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Abstract: This review sumed up the mechanisms of anthocyanins being sequestered into vacuole in the cells of higher
plants. After being synthesized by the multienzyme complexes locating at the cytoplasmic face of the rough endoplas-
mic reticulum in the cytoplasm,anthocyanins are enwrapped by membrane to form vesicles which migrate mainly to-
ward the vacuole, coalesce each other to form larger vesicles in the migration,and ultimately bring the anthocyanins to
the surface of the tonoplast. In most cases,anthocyanins are expeditiously transported into vacuole by various trans-
porters locating on the tonoplast. Other two minor possibilities are that;(1)the vesicles fuse directly with the vacu-
ole; (2) the tonoplast may independently form a large tubular invagination from which the vesicles“bud off”into the
vacuole lumen, In the concrete courses of above possibilities, anthocyanins are sequestrated into vacuole in two forms,
namely non-modified and modified. The transtonoplast transport of anthocyanins may be accomplished by four mod-
els,namely mediated by ATP-binding cassette(ABC) type transporter, by pH-dependent transporter, by the proteins
derived from the 24-kD vacuolar protein( VP24)precursor and by multidrug and toxic compound extrusion( MATE )
family transporter. It is speculated that different plant species utilize different sequestration mechanisms to accumu-
late anthocyanins in vacuole,and multiple mechanisms may be simultaneously used in individual plant species.

Key words: higher plants; anthocyanins; vacuolar sequestration; mechanisms

Received date; 2007-03-19 Accepted date; 2008-09-28
Foundation item: Supported by the Provincial Department of Science and Technology of Yunnan Province(2006C0030Q) ; the Startup Fund for Doctor of
Yunnan Agricultural University( A2002096)
Biography: ZHAQO Chang-Ling{1969-}, Male, Born in Dujiangyan City of Sichuan Province, Doctor of Science, Associate Professor, working in
Plant physiology, Phytochemistry and Plant biochemistry and molecular biology, { E-mail)zhaoplumblossom7@163. com.

* Author for correspondence; E-mail;Sunwenli68@yahoo. cn



394 T B MY

29 %

Belonging to flavonoids, anthocyanins are the col-
ored end product of the general phenylpropanoid path-
way and consist of anthocyanidins and saccharides( Ho-
lton & Cornish,1995;Zhao et al. ,2003).

Anthocyanins have been found distributing only in
the particular parts of a specific range of plants
(Andersen & Jordheim, 2006). They are commonly
found in angiosperms but are replaced by betacyanins
in all families of Centrospermae except Caryophyllaceae
(Harborne & Hall,1964; Harborne,1965,1986). Mo-
reover, they are typically detected in flower and fruit
tissues and in the superficial cells of organs such as
leaves and stems. The anthocyanin-pigmented cells are
typically restricted to the epidermis and hypodermis
(Harborne,1973; Pecket & Small,1980).

It has been revealed that anthocyanins are related
not only to plant life but also to human health, In
plant life, anthocyanins provide brilliant pigments in
order to attract insects or animals for pollination and
seed dispersal ( Harborne, 1976; Gould et al. , 1995;
Grotewold, 2006), Nowadays, anthocyanins are regar-
ded as one of the most important alternatives to a num-
ber of synthetic dyes which have been applied in foods,
cosmetics and medicines,and found to be very harmful
to human health(Mazza & Brouillard,1987).

A series of evidences have been found to support
that the subcellular site of anthocyanins synthesis in
plant cell is the cytoplasm and anthocyanins are syn-
thesized on the cytoplasmic face of the rough endoplas-
mic reticulum(rER) (Hrazdina et al. ,1980; Wagner &
Hrazdina, 1984; Hrazdina & Wagner, 1985; Winkel-
Shirley, 1999, 2001). Nevertheless, anthocyanins are
vaually observed not to exist in the cytoplaém(Xu et
al. ,2001), and normally accumulate in the vacuole
(Harborne, 1976; Saunders & Conn, 1978; Wagner,
1979; Hrazdina & Jensen, 1992; Gould et al. , 1995;
Mol ez al. ,1998;Kitamura,2006). Therefore,it is ob-
vious that, after being synthesized in the cytoplasm of
plant cell,anthocyanins are transported into vacuole,

Up to now, no comprehensive explanation con-
cerning how anthocyanins are transported from their
synthesis site,namely cytoplasm,into vacuole has been

published. Nowadays, anthocyanins have been one of

the targets of plant metabolic engineering with the ob-
jective of creating new or altering the properties of ex-
isting, colored compounds ( Winkel-Shirley, 2001 ).
Knowing adequately the mechanisms of the vacuolar
sequestration of anthocyanins in the cells of higher
plants is of great significance to biochemists and molec-
ular biologists who are interested in realizing the effec-
tive regulations on the biosynthesis and storage of an-
thocyanins.

As a result, this review attempts to sum up the

possible multiple mechanisms of antocyanins being se-

. questered into vacuole.

1  From cytoplasm to tonoplast, an-
thocyanins are transported in vesicles

1.1 After being synthesized in the cytoplasm, anthocya-
nins are enwrapped by membrane to form vesicles

It is tempting to speculate that,after anthocyanins
are synthesized by the multienzyme complexes locating
at the cytoplasmic face of the rER,they are enwrapped
by membrane to form vesicles just like the tannin vesi-
cles,and are transported within the cytoplasm toward
the tonoplast by means of various vesicle-mediated
processes ( Baur & Walkinshaw, 1974; Parham &
Kaustinen, 1977; Pécket &. Small, 1980; Zobel, 1986;
Nozzolillo & Ishikura,1988 ; Ibrahim, 1992 ; Grotewold,
2001 ; Grotewold,2004). These vesicles can be defined
as the pre-vacuolar compartment (PVC) of anthocya-
nins,

However, the formation mechanism of the vesicles
has not been elucidated clearly. The vesiculation
process of anthocyanins probably begins just after the
anthocyanins are synthesized. The anthocyanin-contai-
ning vesicles may be concretely produced via the for-
mation of the double layered structures and the cyto-
plasmic structures may underlie the forming process
(Facchini, 2001). Initially, in the cytoplasm, the tiny
vesicles enwrapping anthocyanins are likely to originate
from the rER,and rER is thought to be the initial ac-
cumulation site of the vesicles ( Grotewold et al. ,
1998).
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1.2 The moving behavior of the anthocyanin-containing
vesicles in the cytoplasm

It is totally unknown about the impetus which is
responsible for the motion of the anthocyanin- contai-
ning vesicles through the cytoplasm. Theoretically, de-
spite the probable help provided by cytoplasmic struc-
tures(Facchint, 2001) , it is not possible that the vesi-
cles move in the cytoplasm only by simple diffusion.

The moving direction of the anthocyanin- contai-
ning vesicles in the cytoplasm is believed mainly to be
the vacuole. When they migrate toward the vacuole,
they coalesce each other to form larger vesicles(Grote-
wold et al. ,1998; Lin et al. ,2003). Ultimately, these
vesicles bring anthocyanins to the surface of the tono-
plast(Grotewold et al. ,1998). Then,three possibilities
are proposed to account for the fate of the anthocya-
nins: (1) they are expeditiously transported into vacuole
by various transporters locating on the tonoplast,
which is thought not only to be a joint action of trans-
porters and vesicles but also to be the most dominant
possibility in plant cells(Marrs et al. ,1995; Grotewold
et al. ,1998; Grotewold, 2004 ; Kitamura, 2006) ; (2) the
anthocyanin-containing vesicles fuse directly with the
vacuole(Scott et al. ,1997; Grotewold et al. ,1998);
(3)the tonoplast form, maybe in an autonomous fash-
ion,a large tubular invagination from which the vesi-
cles“bud off”into the vacuole lumen. The vacuolar in-
vagination’s lumen is continuous with the cytoplasm,
making this inverse budding reaction equivalent to mi-
croautophagocytosis(Miiller et al. ,2000).

It is also observed that not all of the vesicles are
transported to tonoplast, some stay in the cytoplasm,
which makes anthocyanins be compartmented within
the cytoplasm and the cytoplasm display special colors
(Nozzolillo et al. ,1988; Calderon et al. ,1993; Lin et
al. ,2003; Goodman et al. ,2004). A case in point is
that,in maize(Zea mays) , the cyanidin-3-glucoside ap-
pears violet when localized in the vacuole, but in b22
corn, anthocyanin remains in the cytoplasm where it
undergoes oxidation and polymerization reactions, the
oxidized products appear tan-bronze on the kernels
(Marrs ez al. ,1995; Alfenito ef al. , 1998). The fact

that the anthocyanins enwrapped in the vesicles are ac-

ylated glycosides appears to be the precondition for the
stay of the vesicles in the cytoplasm(Markham et al. ,
2001).

2 Mechanisms of anthocyanins being
sequestrated into vacuole through va-

rious transporters on tonoplast

2.1 Anthocyanins are transported through tonoplast
in two forms

It has been found that the anthocyanins can be
transported through tonoplast in two forms. One
is non-modified, namely the anthocyanins are di-
rectly transported into vacuole, e. g. barley antho-
cyanin-glucosides(Klein et al. ,1996). The other is
modified, namely the modification of anthocyanins
is the prerequisite for their effective vacuolar up-
take,and glycosylation or acylation of anthocyanins
appear usually to be the precondition for the vacuo-
lar uptake of anthocyanins (Matern et al. , 1986;
Hopp & Seitz, 1987; Wink, 1997 ; Bartholomew et
al. ,2002; Springob et al. , 2003). It was further
found that the glucose residue attached to the mol-
ecules is not sufficient to act as a signal of the vac-
uolar sequestration of anthicyanins(Frangne et al. ,
2002). However, nothing is known regarding the
mechanisms by which different plant species selects
different anthocyanin forms to finish the vacuolar
uptake of the anthocyanins.
2.2 Possible models of anthocyanins being transpor-
ted through tonoplast
2. 2. 1 Transport mediated by ATP-binding cas-
sette(ABC) type transporter A growing body of
evidence has demonstrated that glutathione S-
transferase(GST) proteins may be involved in the
vacuolar sequestration of anthocyanins ( Marrs et
al,1995). However, not all GSTs are responsible
for the vacuolar sequestration of anthocyanins, e,
g. in parsley, GST1 appears to act in the early steps
of a UV light-dependent signal transduction path-
way leading to chalcone synthase gene (CHS) ex-
pression(Loyall et al. ,2000).

Different functions have been described about
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GST in the anthocyanin transport course mediated
by ABC-type transporter., Previously, GSTs were
thought to form glutathione-conjugates of anthocy-
anidin 3-glucosides (Marrs et al. , 1995), because
GSTs can catalyze the addition of a glutathione
(GSH) molecule to a heterocyclic organic anion
(Edwards & Dixon, 2000 ).

GSH conjugate serves the dual purpose of increas-

The corresponding

ing hydrophilicity and marking the molecule for
transport by the multidrug resistance-associated
proteins(MRP) (Ishikawa ez al. ,1997). It was ev-
er believed that covalent glutathionation is a pre-
requisite for sequestration through a glutathione
pump (GS-X pump) in the tonoplast membrane
(Martinoia et al. ,1993;Li et al. ,1995). But pres-
ently,GSTs are believed to function as cytoplasmic
“escort” proteins without actually catalyzing GSH
conjugate production in the cytoplasm, because
they may bind anthocyanins through hydrophobic
interactions and the binding reaction occurs near
the tryptophan residues, Afterward, they escort
the bound anthocyanins toward the tonoplast
(Marrs et al. ,1995; Miieller et al. , 2000; Miieller
& Walbot,2001).

After recognized and glutathionated by GST,
anthocyanins are transported through tonoplast
and into vacuole by ABC transporter. The gluta-
thione“tag”served as a marker for vacuolar seques-
tration of anthicyanins(Mueller et al. ,2000). The
GST- or glutathione-GST- bound anthocyanins are
then taken up into vacuoles through a membrane-
localized specific transporter,namely a Mg**-ATP-
energized glutathione-specific pump (GS-X pump)
(Martinoia et al. ,1993; Ishikawa et al. ,1997; Ed-
wards et al. ,2000) ,which is classified as belonging
to the MRP subfamily and the superfamily of ABC
transporters(Martinoia et al. ,1993; Marrs et al. ,
1995; Lu et al., 1997; Borst et al., 1999; Rea et
al. ,1998; Rea, 1999; Goodman et al, 2004 ; Grote-
wold,2004). In general, the substrate recognition
of ABC transporters involves not only the glutathi-
one or glycosyl moieties but also the basic Cy; core

of anthocyanin(Klein ez al. ,2000) ,and the amount

of GSTs binding anthocyanins available in the cell
maybe modulate the activities of GS-X pump, and
the modulation could be via allosteric activation by
intermediates, phosphorylation, or protein- trans-
porter interactions(Frangne et al. ,2002). Finally,
the vacuolar deposition of anthocyanins is accom-
plished by a cotransport mechanism with reduced
GSH, analogous to the transport of vincristine in
the liver(Loe et al. ,1998; Miieller et al. ,2000).
2. 2.2 Transport mediated by pH-dependent trans-
porter A specific transporter depending on a pH
gradient across the tonoplast has been supposed for
the transport of anthocyanins acylated with sinapic
acid into vacuole (Hopp & Seitz,1987). The H*-
electrochemical potential difference is established
by the vacuolar H* -ATPase(V-ATPase)and vacu-
olar H* -pyrophosphatase (Rea & Sanders, 1987;
Zhen et al. ,1997; Sze et al. ,1999). Both pumps
catalyze electrogenic H* -translocation from the cy-
tosol into the vacuole to establish an inside- acid
pH gradient(ApH)and an inside-positive electrical
potential difference ( A¢) (Bartholomew et al.,
2002). However,it still remains to be determined
whether anthocyanin transport and vacuolar acidifi-
cation are joined directly (Spelt et al. ,2002). Mo-
reover, ABC transporter-driven sequestration of an-
thocyanins should theoretically result in much
higher accumulation of the anthocyanins within the
vacuole as compared with the antiport or potential-
driven mechanisms, respectively (Rea & Sanders,
1987 ;Kreuz et al. ,1996; Frangne et al. ,2002).
2. 2.3 Transport mediated by the proteins derived
from the 24-kD vacuolar protein (VP24) precursor
The proteins derived from the VP24 precursor is
believed to mediate the transtonoplast transport of
anthocyanins into vacuole because the specific lo-
calization, accumulation of VP24 and the expres-
sion property of VP24 in plant cells seem to be
closely related with the vacuolar ingestion of an-
thocyanins, In the anthocyanin-containing vacu-
oles, VP24 was found to be localized in anthocyano-
plasts(ACPs) and accumulate as one of the major

vacuolar proteins (Pecket & Small, 1980; Nozue et
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al. ,1995;Nozue et al. ;1997). VP24 expression is
intimately correlated with the accumulation of an-
thocyanins in vacuoles, but no transient increase of
phenylalanine ammonialyase ( PAL) or chalcone
synthase (CHS) was determined ( Lawton et al. ,
1983; Chappell & Hahlbrock, 1984; Xu et al.,
2001). Therefore, it can be thought that the pro-
teins derived from the VP24 precursor is probably
involved in the transport or steady accumulation of
anthocyanins in vacuoles(Xu et al. ,2001),

2. 2. 4 Transport mediated by multidrug and toxic com-
pound extrusion(MATE ) family transporter At pres-
ent, MATE family transporter is believed to mediate
the transtonoplast transport of anthocyanins into vacu-
ole mainly because, in Arabidopsis, tt12 is proved to
encode a member of the MATE family transporters
which is involved in the sequestration of flavonoids,
maybe including anthocyanins, into vacuole (Brown et
al. ,1999;Debeaujon et al. ,2001). But the universali-
ty of MATE family transporter in the transtonoplast
transfer course of anthocyanins into vacuole still needs
to be further corroborated.

Taken together, above four models are virtually
difficult to reconcile. Now,it should be reasonably hy-
pothesized that different plant species make use of dif-
ferent sequestration mechanisms to congregate antho-
cyanins in vacuole,and manifold mechanisms may sim-
ultaneously be used in individual species(Martinoia et
al. ,2000; Miieller & Walbot,2001).

Understanding the molecular mechanisms in-
volved in the transtonoplast transport of anthocyanins
into vacuole stand for a radical, yet weakly illuminated,
problem in botany. Establishing the real pathways in-
volved in the sub-cellular trafficking of anthocyanins is
apparently an essential for the fruitful engineering of

anthocyanin metabolism in higher plants,
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