DOI: 10.11931/guihaia.gxzw202205073

谢慈江,何福英,刘莉,等,2023. 光质和光周期对山白兰苗木生长、生理的影响 [J]. 广西植物,43(12):2362-2373. XIE CJ, HE FY, LIU L, et al., 2023. Effects of light quality and photoperiod on growth and physiology of *Michelia baillonii* seedlings [J]. Guihaia, 43(12):2362-2373.

光质和光周期对山白兰苗木生长、生理的影响

谢慈江1,何福英2,刘 莉2,韦秋梅1,杨 梅1*

(1. 广西大学 林学院, 南宁 530004; 2. 广西南宁良凤江国家森林公园, 南宁 530031)

摘 要: 为筛选出山白兰(Michelia baillonii) 苗木培育过程中适宜的光环境,该研究以一年生山白兰幼苗为试验材料,设置 12、16 h·d⁻¹两个光周期,配合使用红蓝复合光(8R1B、6R1B)、红蓝紫绿复合光(8R1B1P1G、6R1B1P1G)4种光质和白光(W)对照,采用双因素随机区组试验设计和隶属函数法,探讨了山白兰苗木生长、光合色素、内源激素含量对不同光质和光周期处理的响应规律。结果表明:(1)光质、光周期及其交互作用对山白兰苗高增长量、叶面积、叶绿素 a、玉米素(ZR)、脱落酸(ABA)的含量、内源激素比值[IAA/ABA、(IAA+GA3+ZR)/ABA]等均有显著影响(P<0.05)。(2)16 h·d⁻¹光周期有利于苗高增长量、叶面积、苗木质量指数、生物量、叶绿素 a、生长素(IAA)、ZR的含量、内源激素比值的提高。(3)当光周期为16 h·d⁻¹时,8R1B处理下的苗高增长量、叶面积和苗木质量指数均最大,分别为21.84 cm、158.39 cm²和2.43;8R1B处理下的叶绿素 a/b 比值、ZR含量高于6R1B处理,8R1B1P1G处理下的叶绿素 a、类胡萝卜素、IAA、赤霉素(GA3)的含量、叶绿素 a/b、内源激素的比值较6R1B1P1G处理大。综上所述,较高比例红光的红蓝复合光质、适当延长光周期有利于提高山白兰苗木质量,而紫绿光的添加未对生长有促进效果,16 h·d⁻¹×8R1B处理是最适宜山白兰苗木生长的光照条件。

关键词:山白兰, LED, 光质, 光周期, 生长, 光合色素, 内源激素

中图分类号: Q945 文献标识码: A 文章编号: 1000-3142(2023)12-2362-12

Effects of light quality and photoperiod on growth and physiology of *Michelia baillonii* seedlings

XIE Cijiang¹, HE Fuying², LIU Li², WEI Qiumei¹, YANG Mei^{1*}

(1. College of Forestry, Guangxi University, Nanning 530004, China; 2. Guangxi Nanning Liangfengjiang National Forest Park, Nanning 530031, China)

Abstract: In order to explore an efficient artificial light environment for improving the quality of *Michelia baillonii* and shortening its cultivation cycle, the annual seedlings of *M. baillonii* were exposed to five composite lights, red+ blue (8R1B, 6R1B), red+blue+purple+green (8R1B1P1G, 6R1B1P1G), and white light (W) with two photoperiods (12,

收稿日期: 2023-04-27

基金项目: 广西林业科技项目(桂林科研 2022ZC 第 75 号); 中央财政林业科技推广示范项目([2017]TG15 号)。

第一作者: 谢慈江(1997-),硕士研究生,研究方向为森林培育,(E-mail)785587958@qq.com。

^{*}通信作者: 杨梅,博士,教授,研究方向为森林培育,(E-mail)fjyangmei@126.com。

16 h · d⁻¹), two-factor experiment with randomized block design and subordinate function were used to explore the response pattern of the growth, photosynthetic pigments and endogenous hormone contents of M. baillonii seedlings to different light qualities and photoperiods. The results were as follows: (1) Light quality, photoperiod, and their interaction had significant effects on height growth, leaf area, chlorophyll a, zeatin (ZR), abscisic acid (ABA) content, and endogenous hormone ratio (IAA/ABA, (IAA+GA₃+ZR)/ABA) (P<0.05). (2) 16 h · d⁻¹ photoperiod was conducive to the improvement of height growth, leaf area, seedling quality index, biomass, chlorophyll a, auxin (IAA), ZR content, and endogenous hormones ratio. (3) Under 16 h · d⁻¹, height growth, leaf area, and seedling quality index under 8R1B treatment reached the maximum value, which were 21.84 cm, 158.39 cm² and 2.43, respectively; compared with the 6R1B treatment, the 8R1B had higher chlorophyll a/b and ZR content; compared with the 6R1B1P1G treatment, the 8R1B1P1G had higher chlorophyll a, a/b, carotenoids, IAA, gibberellin (GA₃) and endogenous hormones ratio. In conclusion, red-blue composite light quality with higher red ratio and proper extension of photoperiod are conducive to improving the quality of M. baillonii, while the addition of purple-green light can not promote its growth, 16×8R1B is the most suitable light condition for the growth of M. baillonii seedlings.

Key words: Michelia baillonii, LED, light quality, photoperiod, growth, photosynthetic pigments, endogenous hormone

光照作为植物生长最关键的自然环境因子, 在整个生命周期中起着重要作用(李雨霏等, 2021)。因存在独特的光谱吸收特性,植物在不同 生长阶段所需要的最适光周期不同(王玉卓等, 2019),不同光质对植物的影响也具有差异。前人 在红蓝光质及其多种复合光质组合处理对植物生 长、生理等方面进行了广泛研究。例如,红蓝组合 光质对朱顶红(郄亚微,2020)和石蒜幼苗(李青竹 等,2019)的生长、叶片光合色素合成和生物量积 累都起到了积极的促进作用,在红蓝组合光中添 加绿光不利于茄子幼苗(杨玉凯等,2018)和人参 果组培苗(王玉英等,2020)叶绿素的合成,紫光处 理使黄色甜椒幼苗叶片株高、生物量、光合色素较 白光大幅下降(白生文等,2017);而在红蓝组合光 中增加 25%的绿光(2R1B1G)显著促进了白及叶 片生长和提高了叶绿素含量(王婷婷等,2021),在 红蓝光基础上适宜增加紫光提高了水培芹菜的产 量和品质(刘玉兵等,2020),补充紫绿光且光周期 为 16 h·d⁻¹对红心杉组培苗的生长生理特性具有 积极作用(徐圆圆,2017)。由此可见,在人工光源 下,红蓝光是设施栽培中应用最多的复合光质,对 植物生长具有促进作用,而其他光质对植物的作 用效果并不一致。目前,关于植物对光源响应的 研究较多集中在蔬菜、果树以及特色经济林,针对 林木尤其是珍贵树种的研究并不多见,不同光质 组合对林木生长的影响还需要进一步探讨。

山白兰(Michelia baillonii)修订名为合果木,别 名拟含笑、山桂花等,属于木兰科中的寡种属(合

果木属),珍稀常绿阔叶高大乔木,自然分布于我 国云南,近年来引种至广西和福建等地。山白兰 树形笔直挺拔,木材耐腐抗蛀、纹理天然美观,是 南方优良的用材及景观树种(申礼凤等,2011)。 由于山白兰种子发芽率低,自然更新能力差,并且 牛境受到较多的人为干扰及环境变化,其天然种 群数量逐渐减少,因此需要通过提升山白兰的种 苗人工繁育技术以扩大其种群数量。目前,关于 山白兰苗期的研究主要集中在生长特性(刘永刚 等,2019)、施肥效应(黄振声,2015)和育苗容器 (邱琼等,2018)等方面,山白兰苗期高光强适应能 力不足(郭昉晨等,2015),晴朗天气下的光强或轻 度遮阴(透光率72.3%)一般有利于幼苗生长(马 小英和焦根林,2008;刘金炽等,2020),但不同光 质对其生长的影响尚不清楚。光质影响植株的形 态建成、光合生理和物质代谢等过程。红光和蓝 光可被光合色素更有效地吸收,红光促进茎增长、 提高叶面积,促进植株地上部分质量增加和碳水 化合物的合成:蓝光促进气孔的开放和根系增长, 调控叶绿素的合成(严宗山等,2020);绿光可以诱 导植物叶柄伸长的避荫应答(吴艳等,2020)和 PEPC 基因的表达(王婷婷等,2021);紫光能够延 缓植株衰老,提高氮代谢相关酶活性,促进氮素吸 收(刘玉兵等,2020)。为探讨山白兰对光质和光 周期的响应,本研究以一年生山白兰为对象,以发 光二极管(light-emitting diode, LED)为人工光源, 设置红蓝复合光(8R1B、6R1B)、红蓝紫绿复合光 (8R1B1P1G、6R1B1P1G)以及两个光周期(12、16

境适应性、更新机制的研究具有重要的参考价值。

1 材料与方法

1.1 材料

供试材料为广西良凤江国家森林公园(108°21′ E、22°40′ N)提供的生长健康、长势均匀的一年生山白兰幼苗[平均株高(20.16 ± 1.86)cm、平均地径(7.05 ± 0.23) mm],移植于直径10cm、高15 cm的育苗杯中,每杯中定植1株,置于苗圃大棚内培养,苗木培养基质为70%森林土+20%椰糠+10%珍珠岩。LED灯管(T5 2835L,深圳伟信力光电有限公司)规格为1 200 mm×24 mm,每根灯管功率为16 W,光质配比由灯珠数量决定。

1.2 设计

2017年4月10日—9月10日在广西大学林学 院苗圃示范基地(108°22′ E、22°48′ N)进行试验。 鉴于 610~720 nm 和 400~510 nm 为植物吸收可见 光的主要波段,而较少集中于510~610 nm(周锦 业,2013),光照环境处理设白光(W)为对照,红蓝 复合光(8R1B、6R1B)、红蓝紫绿复合光 (8R1B1P1G、6R1B1P1G)与12、16 h·d⁻¹光周期(光 期/暗期分别为 12 h/12 h、16 h/8 h) 两两组合, 不同 光质配比是基于 Xu 等(2020)的研究确定,共10个 处理,具体设计见表1,设置3个重复,每个重复10 株苗木。全钢架结构人工培养棚内设有可调节的 人工光源,每个处理设2个灯管,灯管垂直高度为 75~85 cm(可调节,具体高度以光照强度相同时为 宜),光照强度为(350±10) μmol·m⁻²·s⁻¹(利用 MQ-500 手持式光量子测量仪测定计算, Apogee Instruments 公司,美国),设遮光材料于不同处理之 间避免光源彼此干扰。光周期采用定时器调控,12、 16 h · d · 光周期光照时间分别为 7:00—19:00、 5:00-21:00。育苗期间进行常规苗期管理,每隔两 天通风1次(20:00-23:00)。

1.3 测定指标和方法

1.3.1 生长、生物量指标测定 植株苗高采用 0.1 cm 精度直尺测定, 地径采用 0.02 mm 精度游标卡

尺测定。苗高、地径增长量为最终值(2017年9月10日测得)与初始值(2017年4月10日测得)的差值。叶面积采用 YMJ-B 便携式叶面积仪(河南云飞科技有限公司,中国)测定生长中等水平的完全展开叶。2017年9月选取3株平均木进行植株总鲜重测定,杀青烘干至恒重后用电子天平进行称量,测得根、茎、叶等器官的干重和苗木总干重。苗木质量指数(seedling quality index, SQI)计算公式如下:

SQI=苗木总干重/[(苗高最终值/地径最终值)+(茎干重/根干重)]。

1.3.2 叶绿素、内源激素测定 每个重复随机选 2 株苗木,从各个部位采集不同成熟程度的叶片,将其混合后用以测定生理指标。叶绿素 a、叶绿素 b 和类胡萝卜素的含量参照邱念伟等(2016)的方法:称取 1 g 样品,采用 80%丙酮: 乙醇=2:1 的混合液提取叶绿素,放置黑暗中 24 h 后采用分光光度计分别在波长 470、649、665 nm 下测定吸光值,根据相关公式计算色素含量。

称取 0.5 g 混合样品,液氮磨粉后,加入 2 mL 2 mL 2 mL 2 m

隶属值 $U(X_i) = (X_i - X_{i\min}) / (X_{i\max} - X_{i\min})$ 。

式中: X_i 为指标测定值; X_{imax} 和 X_{imin} 为所有处理中某项指标的最大值和最小值。

若某指标与苗木生长呈负相关,该指标隶属值通过反隶属函数计算,计算各个处理下不同指标的隶属值平均值,平均值越大表明苗木培育效果越好(张乐华等,2014)。反隶属值计算公式如下:

反隶属值 $U(X_i) = 1 - (X_i - X_{imin}) / (X_{imax} - X_{imin})_{\circ}$

表 1 不同 LED 光处理设计配比与参数

Table 1 Design ratios and parameters of different LED light treatments

处理 Treatment	光谱能量分布 Light spectral energy distribution	光周期 Photoperiod (h・d ⁻¹)	峰值波长 (λp・nm ⁻¹)	
12×W	荧光灯 Fluorescent	12	380~750	
12×8R1B1P1G	红蓝紫绿 Red/Blue/Purple/Green (8:1:1:1)	12	625/465/415/525	
12×6R1B1P1G	红蓝紫绿 Red/Blue/Purple/Green (6:1:1:1)	12	625/465/415/525	
12×8R1B	红蓝 Red/Blue (8:1)	12	625/465	
12×6R1B	红蓝 Red/Blue (6:1)	12	625/465	
16×W	荧光灯 Fluorescent	16	380~750	
16×8R1B1P1G	红蓝紫绿 Red/Blue/Purple/Green (8:1:1:1)	16	625/465/415/525	
16×6R1B1P1G	红蓝紫绿 Red/Blue/Purple/Green (6:1:1:1)	16	625/465/415/525	
16×8R1B	红蓝 Red/Blue (8:1)	16	625/465	
16×6R1B	红蓝 Red/Blue (6:1)	16	625/465	

通过 Microsoft Excel 2016 软件对试验所得数据进行整理,利用 IBM SPSS Statistics 26.0 软件进行数据统计与分析(双因素方差分析、差异显著性检验以及 Pearson 相关系数计算),使用 Origin 2021 软件进行图表绘制,图表中数据为平均值±标准差。

2 结果与分析

2.1 光质和光周期对山白兰苗木生长指标的影响

光质、光周期及其交互作用对苗高增长量、叶面积和总鲜重影响极显著(P<0.01),但光周期及其交互作用未对地径增长量产生明显影响(表2)。由图1可知,同一光质处理下,16 h·d⁻¹光周期下,山白兰苗木的总干重和苗木质量指数均比12 h·d⁻¹光周期大。16 h·d⁻¹光周期下,8R1B处理下的苗高增长量显著高于其他光质处理,叶面积和植株重量与6R1B处理在一个较高的水准,显著大于W和6R1B1P1G处理;8R1B1P1G处理下的苗高增长量、地径增长量、叶面积、植株重量和苗木质量指数较6R1B1P1G处理高。其中,16×8R1B处理下的苗高增长量、叶面积和苗木质量指数最大,分别为21.84 cm、158.39 cm²和2.43,总鲜重(59.88 g)和总干重(13.14 g)则在16×6R1B处理下达到最大。

2.2 光质和光周期对山白兰苗木光合色素含量的影响

光质及其交互作用对山白兰叶绿素 a、叶绿素 b、叶绿素 a/b 和类 胡萝卜素 的影响显著 (P < 0.05),光周期对叶绿素 a 影响极显著 (P < 0.01)

(表3)。由图2可知,同一光质处理下,16 h·d⁻¹ 光周期下的山白兰苗木叶绿素 a 总体高于12 h·d⁻¹ 光周期下的。16 h·d⁻¹ 光周期下,8R1B 和6R1B 为较有利于山白兰合成叶绿素 a 和类胡萝卜素的光质,8R1B 处理下的叶绿素 a/b 显著高于W、6R1B1P1G 和 8R1B1P1G 处理的。8R1B1P1G 处理下的叶绿素 a/b 均较6R1B1P1G 处理下的高。其中,16×8R1B 处理下的叶绿素 a、类胡萝卜素和叶绿素 a/b 最大,分别为3.88、0.48 mg·g⁻¹和2.32,叶绿素 b(3.23 mg·g⁻¹)在16×6R1B1P1G 处理下达到最大。

2.3 光质和光周期对山白兰苗木内源激素含量的 影响

光质、光周期及其交互作用对 ZR、ABA 以及 (IAA+GA₃+ZR)/ABA 影响极显著 (P<0.01), 光 质对 GA₃和 IAA / ABA 影响显著 (P<0.05), 光周期对 IAA 和 IAA/ABA 影响极显著 (P<0.01)(表4)。由图 3 可知,同一光质处理下,16 h·d⁻¹光周期下山白兰苗木具有较高的 IAA、ZR、内源激素比值和较低的 ABA。16 h·d⁻¹光周期下,8R1B1P1G处理下所有内源激素类指标较 6R1B1P1G 均有不同程度的提升,8R1B 处理下 ZR 显著高于 6R1B。其中,16×6R1B 处理下的 IAA、IAA/ABA 和(IAA+GA₃+ZR)/ABA 最大,分别为 67.19 ng·g⁻¹、1.43和 1.75,16×8R1B1P1G 处理下 GA₃最高,为 10.95 ng·g⁻¹,ZR(6.94 ng·g⁻¹)和 ABA(45.07 ng·g⁻¹)在 16×8R1B下分别达到最大值和最小值。

表 2 不同光质和光周期下山白兰苗生长指标的双因素方差分析

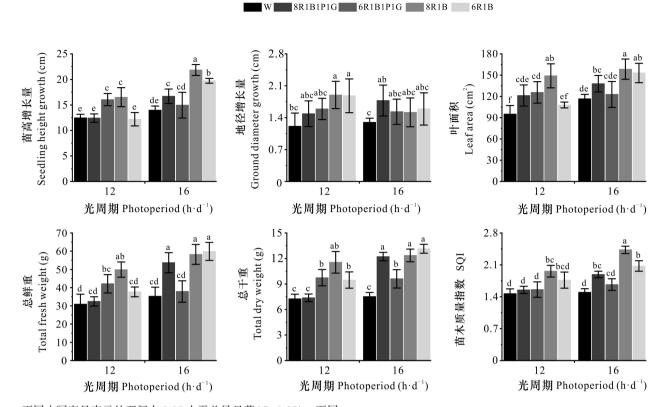
Table 2 Two-way ANOVA analysis on growth indexes of *Michelia baillonii* seedlings under different light qualities and photoperiods

指标	光质 Light quality		光周期 Photoperiod		光质×光周期 Light quality×Photoperiod	
Index	F	P	F	P	F	P
苗高增长量 Seedling height growth	7.105	0.000**	19.956	0.000**	22.800	0.000**
地径增长量 Ground diameter growth	2.728	0.038*	0.750	0.191	1.907	0.072
叶面积 Leaf area	10.930	0.000**	15.962	0.000**	13.990	0.000**
总鲜重 Total fresh weight	4.354	0.008**	11.065	0.000**	10.592	0.000**
总干重 Total dry weight	4.005	0.012*	11.728	0.000**	7.234	0.000**
苗木质量指数 SQI	6.097	0.004**	9.216	0.006**	11.969	0.000**

注: F. 检验统计量: P. 显著性水平。* 表示显著差异(P<0.05); ** 表示极显著差异(P<0.01)。下同。

Note: F. Test statistic; P. Significance level. * indicates significant differences (P < 0.05); ** indicates extremely significant differences (P < 0.01). The same below.

表 3 不同光质和光周期下山白兰苗光合色素含量的双因素方差分析


Table 3 Two-way ANOVA analysis on photosynthetic pigment contents of *Michelia baillonii* seedlings under different light qualities and photoperiods

指标	光质 Light quality		光周期 Photoperiod		光质×光周期 Light quality×Photoperiod	
Index	F	P	F	P	F	P
叶绿素 a Chlorophyll a	4.263	0.011*	6.450	0.006**	6.042	0.001**
叶绿素 b Chlorophyll b	5.630	0.003**	2.143	0.139	5.054	0.002**
类胡萝卜素 Carotenoid	5.693	0.003**	2.874	0.076	13.168	0.000**
叶绿素 a+b Chlorophyll a+b	1.851	0.155	0.106	0.900	0.896	0.540
叶绿素 a/b Chlorophyll a/b	4.889	0.006**	2.126	0.141	3.687	0.010*

表 4 不同光质和光周期下山白兰苗内源激素含量的双因素方差分析

Table 4 Two-way ANOVA analysis on endogenous hormone contents of *Michelia baillonii* seedlings under different light qualities and photoperiods

指标	光质 Light quality		光周期 Photoperiod		光质×光周期 Light quality×Photoperiod	
Index	F	P	F	P	F	P
生长素 IAA	1.127	0.354	17.547	0.000**	11.417	0.000**
赤霉素 GA ₃	4.310	0.005**	2.564	0.087	22.167	0.000**
玉米素 ZR	7.548	0.000**	23.913	0.000**	9.160	0.000**
脱落酸 ABA	12.165	0.000**	6.860	0.002**	17.468	0.000**
IAA/ABA	3.420	0.015*	20.381	0.000**	22.572	0.000**
$(IAA+GA_3+ZR)/ABA$	4.374	0.004**	19.652	0.000**	29.443	0.000**

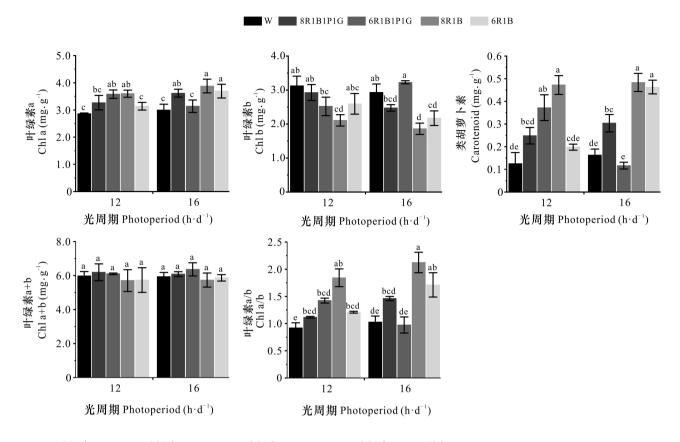
不同小写字母表示处理间在 0.05 水平差异显著(P<0.05)。下同。 Different lowercase letters indicate significant differences between treatments (P<0.05). The same below.

图 1 不同光质及光周期下山白兰苗生长变化

Fig. 1 Changes of growth of Michelia baillonii seedlings under different light qualities and photoperiods

2.4 山白兰苗木指标相关性分析及综合评价

使用 Pearson 相关系数,对不同光环境下各生长和生理指标进行关联性特征比较,由图 4 可知,除苗高增长量、叶面积和植株重量与叶绿素 a+b以外,所有生理指标均显著相关,而地径增长量与光合色素和内源激素的相关性较弱。苗高增长量与 ZR、IAA/ABA、(IAA+GA₃+ZR)/ABA 的相关系数较高(r>0.80),叶面积和植株重量与 IAA/ABA、(IAA+GA₃+ZR)/ABA 也存在较高的相关系数(r>0.75),同时植株重量与叶绿素 b(|r|>0.75),苗高增长量、叶面积与 ABA(|r|>0.82)之间呈显著负相关。


由于单个指标无法全面反映苗木的生长状况,因此文中在分析各个指标相关性的基础上,采用隶属值来反映苗木各部分之间的协调与平衡关系(张乐华等,2014;姚甲宝等,2019),本研究从16个指标中,选出苗高和地径增长量、叶面积、总干重以及光合色素和内源激素等11个指标对不

同光环境的培育效果进行综合评价,以选出最有利于促进山白兰苗木生长的光环境。由表 5 可知,隶属值最高的处理是 16×8R1B,说明该光环境下山白兰苗木各生理指标平衡,生长明显优于对照处理,表明高比例红光和较长光周期有利于促进山白兰苗木生长发育,而紫、绿光的添加无显著影响。

3 讨论

3.1 山白兰苗木生长、生物量对光质和光周期的响应

植物主要通过红/远红光受体、蓝光/近紫外光受体、紫外光受体等来感知光信号,对生长发育、生理代谢进行调节(Su et al., 2014; Ouzounis et al., 2015; Manivannan et al., 2015)。当光周期为16 h·d¹时,8R1B光质处理下的苗高增长量、叶面积、苗木质量指数显著高于8R1B1P1G;较6R1B11P1G处理,6R1B处理下苗高增长量、叶面

Chl a. 叶绿素 a; Chl b. 叶绿素 b; Chl a+b. 叶绿素 a+b; Chl a/b. 叶绿素 a/b。下同。

Chl a. Chlorophyll a; Chl b. Chlorophyll b; Chl a+b. Chlorophyll a+b; Chl a/b. Chlorophyll a/b. The same below.

图 2 不同光质及光周期下山白兰苗光合色素变化

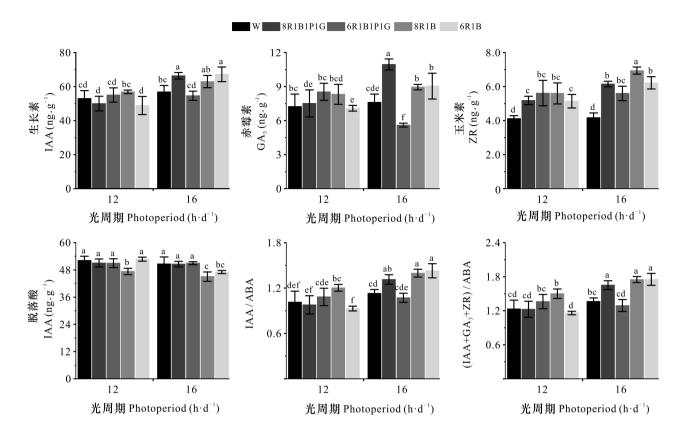
Fig. 2 Changes of photosynthetic pigment of *Michelia baillonii* seedlings under different light qualities and photoperiods

积、植株重量和苗木质量指数更高,可见,红蓝组 合光更有利于山白兰苗木的生长,这可能是由于 山白兰幼苗对紫光、绿光的需求量小,而红光与叶 绿素(640~663 nm)、光敏色素(600~700 nm)的 最大吸收波长接近,参与调节植物光合机构运营 和同化物运输(Appelgren, 1991; Baroli et al., 2008),蓝光可调控植物气孔开放(Christie, 2007; Gruszecki et al., 2010)。同时,高比例的红光更有 利于山白兰苗高的增长和生物量的累积,而随着 蓝光比例的增加,其苗高增长量与叶面积减小,这 与桑树幼苗(胡举伟等,2018)、红树莓(郭芳等, 2016)和香果树(肖志鹏等,2020)对光质的响应相 似。而红蓝组合光中紫绿光质的添加对山白兰生 长影响不大,这可能与植物对光质的响应具有一 定的物种特性有关,吴芳兰等(2022)在研究光环 境对另一个木兰科树种香梓楠幼苗生长时也发现

类似规律。光周期能够诱导、调控并促进营养生长相关基因的表达,姚宁等(2022)研究发现延长光周期可提高栎属植物的相对生长速率。本研究结果表明,光质一定时,延长光周期(16 h·d¹)可提高山白兰的苗高增长量、叶面积及总干重,这是由于植物合成与分配光合作用同化物的时长受光周期的影响(Dong et al., 2016),山白兰进行光合作用的时间随着光周期的延长而增加,表现为足量的有机物得以合成,生长发育和生物量累积加快,但山白兰地径增长量对光周期响应不显著,说明山白兰光合作用制造的同化物在苗期时很大程度消耗在株高和叶片的生长上。

3.2 山白兰苗木光合色素含量对光质和光周期的响应

光合色素通过吸收、传递光能促进植株生长 发育,主要包括叶绿素和类胡萝卜素,其合成受外 界光环境影响显著(邢阿宝等,2018),而植物对光



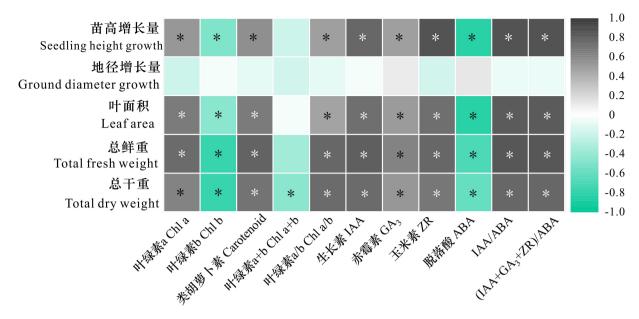

图 3 不同光周期和光质下山白兰苗内源激素的变化

Fig. 3 Changes of endogenous hormone of Michelia baillonii seedlings under different light qualities and photoperiods

能的利用程度可以通过叶绿素 a/b 来表现。光周 期为 16 h·d⁻¹时,8R1B 较 8R1B1P1G、6R1B 较 6R1B1P1G 的叶绿素 a/b 更高,可见山白兰对红蓝 光质光能的利用程度更高。同时,高比例的红光 有利于山白兰叶绿素 a、类胡萝卜素含量的提升, 随着蓝光比例的增大,植株叶绿素 b 含量增加,而 枫香幼苗(王冬雪等,2019)表现出与山白兰相反 的趋势,这可能是物种差异对不同光谱组合适应 性差异的体现。复合光质对植物的作用机理并不 是单纯叠加,12×8R1B1P1G、16×6R1B1P1G 处理 下的叶绿素 b 含量显著高于 12×8R1B 和 16× 6R1B,表明植物叶绿素受光质加性效应的影响,该 效应随着光质种类的丰富更加突出,紫绿光质能 够延缓山白兰叶片叶绿素 b 的降解从而增加其含 量,转基因741杨叶片(张文林等,2016)同样发现 加性效应的存在。此外,光质一定时,光周期的延 长有利于山白兰叶绿素 a 含量的提升,适宜的光 周期有利于山白兰提高光合色素含量和光能利用 能力。

3.3 山白兰苗木内源激素对光质和光周期的响应

光环境能通过影响植物体内内源激素含量的 高低和平衡(韩东花等,2021)来调控植株生长发 育(王海波等,2017)。ABA 具有促进植物衰老的 作用,而IAA、GA3、ZR能够延缓衰老(Jibran et al., 2013),IAA/ABA 和(IAA+GA3+ZR)/ABA 的变化 可以作为调控衰老过程的重要生理信号(Ohashi-Kaneko et al., 2007)。光周期为 16 h·d⁻¹时, 8R1B1P1G处理下山白兰 IAA、GA、的含量、IAA/ ABA 和 (IAA + GA₂ + ZR)/ABA 的比值显著高于 6R1B1P1G, 8R1B 处理下 ZR 含量显著高于 6R1B。可见光周期一定时,高红光比例的复合光 更有利于山白兰叶片促生类激素的合成,这是由 于红光能够利用光敏色素调控促生类激素合成酶 的活性,而蓝光对吲哚乙酸(IAA)氧化酶的活性有 促进作用,在观光木(刘涛等,2022)和桑树(胡举 伟等,2018)对光质的响应中也发现类似规律。光 质一定时,16 h·d⁻¹光周期下山白兰 IAA、ZR 的含 量、IAA/ABA 和 (IAA+GA3+ZR)/ABA 的比值较

右侧刻度为相关系数(r)。

Scale on the right side is the correlation coefficient (r).

图 4 山白兰苗木生长指标与叶绿素和内源激素相关性分析

Fig. 4 Correlation analysis between growth indexes and chlorophyll and endogenous hormone of *Michelia baillonii* seedlings

表 5 光质和光周期处理山白兰苗木的指标隶属函数分析(截取综合排名前 6 的处理)

Table 5 Membership function analysis of indexes of *Michelia baillonii* seedlings treated with different light qualities and photoperiods (treatments of the overall Top 6 treatments are selected)

No. Lea	光质和光周期处理 Light quality and photoperiod treatment						
指标 Index	16× 8R1B	16× 6R1B	12× 8R1B	16× 8R1B1P1G	12× 6R1B1P1G	12× 6R1B	
苗高增长量 Seedling height growth	1.000	0.780	0.446	0.467	0.398	0.000	
地径增长量 Ground diameter growth	0.444	0.556	1.000	0.823	0.553	0.973	
叶面积 Leaf area	1.000	0.916	0.851	0.676	0.482	0.203	
总干重 Total dry weight	0.867	1.000	0.730	0.845	0.422	0.324	
叶绿素 a Chlorophyll a	1.000	0.817	0.725	0.742	0.709	0.275	
叶绿素 b Chlorophyll b	1.000	0.771	0.820	0.551	0.517	0.463	
类胡萝卜素 Carotenoid	1.000	0.945	0.970	0.510	0.697	0.223	
生长素 IAA	0.767	1.000	0.437	0.952	0.337	0.000	
赤霉素 GA ₃	0.625	0.643	0.507	1.000	0.549	0.277	
玉米素 ZR	1.000	0.744	0.526	0.722	0.532	0.363	
脱落酸 ABA	1.000	0.743	0.706	0.286	0.230	0.000	
隶属值 Membership value	0.908	0.827	0.697	0.673	0.451	0.281	
综合排名 Overall rank	1	2	3	4	5	6	

12 h·d⁻¹提升明显,光周期的延长有利于山白兰的 促生类激素含量的提高,可能是由于绿色植物的 主要光受体 PHYB(樊文娜等,2014)通过光周期 来调控内源激素合成和平衡。

3.4 山白兰苗木对光环境响应的综合评价

植物对外界环境的适应能力无法通过单一指 标来体现,研究中常通过苗木的隶属值进行综合 评价(汪丛啸等,2022)。本研究中,16×8R1B处 理下山白兰苗木的隶属值(0.908)和苗木质量指 数(2.43)最高,该处理下的山白兰苗木苗高增长 量(21.84 cm)与叶面积(158.39 cm²)最高,同时具 有最高的 ZR(6.94 ng·g⁻¹) 和最低的 ABA(45.07 ng·g-1)含量,可见通过选择合适的光周期和光 质,可以改善山白兰苗木内源激素水平,促进苗期 山白兰的生长发育,提升苗木品质。同时,苗高增 长量、叶面积和植株重量与叶绿素 a、类胡萝卜素、 IAA、GA、ZR的含量、叶绿素 a/b、IAA/ABA 和 (IAA+GA3+ZR)/ABA 的比值间均存在显著正相 关,说明叶绿素、类胡萝卜素和内源激素与山白兰 苗木生长关系密切,光周期和光质可以直接影响 山白兰苗木的光合色素和内源激素,从而对苗木 生长进行调控,但具体作用机制有待进一步研究。

4 结论

不同光质和光周期通过对山白兰幼苗光合色素和内源激素的影响,调控其苗木生长,苗高增长量、叶面积和植株重量与叶绿素 a、类胡萝卜素、IAA、GA₃、ZR 的含量、叶绿素 a/b、IAA/ABA 和(IAA+GA₃+ZR)/ABA 的比值间均存在显著正相关。高红光比例的红蓝复合光源和延长光周期有利于山白兰的生长发育,而红蓝紫绿复合光对促进其生长无显著影响。因此,16 h·d⁻¹×8R1B 处理是山白兰苗木培育较为适宜的光环境,该处理下山白兰幼苗光合色素、内源激素的含量均保持在较高水平,有利于改良山白兰幼苗品质。

参考文献:

- APPELGREN M, 1991. Effects of light quality on stem elongation of *Pelargonium in vitro* [J]. Sci Hortic, 45 (3/4): 345-351.
- BAI SW, XU YZ, ZHANG WB, et al., 2017. Effects of blue and

- purple light on the growth, photosynthetic characteristics and antioxidative activities in yellow sweet pepper seedling [J]. Agric Res Arid Areas, 35(6): 146–153. [白生文,许耀照,张文斌,等, 2017. 光质对甜椒幼苗生长生理及抗氧化性的影响 [J]. 干旱地区农业研究, 35(6): 146–153.]
- BAROLI I, PRICE GD, BADGER MR, et al., 2008. The contribution of photosynthesis to the red light response of stomatal conductance [J]. Plant Physiol, 146(2): 737-747.
- CHRISTIE J, 2007. Phototropin blue-light receptors [J]. Ann Rev Plant Biol, 58: 21-45.
- DONG WX, ZHANG YY, ZHANG YL, et al., 2016. Short-day photoperiod effects on plant growth, flower bud differentiation, and yield formation in adzuki bean (*Vigna angularis*) [J]. Int J Agric Biol, 18(2): 337–345.
- FAN WN, SUN XG, NI JX, et al., 2014. Effect of photoperiod on phytochromes and endogenous hormones of alfalfa with different fall-dormancies [J]. Acta Pratac Sin, 23(1): 177–184. [樊文娜, 孙晓格, 倪俊霞, 等, 2014. 光周期对不同 秋眠型苜蓿光敏色素和内源激素的影响 [J]. 草业学报, 23(1): 177–184.]
- GRUSZECKI W, LUCHOWSKI R, ZUBIK M, et al., 2010. Blue-light-controlled photoprotection in plants at the level of the photosynthetic antenna complex LHCII [J]. J Plant Physiol, 167(1): 69-73.
- GUO F, LIU HP, LI BG, et al., 2016. Effect of light quality on growth and partial physiological and biochemical characteristics of red raspberry tissue culture plantlets [J]. N Hortic, (22): 15-19. [郭芳, 刘海鹏, 李保国, 等, 2016. 光质对红树莓组培苗生长及部分生理生化特性的影响 [J]. 北方园艺, (22): 15-19.]
- GUO FC, LIU SR, WEN YG, et al., 2015. Photosynthetic characteristics of eleven precious broadleaved tree species in south subtropics [J]. Guangxi Sci, 22(6): 606-611. [郭昉晨, 刘世荣, 温远光, 等, 2015. 南亚热带 11 种珍贵阔叶树种光合特性研究 [J]. 广西科学, 22(6): 606-611.]
- HAN DH, YANG GJ, XIAO Y, et al., 2021. Dynamic changes of endogenous hormone content in *Catalpa bungei* seeds during their developmental periods [J]. For Res, 34(1): 56-64. [韩东花, 杨桂娟, 肖遥, 等, 2021. 楸树种子发育过程中内源激素含量的动态变化 [J]. 林业科学研究, 34(1): 56-64.]
- HUANG ZS, 2015. Study on the effect of seeding fertilization of *Paramichelia baillonii* [D]. Nanning: Guangxi University. [黄振声, 2015. 山白兰苗期施肥效应研究 [D]. 南宁: 广西大学.]
- HU JW, DAI X, SONG T, et al., 2018. Effects of different proportions of red and blue light on the growth and physiological characteristics of mulberry seedlings [J]. Acta Agric Boreal-Sin, 33(S1): 160-169. [胡举伟, 代欣, 宋涛, 等, 2018. 不同红蓝光配比对桑树幼苗生长和生理特性的影响 [J]. 华北农学报, 33(S1): 160-169.]

- HU JW, DAI X, SONG T, et al., 2018. Effect of different proportions of red and blue light on carbon-nitrogen metabolism and endogenous hormones in mulberry seedlings [J]. Pratac Sci, 35(10): 2489-2499. [胡举伟, 代欣, 宋涛, 等, 2018. 红蓝光配比对桑树幼苗碳、氮代谢和内源激素的影响 [J]. 草业科学, 35(10): 2489-2499.]
- JIBRAN R, HUNTER D, DIJKWEL P, 2013. Hormonal regulation of leaf senescence through integration of developmental and stress signals [J]. Plant Mol Biol, 82(6): 547-561.
- LI QZ, CAI YM, YANG Z, et al., 2019. Effects of the quality of LED light on the growth, physiological characteristics, and the accumulation of alkaloids in *Lycoris radiata* [J]. Chin J Appl Environ Biol, 25(6): 1414-1419. [李青竹, 蔡友铭, 杨贞, 等, 2019. 不同 LED 光质对石蒜幼苗生长、生理和生物碱积累的影响 [J]. 应用与环境生物学报, 25(6): 1414-1419.]
- LI YF, GUO PF, ZHANG XY, et al., 2021. Influence of shading on photosynthetic characteristics and growth of *Cyclocarya paliurus* seedlings [J]. J NE For Univ, 49(8): 6–10. [李雨霏,郭鹏飞,张小燕,等, 2021. 遮荫对青钱柳苗期光合特性和生长的影响[J]. 东北林业大学学报, 49(8): 6–10.]
- LIU JC, ZHAO LJ, ZHU LQ, 2020. Effects of shading on growth and photosynthetic characteristics of three *Magnoliaceae* seedlings [J]. Guihaia, 40(8): 1159-1168. [刘金炽, 招礼军, 朱栗琼, 2020. 遮阴对三种木兰科幼苗生长和光合特性的影响[J]. 广西植物, 40(8): 1159-1168.]
- LIU YG, SU JW, WANG QH, et al., 2019. Growth characteristics of *Paramichelia baillonii* at seedling stage [J]. J W Chin For Sci, 48(6): 9-14. [刘永刚, 苏俊武, 王庆华, 等, 2019. 合果木苗期生长特性 [J]. 西部林业科学, 48(6): 9-14.]
- LIU T, LI WN, WANG JY, et al., 2022. Effects of red and blue light ratio on growth and endogenous hormone synthesis of *Tsoongiodendron odorum* seedlings [J]. J SW For Univ, 42(2):11-18. [刘涛,李万年,王家妍,等,2022. 红蓝光质配比对观光木苗木生长及内源激素的影响[J].西南林业大学学报,42(2):11-18.]
- LIU YB, WANG JW, LUO XH, et al., 2020. Effect of LED light quality on the growth, quality and key enzyme activities of nitrogen metabolism of celery [J]. Chin Cucurbits Veg, 33(12):71-76. [刘玉兵,王军伟,罗鑫辉,等,2020. LED 光质对芹菜生长、品质及氮代谢关键酶活性的影响 [J]. 中国瓜菜,33(12):71-76.]
- MA XY, JIAO GL, 2008. Photosynthetic characteristics and water use efficiency of *Paramichelia baillonii* of Magnoliacease [J]. J Anhui Agric Sci, 36 (25): 10787-10789. [马小英, 焦根林, 2008. 合果木光合生理特性及水分利用特点的研究 [J]. 安徽农业科学, 36 (25): 10787-10789.]

- MANIVANNAN A, SOUNDARARAJAN P, HALIMAH N, et al., 2015. Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of *Rehmannia glutinosa* cultured *in vitro* [J]. Hortic Environ Biotechnol, 56(1): 105–113.
- OHASHI-KANEKO K, TAKASE M, KON N, et al., 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna [J]. Environ Contr Biol, 45(3): 189-198.
- OUZOUNIS T, FRETTÉ X, OTTOSEN CO, et al., 2015. Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in *Phalaenopsis* 'Vivien' and 'Purple Star' [J]. Physiol Plant, 154(2): 314–327.
- QIU Q, YANG DJ, ZHONG P, et al., 2018. Effects of seedling substrate, container size and fertilizer amount on the seedling growth of *Paramichelia baillonii* [J]. J W Chin For Sci, 47(6): 131-135. [邱琼,杨德军,钟萍,等, 2018. 育苗基质、容器规格和施肥量对山桂花幼苗生长的影响 [J]. 西部林业科学, 47(6): 131-135.]
- QIU NW, WANG XS, YANG FB, et al., 2016. Fast extraction and precise determination of chlorophyll [J]. Chin Bull Bot, 51(5): 667 678. [邱念伟, 王修顺, 杨发斌, 等, 2016. 叶绿素的快速提取与精密测定 [J]. 植物学报, 51(5): 667-678.]
- SHEN LF, XIE AD, WANG LH, et al., 2011. Current status of *Paramichelia baillonii* resource utilization and its prospect [J]. J S Agric, 42(11): 1324-1328. [申礼凤, 谢安德, 王凌晖, 等, 2011. 山白兰资源研究利用现状及展望 [J]. 南方农业学报, 42(11): 1324-1328.]
- SU N, WU Q, SHEN Z, et al., 2014. Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings [J]. Plant Growth Regul, 73(3): 227–235.
- WANG CX, HE FY, YANG M, et al., 2022. Effects of three bacillus agents on growth and photosynthetic characteristics of *Parashorea chinensis* seedlings [J]. J Trop Subtrop Bot, 30(2): 213-223. [汪丛啸, 何福英, 杨梅, 等, 2022. 3 种 芽孢杆菌菌剂对望天树苗木生长和光合特性的影响 [J]. 热带亚热带植物学报, 30(2): 213-223.]
- WANG DX, SUN HJ, DE YJ, et al., 2019. Change of leaf color of *Liquidambar formosana* seedlings under different light quality treatments [J]. For Res, 32(4): 158-164. [王冬雪, 孙海菁, 德永军, 等, 2019. 不同光质处理对枫香幼苗叶色的影响 [J]. 林业科学研究, 32(4): 158-164.]
- WANG HB, WANG S, WANG XD, et al., 2017. Effects of light quality on leaf senescence and endogenous hormones content in grapevine under protected cultivation [J]. Chin J Appl Ecol, 28(11): 3535-3543. [王海波,王帅,王孝娣,

- 等, 2017. 光质对设施葡萄叶片衰老与内源激素含量的影响 [J]. 应用生态学报, 28(11): 3535-3543.]
- WANG TT, ZHAN Z, MA J, et al., 2021. Effects of different light qualities on growth and photosynthetic characteristics of *Bletilla striata* seedlings *in vitro* [J]. Guihaia, 41(4): 584-590. [王婷婷, 占卓, 马健, 等, 2021. 不同光质对白及组培苗生长及光合特性的影响 [J]. 广西植物, 41(4): 584-590.]
- WANG YY, LI R, GAO MB, et al., 2020. Effects of LED light with different light qualities on growth and physiological indexes of *Solanum muricatum* Aiton tissue culture plantlets [J]. Chin J Trop Agric, 40(11): 69-74. [王玉英,李茹,高买波,等,2020. 不同光质 LED 对人参果组培苗生长和生理指标的影响 [J]. 热带农业科学,40(11): 69-74.]
- WANG YZ, GU W, CHAO JG, et al., 2019. Effects of different photoperiods on the growth and some physiological and biochemical indexes of *Atractylodes lancea* (Thunb.) DC. during vegetative growth [J]. Guangxi Agric Sci, 50(12): 2673 2679. [王玉卓,谷巍,巢建国,等, 2019. 不同光周期对茅苍术营养生长期生长及生理生化指标的影响[J]. 南方农业学报,50(12): 2673–2679.]
- WU FL, LI SL, YANG M, et al., 2022. Effects of LED light qualities and photoperiods on growth and photosynthetic characteristics of *Magnolia hypolampra* [J]. Guihaia, 42(12): 2167 2177. [吴芳兰,李书玲,杨梅,等, 2021. LED 光质及光周期对香梓楠幼苗生长和光合特性的影响[J].广西植物,42(12): 2167-2177.]
- WU Y, RONG R, CHEN F, et al., 2020. Effect of light quality on morphogenesis and photosynthetic characteristics of *Davidia involucrata* seedlings [J]. J Sichuan Agric Univ (Nat Sci Ed), 57(4): 804-810. [吴艳, 荣熔, 陈放, 等, 2020. 光质对珙桐幼苗形态建成及光合特性的影响 [J]. 四川大学学报(自然科学版), 57(4): 804-810.]
- XIAO ZP, YIN CM, GUO LJ, et al., 2020. Effect of light quality on seed germination and seeding growth of *Emmenopterys henryi* [J]. Bull Bot Res, 40(2): 189-195. [肖志鹏,殷崇敏,郭连金,等,2020. 光质对香果树种子萌发及幼苗生长影响的研究[J]. 植物研究,40(2): 189-195.]
- XING AB, CUI HF, YU XP, et al., 2018. Effects of different lights qualities and photoperiods on plant growth and development [J]. N Hortic, (3): 163-172. [邢阿宝, 崔海峰, 俞晓平, 等, 2018. 光质及光周期对植物生长发育的影响[J]. 北方园艺, (3): 163-172.]
- XU YY, 2017. Effects of composite led on rooting andphysiological and biochemical characteristics of tissue culture seedlings of *Cunninghamia lanceolata* [D]. Nanning: Guangxi University. [徐圆圆, 2017. 复配 LED 光源对红心杉组培苗生根及生理生化特性的影响[D]. 南宁: 广西大学.]

- XU YY, YANG M, CHENG F, et al., 2020. Effects of LED photoperiods and light qualities on *in vitro* growth and chlorophyll fluorescence of *Cunninghamia lanceolata* [J]. BMC Plant Biol, 20(1): 269.
- YAN ZS, ZHANG XP, WANG L, et al., 2020. Effects of different light intensities and light quality on the growth of the pipeline hydroponic lettuce [J]. N Hortic, (21): 15-20. [严宗山,张想平,王蕾,等,2020. 不同光强和光质对管道水培生菜生长发育的影响[J]. 北方园艺,(21): 15-20.]
- YANG YK, CHEN YQ, LIN BY, et al., 2018. Effects of light quality on photosynthesis and chlorophyll fluorescence parameters of eggplant seedling [J]. J Fujian Agric For Univ (Nat Sci Ed), 47(6): 673-680. [杨玉凯, 陈艺群, 林碧英, 等, 2018. 光质对茄子幼苗光合特性及叶绿素荧光参数的影响 [J]. 福建农林大学学报(自然科学版), 47(6): 673-680.]
- YAO N, LIU JF, JIANG ZP, et al., 2022. Effects of photoperiod and light quality on seedling growth and chlorophyll fluorescence kinetics of *Quercus* L. [J]. For Res, 35(1):59-69. [姚宁,刘建锋,江泽平,等,2022. 光周期与光质对栎属幼苗生长及叶绿素荧光的影响[J]. 林业科学研究,35(1):59-69.]
- YAO JB, YUAN XJ, ZHOU XH, et al., 2019. Scheme optimization for big container seedlings of *Taxus wallichiana* var. *mairei* [J]. J NE For Univ, 47(11): 11–16. [姚甲宝, 袁小军, 周新华, 等, 2019. 南方红豆杉 2 年生容器苗育苗方案优选[J]. 东北林业大学学报, 47(11): 11–16.]
- ZHANG LH, WANG SS, SHAN W, et al., 2014. Influences of growth media, and hormone types and concentrations on cutting propagation of *Rhododendron latoucheae* [J]. Sci Silv Sin, 50(3): 45-54. [张乐华, 王书胜, 单文, 等, 2014. 基质、激素种类及其浓度对鹿角杜鹃扦插育苗的影响[J]. 林业科学, 50(3): 45-54.]
- ZHANG WL, REN YC, ZHANG YW, et al., 2016. Effect of different LED light qualities on Bt toxic protein content and chlorophyll fluorescence of transgenic poplar leaves [J]. Acta Agric Nucl Sin, 30(8): 1639–1645. [张文林,任亚超,张益文,等,2016. 不同光质 LED 光源对转基因杨树叶片 Bt 毒蛋白含量及叶绿素荧光参数的影响 [J]. 核农学报,30(8): 1639–1645.]
- ZHOU JY, DING GC, WANG T, et al., 2013. The status guo of the application of LED light source in seedling breeding and its prospects in the breeding of forestry seedlings [J]. Acta Agric Univ Jiangxi (Nat Sci Ed), 35(2): 370–374. [周锦业, 丁国昌, 汪婷, 等, 2013. LED 光源在种苗繁育中的应用现状及前景分析 [J]. 江西农业大学学报, 35(2): 370–374.]

(责任编辑 邓斯丽)