲基-4-亚甲基- 1-(1-甲基乙基)-萘	1.631	1.239	_	_	_	_	
63	$C_{15}H_{24}$	gammaCurcumene	gamma姜黄烯	_	_	0.006	_	_	_	

949

续表1

	v → b				相对台	含量 Relat	ive conten	t (%)	
编号 Number	分子式 Molecular formula	英文名 Name	中文名称 Chinese name	根 Root (b)	根 Root (a)	茎 Stem (b)	茎 Stem (a)	叶 Leaf (b)	叶 Leaf (a)
64	$C_{15}H_{24}$	(+)-Epi-bicyclosesquiphellandrene	1-表二环倍半水芹烯	0.218	0.196	_	_	_	_
65	$C_{15} H_{24}$	Bergamotene	香柑油烯	_	_	0.454	0.402	_	_
66	$C_{15}H_{24}$	(+)-Valencene	巴伦西亚橘烯	_	_	_	_	3.294	3.786
67	$C_{15}H_{24}$	Bicyclogermacrene	牛儿烯	_	_	3.299	2.869	_	_
68	$C_{15}H_{24}$	γ -Maaliene	γ-马榄烯	2.923	2.590	_	_	_	_
69	$C_{15}H_{24}$	(-) -α-Selinene	(-)-α-芹子烯	_	_	_	_	8.635	7.563
70	$C_{15}H_{24}$	Seychellene	塞舌尔烯	0.210	0.189	_	_	_	_
71	$C_{15}H_{24}$	Calarene	水菖蒲烯	6.815	5.689	_	_	_	_
72	$C_{15}H_{24}$	d-Cadinene	d-杜松烯	6.536	5.398	4.078	3.596	_	_
73	$C_{15}H_{24}$	1,6-Dimethyl-4-(1-methylethyl)-(1,2,3,4,4 α ,7) hexahydronaphthalene	1,6-二甲基-4-异丙基-(1,2,3, 4,4α,7)六氢萘	1.033	1.021	0.436	0.356	0.054	0.024
74	$C_{15}H_{24}$	Muurolene	衣兰油烯	_	_	0.123	0.111	_	_
75	$C_{15}H_{24}$	Isoledene	异喇叭烯	0.292	0.253	_	_	_	_
76	$C_{15}H_{26}O$	(1S, 3E, 7E) - α , α , 4, 8-tetramethyl-3,7-Cyclodecadiene-1-methanol	(1S, 3E, 7E)-α, α, 4, 8-四甲基-3,7-环癸二烯-1-醇	_	_	_	_	_	_
77	$C_{15}H_{24}$	Eudesma-3,7(11)-diene	乙酰氧基桉叶-3,7(11)-双烯	_	_	_	_	0.038	0.35
78	$C_{15}H_{24}$	Epizonarene	表圆线藻烯	1.183	1.028	_	_	_	_
79	${\rm C_{15}H_{26}O}$	Hedycaryol	四甲基环癸二烯甲醇	_	_	0.045	0.043	_	_
80	$C_{15} H_{26} O$	Elemol	榄香醇	_	_	_	_	0.083	0.053
81	${\rm C_{15}H_{26}O}$	d-Nerolidol	d-苦橙花醇	9.649	9.128	2.795	2.753	7.516	7.238
82	$C_{15}H_{24}$	Caryophyllene oxide	石竹烯氧化物	_	_	0.322	0.298	_	_
83	$\mathrm{C}_{15}\mathrm{H}_{24}\mathrm{O}$	Spathulenol	斯巴醇	0.914	0.539	0.714	0.539	_	_
84	$C_{15} H_{24} O$	Espatulenol	桉油烯醇	_	_	0.659	0.618	2.011	1.769
85	${\rm C_{15}H_{26}O}$	(-)-Globulol	(-)-蓝桉烯	0.080	0.068	_	_	_	_
86	${\rm C_{15}H_{26}O}$	Guaiol	愈创醇	_	_	_	_	0.057	0.012
87	$\mathrm{C_{18}H_{36}O}$	Octadecanal	十八醛	0.015	_	_	_	_	_
88	${\rm C_{15} H_{26} O}$	Ledol	喇叭茶醇	0.060	0.020	_	_	_	_
89	${\rm C_{15} H_{26} O}$	Selinenol	凤蝶醇	0.054	0.039	_	_	_	_
90	$C_{15}H_{20}$	9-Methyl-S-octahydroanthracene	9-甲基-s-八氢蒽	0.039	0.015	_	_	_	_
91	$C_{15}H_{24}$	(.+) -Cadinene	(.+)-杜松烯	0.050	_	_	_	_	_
92	${\rm C_{15} H_{26} O}$	tauMuurolol		2.218	2.123	1.551	1.234	_	_
93	${\rm C_{15} H_{26} O}$	beta-Eudesmo	beta-桉叶醇	_	_	_	_	0.124	0.103
94	${\rm C_{15} H_{26} O}$	alphaCadinol	alpha杜松醇	2.767	2.536	1.329	1.046	0.699	0.027
95	$C_{15}H_{26}O$	Eudesmol	桉叶油醇	0.022	0.008	_	_	_	

续表1

编号 Number	分子式 Molecular formula	英文名 Name	中文名称 Chinese name	相对含量 Relative content (%)						
				根 Root (b)	根 Root (a)	茎 Stem (b)	茎 Stem (a)	叶 Leaf (b)	叶 Leaf (a)	
96	C ₁₅ H ₂₆ O	Juniper camphor	杜松莰酮	0.033	0.019	_	_	_	_	
97	$C_{15}H_{18}$	Cadalin	4-异丙-1,6-二甲萘	0.044	0.016	_	_	_	_	
98	${\rm C_{15} H_{26} O}$	alphaBisabolol	alpha甜没醇	_	_	_	_	0.129	0.125	
99	$C_{17}H_{36}$	Heptadecane	十七烷	_	_	0.069	0.042	_	_	
100	$C_{14} H_{28} O$	Tetradecanal	十四醛	0.317	0.425	_	_	_	_	
101	$C_{18}H_{36}O$	Octadecanal	十八醛	_	_	0.016	0.011	_	_	
102	$C_{15}H_{30}O$	Pentadecanal	十五醛	0.134	0.105	_	_	_	_	
103	$C_{15}H_{26}O$	Farnesol	金合欢醇	_	_	_	_	0.780	0.500	
104	$C_{15}H_{24}O$	Isospathulenol	异大花按油醇	0.052	0.050	_	_	_	_	
105	$C_{15}H_{24}O$	6-Isopropenyl-4, 8α-dimethyl-1, 2, 3, 5, 6, 7, 8, 8α-octahydronaphthalen-2-ol	6-异丙烯基 4,8α 二甲基-3-氧 代-1,2,3,5,6,7,8,8α-四氢 萘-2-醇	0.014	_	_	_	-	_	
106	$C_{15}H_{24}$	$1,2,3,5,6,7,8,8\alpha$ -octahydro- $1,8\alpha$ -dimethyl-7-(1-methylethe- nyl)-, [1R-(1.alpha.,7.beta., 8α .alpha.)]- Naphthalene	巴伦西亚橘烯	0.024	0.012	_	_	_	_	
107	$C_{18}H_{38}$	Octadecane	十八烷	_	_	0.031	0.240	_	_	
108	${\rm C_{15}H_{22}}$	9,10-dehydro-Isolongifolene	9,10-脱氢异长叶烯	0.004	_	_	_	_	_	
109	$C_{20}H_{38}$	Neophytadiene	新植二烯	_	_	0.020	_	_	_	
110	${\rm C_{17}H_{28}O_{2}}$	Farnesyl acetate	乙酸金合欢酯	_	_	_	_	0.009	0.001	
111	$C_{18}H_{36}O$	Perhydrofarnesyl acetone	植酮	_	_	0.047	0.023	_	_	
112	$C_{18}H_{36}O$	Hexahydrofarnesylacetone	十五烷植酮	0.008	_	_	_	_	_	
113	$C_{18}H_{32}O$	(Z)-9,17-Octadecadienal	(Z)-9,17-十八烯醛	0.236	0.211	_	_	_	_	
114	$C_{19}H_34O_2$	Methyllinolelaidate	甲基反亚油酸甲酯	0.032	0.021	_	_	_	_	
115	${\rm C_{20}H_{36}O_{2}}$	Ethyl linoleolate	亚油酸乙酯	0.029	0.012	_	_	_	_	
116	$\mathrm{C}_{20}\mathrm{H}_{34}\mathrm{O}$	(E,E)-3,7,11,15-tetramethyl-1,6,10,14-Hexadecatetraen-3-ol	香叶基芳樟醇	0.084	0.023	_	_	_	_	
117	$\mathrm{C}_{20}\mathrm{H}_{40}\mathrm{O}$	trans-Phytol	trans-绿叶醇	_	_	0.059	0.043	_	_	
		合计 Total		93.851	83.500	94.948	88.889	97.662	89.574	

饭团根、茎、叶抗氧化能力的 IC_{50} 在 $3.96 \sim 4.30$ $mg \cdot mL^{-1}$ 之间,分别为 4.31、4.04、3.96 $mg \cdot mL^{-1}$; Vc 的 IC_{50} 为 9.62 $\mu g \cdot mL^{-1}$ 。尽管各部位挥发油的抗氧化能力与强氧化剂 Vc 相比较差距较大,但表现出的抗氧化性较强。其中,茎和叶都比根具有根具有更好的对 DPPH 自由基清除率,这与茎和叶挥发性成分中化合物总含量,尤其烯类物质含

量均高于根的特征是一致的。

3 讨论与结论

两种方法检出结果存在异同性,方法 b(SPME 法)检出化合物数量、含量、种类均高于方法 a(水 蒸气蒸馏法);两种方法在不同部位检出的化合物

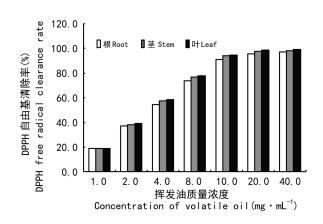


图 4 冷饭团根、茎、叶抗氧化活性 Fig. 4 Antioxidant activities of root, stem and leaf of *Kadsura coccinea*

数量及含量的差异规律一致,主要构成化合物也相同。相互比较,SPME 法能够提取出水蒸气蒸馏法不能蒸馏出来的成分,且具有用时短,操作步骤少、污染少等优势;但其更适合仅对于挥发性成分的研究分析,而水蒸气蒸馏法对植物挥发油的实际利用意义更大。

两种方法检测得到冷饭团根、茎、叶中挥发性成分主要构成成分基本相同,都是烯类化合含量最高(超过73%),其余依次为醇类、烷类、醛类、酮类、酯类、酚类。烯类挥发性成分极为温和、亲肤,能消炎、止咳和祛痰,抗自由基的活性很强,也是植物香气的主要来源。从单个化合物成分看,含量较多的有石竹烯、蒎烯、榄香烯、毕澄茄油烯、古巴烯、毕澄茄烯、d-苦橙花醇等。因此,可借鉴根现有成熟的利用途径,对根、茎进行开发利用。

由检出结果可知,冷饭团植株不同部位化合物数量呈现出根>茎>叶的特征,但化合物含量却与之相反,即根<茎<叶;对 DPPH 自由基清除率表现出与含量比例大小一致的趋势。冷饭团茎和叶在化合物含量和抗氧化活性方面都比根更具利用优势,如茎、叶提取液在食品及化妆品中可作为天然抗氧化添加剂,实现资源综合可持续性利用。

总体上,所测得冷饭团根、茎、叶主要挥发性成分中,大部分具有保健和药用的功效。如:石竹烯对皮肤炎症具有较好疗效,具有一定的平喘作

用,是治疗老年慢性支气管炎药物的有效成分之 一,也具有镇咳、祛痰和抗真菌作用(黄罗生等, 2009),检测的三个部分均有11%以上的含量,叶 中高达33.3%,具有较高利用价值。蒎烯具有镇 咳、祛痰和抗真菌作用,其叶中蒎烯含量达9.7%, 可作为药品和化工提取的良好原料(郭晓恒等, 2011): 榄香烯有抗癌作用、具有良好的抗肿瘤活 性(福乃武等,1984;杨骅,1996),其茎中蒎烯含 量为6.4%,药用价值突出。此外,根、茎、叶挥发 性物质都具有较好清除 DPPH 自由基功效,其保 健功和产品亦可为开发。目前,以冷饭团为原料 开发的产品还较少,仅发掘了根茎相关成分的补 血、活血、镇定止痛几方面药用价值(陈道峰等, 1993;李晓光和罗焕敏, 2003;里二和郭绍荣, 1995;陈奇,1998),此外可作为养颜美容、抗衰老、 防治 HBV、护肝、保护心血管、抑制白血病,抗肿 瘤、对抗 HIV 药物或化学预防用药。

参考文献:

AI Q, LI YS, 2005. The chemical constituents and its active research progress of *Kadsura coccinea* [J]. Chem Bioeng, 22 (2): 7-9. [艾菁, 李于善, 2005. 冷饭团化学成分及其活性研究进展[J]. 化学与生物工程, 22 (2): 7-9.]

CHEN DF, XU GJ, XU LS, et al, 1993. The original plant investigation and commodity appraisal of Chinese medicine *Caulis spatholobi* stem [J]. Chin Trad Herb Drug, 24 (1): 34–37. [陈道峰, 徐国钧, 徐洛珊, 等, 1993. 中药鸡血藤的原植物调查与商品鉴定 [J]. 中草药, 24 (1): 34–37.]

CHEN M, LUO YP, ZOU YL, et al, 2014. Heteroclitins R-S: new dibenzocylooctadiene lignans from *Kadsura heteroclite* [J]. Chin J Nat Med, 12 (9): 689-692. [陈敏,罗友萍, 邹艳琳,等, 2014. 不规则结构 R-S:从冷饭团中分离得到的新型二苯环苯烯酸木质素 [J]. 中国天然产物化学, 12 (9): 689-692.]

CHEN Q, 1998. The pharmacology and clinic of classic Chinese patent medicine [M]. Beijing: People's Medicine Publishing House: 998. [陈奇, 1998. 中成药名方药理与临床「M]. 北京: 人民卫生出版社: 998.]

FANG LZ, FENG C, WANG XH, et al, 2014. Lignans from the roots of *Kadsura coccinea* and their inhibitory activities on LPS-induced NO production [J]. Phy Let, (9): 158-162. [方林芝, 冯春, 王谢浩,等, 2014. 冷饭团根中木质素对 LPD 介导的 NO 产生的抑制作用 [J]. 植物化学, (9): 158-162.]

FU NW, QUAN LP, GUO YS, et al, 1984. The antitumor ac-

- tivity and pharmacological study of β -elemene [J]. Bul Chin Mat Med, 9: 35. [傅乃武, 全兰萍, 郭永泗,等, 1984. β 榄香烯的抗肿瘤作用和药理学研究 [J]. 中药通报, 9: 35.]
- GAO JF, LI JJ, LONG SL, et al, 2016. Study on nutrient composition and utilization value of *Kadsura coccinea* [J]. S Chin Fruit, 45(5): 84-87. [高渐飞,李苇洁,龙世林, 2016. 冷饭团营养成分与利用价值研究 [J]. 中国南方果树, 45(5): 84-87.]
- GUO XB, WAN DG, CHEN ML, et al, 2011. Comparative studies on volatile oil components of *Mentha haplocalyx* from different regions in China [J]. Nat Prod Res Dev, 23: 1139–1143. [郭晓恒, 万德光, 陈美兰,等, 2011. 不同地区野生薄荷挥发油的比较[J]. 天然产物研究与开发, 23: 1139–1143.]
- HUANG LS, GU YF, LI H, 2009. The development of traditional Chinese medicine volatile oil and aromatic drug [J]. Chin J Chin Mat Med, 34 (12): 1605-1611. [黄罗生, 顾燕飞, 李红, 2009. 中药挥发油及芳香性药物的研究进展[J]. 中国中药杂志, 34 (12): 1605-1611.]
- LI E, GUO SR, 1995. Health tea plants from Hani [J]. J Chin Med Mat, 18(s): 385-356. [里二, 郭绍荣, 1995. 哈尼族保健茶用植物 [J]. 中药材, 18(s): 385-356.]
- LI WS, CHEN J, WEN JP, et al, 2010. The prevention and treatment experimental hepatic fibrosis and mechanism by *Kadsura coccinea* [J]. Chin J Exp Trad Med Form, 16 (6): 199-201. [李文胜, 陈骏, 文家萍, 等, 2010. 冷饭团对实验性肝纤维化的防治作用及其机制 [J]. 中国实验方剂学杂志, 16 (6): 199-201.]
- LI XG, LUO HM, 2003. The research progress of the chemical constituents and their activity of the genus *Kadsura* [J]. Chin J Chin Mat Med, 28 (12): 1120-1125. [李晓光,罗焕敏, 2003. 南五味子属植物化学成分及其活性研究进展[J]. 中国中药杂志, 28 (12): 1120-1125.]
- LI Y, CHEN J, LI KY, et al, 2014. Study on anti-inflammatory effect and mechanism of *Kadsura coccinea* [J]. Mod J Integ Chin Trad W Med, 23 (25): 2745-2747. [李艳, 陈骏, 黎 开燕, 等, 2014. 冷饭团的抗炎作用及其机制研究 [J]. 现代中西医结合杂志, 23 (25): 2745-2747.]

- LI ZC, SUN J, FENG Y, et al, 2011. An experimental animal investigation on toxicity and blood lipid modulating effect of *Kadsura coccinea* fruit [J]. Food Sci, 32 (1): 203-205. [李志春, 孙健, 封毅, 等, 2011. 黑老虎果毒理实验及其对血脂的调节作用[J]. 食品科学, 32 (1): 203-205.]
- LIU HT, LIU JS, ZHANG J, et al, 2014. Chemical constituents in plants of genus *Kadsura* Kaempf. ex Juss [J]. Chin Herb Med, 6 (3): 172-197. [刘海涛, 刘玖石, 张进, 等, 2014. 南五味子属植物的化学成分 [J]. 中国植物药学, 6 (3): 172-197.]
- LIU JS, QI YD, LAI HW, et al, 2014. Genus *Kadsura*, a good source with considerable characteristic chemical constituents and potential bioactivities [J]. Phytomedicine, (21): 1092-1097. [刘玖石, 祁耀东, 赖洪武, 等, 2014. 五味子属:1个很有特点的化学成分和潜在的生物活性的好来源[J]. 植物医学, (21): 1092-1097.]
- PENG FQ, DENG HY, 2006. GC-MS analysis of volatile oils of *Kadsura coccinea* [J]. Mod Food Med J, 16 (4): 6-8. [彭富全,邓慧怡, 2006. 黑老虎挥发油成分的 GC-MS 分析 [J]. 现代食品与药品杂志, 16 (4): 6-8.]
- YANG H, WANG XP, YU LL, et al, 1996. The antitumor activity of elemene is associated with apoptosis [J]. Chin J Oncol, 18 (3): 169-172. [杨骅, 王仙平, 郁琳琳, 等, 1996. 榄香烯抗癌作用与诱发肿瘤细胞凋亡 [J]. 中华肿瘤杂志, 18 (3): 169-172.]
- YEON JH, CHENG L, HE QQ, et al, 2014. A lignin glycoside and a nortriterpenoid from *Kadsura coccinea* [J]. Chin J Nat Med, 12 (10): 782-785. [YEON Jae-ho,程亮,何泉泉,等,2014.冷饭团中得到的一种木质素糖苷和三萜化合物[J].中国天然产物化学,12 (10): 782-785.]
- ZHU H, YANG L, SHI L, et al, 2015. A high-performance liquid chromatography with circular dichroismdetector for determination of stereochemis-try of 6, 9-oxygenbridge dibenzocyclooctadiene lignans from *Kadsura coccinea* [J]. Chin J Nat Med, 13 (10): 791 795. [朱辉,杨亮,石琳,等,2015.一种具有圆形二色剂的高效液相色谱法用于测定从冷饭团中得到的6、9-氧桥的双苯甲氧基二烯体脂质体[J].中国天然产物化学,13 (10): 791–795.]