广步植物 Guihaia Jan. 2024, 44(1): 1-14

DOI: 10.11931/guihaia.gxzw202211070

高鑫祯, 唐露, 汪雨, 等, 2024. 珍稀濒危飘带兜兰叶绿体全基因组种内变异研究 [J]. 广西植物, 44(1): 1-14. GAO XZ, TANG L, WANG Y, et al., 2024. Intraspecific genetic variation within chloroplast genome of a rare and endangered species *Paphiopedilum parishii* (Orchidaceae) [J]. Guihaia, 44(1): 1-14.

珍稀濒危飘带兜兰叶绿体全基因组种内变异研究

高鑫祯^{1,2},唐 露¹,汪 雨^{1,3},邵士成¹,罗 艳¹*

(1. 中国科学院西双版纳热带植物园,云南 勐腊 666303; 2. 中国科学院大学, 北京 100049; 3. 西南林业大学 园林园艺学院,昆明 650224)

摘 要:飘带兜兰 (Paphiopedilum parishii) 分布范围狭窄,仅在中国、缅甸、泰国以及老挝有少量分布。近年 来,因生境破坏和人为滥采而导致飘带兜兰野生种群极度缩减。为开发种内多态性的分子标记用于保护生物 学研究,该研究对飘带兜兰4个野生个体经测序、组装、注释获得的叶绿体基因组序列,与已公布的飘带兜兰2 个个体的叶绿体全基因组序列进行比对,分析飘带兜兰叶绿体基因组的种内差异。结果表明:(1)飘带兜兰 叶绿体基因组具有典型被子植物叶绿体基因组环状四分体结构,基因组长度为154403~154809 bp,共编码 129个基因,包括78个蛋白质编码基因、39个tRNA基因、8个rRNA基因,以及4个假基因。(2)在飘带兜兰 6 个个体叶绿体基因组中检测到 103~107 个 SSRs (simple sequence repeats) 位点,其中 21 个 SSR 位点具有多 态性。此外,在6个个体叶绿体基因组中还检测到60个长序列重复,包括17~21个正向重复、18~29个反向 重复、9~16个回文重复、4~9个互补重复。(3)通过比较6个个体叶绿体基因组序列的核苷酸多样性,共发 现 70 处变异,包括 10 个 SNPs (single nucleotide polymorphism)、60 个插入缺失 (InDels)。其中,有 3 个 SNP 位点发生了非同义替换,导致编码功能基因的氨基酸发生改变:19个插入缺失多态性较高,具有开发为分子 标记的潜力。(4)通过计算核苷酸多样性值(P)共发现8个有变异的区域、P,值为0~0.00632,其中变异度 较大的是rps3-rpl22、trnL-UAC-rpl32、rpoB-trnC-GCA以及ycf4,这些高变区可开发为分子标记用于评估飘带兜 兰遗传多样性。(5)系统发生分析结果表明,飘带兜兰6个个体叶绿体基因组序列聚在一起,与长瓣兜兰互 为姐妹群。综上表明,飘带兜兰叶绿体基因组的 SSRs、长序列重复、SNPs、InDels 以及核苷酸序列呈现了足够 的种内多样性,可开发成分子标记用于该种的系统演化及保护生物学研究。 关键词: 叶绿体全基因组, 飘带兜兰, 序列差异, 多态性分子标记, 插入缺失, 微卫星

中图分类号: Q943 文献标识码: A 文章编号: 1000-3142(2024)01-0001-14

Intraspecific genetic variation within chloroplast genome of a rare and endangered species *Paphiopedilum parishii* (Orchidaceae)

GAO Xinzhen^{1,2}, TANG Lu¹, WANG Yu^{1,3}, SHAO Shicheng¹, LUO Yan^{1*}

收稿日期: 2023-01-25

基金项目:国家自然科学基金(31870183,32270225)。

第一作者:高鑫祯 (1997-),硕士,研究方向为保护生物学,(E-mail)gaoxinzhen@ xtbg.ac.cn。

^{*}通信作者:罗艳,博士,研究员,研究方向为兰科植物多样性与保护,(E-mail)luoyan@xtbg.org.cn。

(1. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Landscape Architecture, Southwest Forestry University, Kunming 650224, China)

Abstract: Paphiopedilum parishii is a rare and endangered species with few localities and fragmented populations found in China, Myanmar, Thailand and Laos. Environmental changes and over-harvesting have led to a decrease in its wild populations. It is important to protect endangered species' genetic diversity since it provides the species with the ability to adapt and survive. However, little is known about the genetic information of this species. This study aims to detect intraspecific variation and develop polymorphic genetic markers of P. parishii. The complete chloroplast genome of four individuals of wild P. parishii was obtained by sequencing, assembling and annotating, then compared with the existing genomic data of two individuals available from GenBank to detect the intraspecific variation. Further, simple sequence repeats (SSRs), single nucleotide polymorphisms (SNPs), and insertions and deletions (InDels) were identified. The results were as follows: (1) The four new sequencing chloroplast genomes were quadripartite, with a length between 154 403 bp and 154 809 bp, with 129 genes (78 protein coding genes, 39 tRNAs, 8 rRNAs and four pseudogenes). (2) As a result of comparison of six individuals, 103-107 SSR loci were identified in the chloroplast genome of six individuals of P. parishii, and 21 SSRs were polymorphic. And 60 long repeats were found, including 17-21 forward repeats, 18-29 reverse repeats, 9-16 palindromic repeats, and 4-9 complement repeats. (3) In addition, a total of 10 SNPs and 60 InDels were uncovered across the plastome. Three of the non-synonymous mutations caused amino acid changes in functional domains. 19 InDels might be selected for possible chloroplast DNA markers to determine intraspecific variation. (4) The value of nucleotide diversity (P_i) was calculated ranging from 0-0.006 32 suggesting sequences with low variation. Hyper-polymorphic regions, e.g. intergenic spacers rps3-rpl22, trnL-UAC-rpl32, rpoBtrnC-GCA and vcf4 gene were identified as potential barcoding regions. (5) The phylogenetic analyses based on the complete chloroplast genome supported three lineages in Paphiopedilum, and six individuals of P. parishii form a monophyletic group. SSRs, long repeats, InDels, SNPs and nucleotide sequences showed sufficient intraspecific genetic variation in P. parishii. The molecular markers developed here will contribute to further evolutionary studies and conservation of P. parishii.

Key words: chloroplast genome, *Paphiopedilum parishii*, sequence divergence, polymorphic DNA markers, InDels, SSRs

遗传多样性代表着物种适应环境和生存发展 的能力,保存珍稀濒危物种的遗传多样性是物种 保护的重要目标 (Guerrant & Pavlik, 1998; 黄宏 文,2018)。叶绿体是植物细胞内进行光合固碳 和胁迫应答的重要半自主遗传细胞器,植物叶绿 体基因组为环状 DNA 分子,单亲遗传,基因组大 小为107~218 kb. 基因结构和组成稳定(张韵洁 和李德铢, 2011; Ivanova et al., 2017)。叶绿体基 因组通常为四分体结构,包括两个反向重复序列 (inverted repeat, IR)、一个大单拷贝区 (large single copy region, LSC) 和一个小单拷贝区 (small single copy region, SSC) (Wolfe et al., 1987; 田欣 和李德铢, 2002; Jansen et al., 2005; 张韵洁和李 德铢, 2011; He et al., 2019)。叶绿体基因组编 码 110~130 个基因,主要包括光合作用相关和叶 绿体基因表达相关的基因等(张韵洁和李德铢,

2011)。叶绿体基因组虽然较小,但包含有大量遗 传信息,在核苷酸序列水平和结构重排上呈现出 进化与保守性,编码区和非编码区有不同进化速 率,在分子水平上有明显差异,可用于区分种间关 系、评估种间变异性等,被广泛用于群体遗传多样 性、系统演化等研究领域(Wolfe et al., 1987;张 韵洁和李德铢, 2011; He et al., 2019;黎若竹等, 2022)。近年来,利用种内不同个体叶绿体基因组 的种内变异,为物种进化研究、种质资源利用以及 濒危植物保护提供了基础遗传信息(Ishizuka et al., 2017; Muraguri et al., 2020; Zhang RS et al., 2020)。

兜兰属(*Paphiopedilum*)为兰科(Orchidaceae)杓兰亚科(subfamily Cypripedioideae)植物,有80余种,主要分布于亚洲至太平洋岛屿的 热带亚热带地区的石灰岩山地(Cribb, 1998; 刘 仲健等,2009)。兜兰的唇瓣因形似拖鞋而被称为"拖鞋兰",具有极高的观赏价值(杨颖婕等,2021)。近年来,兜兰属植物的自然生境局限于生态环境脆弱的喀斯特地区,加上过度采挖等人类活动导致的生态退化和生境严重破坏,使得兜兰属植物野生种群数量急剧减少,部分兜兰属植物面临野外灭绝的风险(罗毅波等,2003;杨颖婕等,2021)。目前,所有野生兜兰种类均列入《濒危野生动植物种国际贸易公约》(Convention on International Trade in Endangered Species of Wild Fauna and Flora, CITES),同时我国分布的野生兜兰属植物也全部列入《国家重点保护野生植物名录》(2021年9月颁布实施)。因此,我国野生兜兰属物种的濒危机制与保护工作急需开展。

飘带兜兰 (Paphiopedilum parishii) 为附生兰 科植物,生于海拔1000~1100 m的树干或石头 上,为我国一级重点保护植物。飘带兜兰被世界 自然保护联盟(International Union for Conservation of Nature, IUCN) 评估为濒危等级 (Endangered, ER),仅在中国云南南部、泰国、缅甸和老挝分布 有少数的野生种群 (Rankou & Averyanov, 2015)。 飘带兜兰具有极高的观赏价值,在各植物园均有 引种,但野生种群已极为罕见。Chen等(2012) 在云南南部进行了飘带兜兰繁殖生物学的观察, 发现该种具有独特的自动授粉机制。基于叶绿体 全基因组发育基因组学的研究,飘带兜兰属于兜 兰亚属 (subgenus Paphiopedilum) (Guo et al., 2021)。但是,有关飘带兜兰的遗传信息仍不完 善,缺乏评估遗传多样性及种内多样性的分子标 记,不利于对其开展综合保护。

本研究选取飘带兜兰的4个野生个体进行浅层 基因组测序、组装获得叶绿体全基因组,并与已公 开的该种2个个体叶绿体基因组(Guo et al., 2021; Kao et al., 2021)进行基因组比较,分析飘带兜兰叶 绿体基因组的种内变异,理解其基因进化水平和遗 传多样性,以期开发种内多态性的分子标记用于保 护生物学研究,为开展飘带兜兰的濒危机制及物种 保护研究提供遗传信息基础资料。

1 材料与方法

1.1 研究材料及 DNA 提取、测序

飘带兜兰 4 个个体分别采自云南省勐腊县

(P. parishii_1 和 P. parishii_2)及澜沧县(P. parishii_3 和 P. parishii_4)两个野生居群(图1),取新鲜叶片放入硅胶中干燥。采用植物基因组 DNA 提取试剂盒(TIANGEN,中国北京)提取叶片总 DNA,使用 IlluminaTruSeq 文库建立试剂盒(San Diego, CA, USA)构建测序文库,利用 Illumina Hiseq 2500测序平台(上海派森诺生物科技有限公司)进行浅层基因组测序。同时,在 GenBank 上下载已公开的另外 2 个飘带兜兰个体的叶绿体基因组序列(P. parishii_5, MW528213 和 P. parishii_6, MN587822)进行比较基因组分析。

1.2 叶绿体基因组的组装和注释

采用 Fastp 软件对下机后的原始数据(raw data)进行过滤,获得高质量测序数据(clean data) 后,用 GetOrganelle v1.6.3 程序将测序后得 到的数据组装成叶绿体基因组(Jin et al., 2018)。 组装完成后的叶绿体基因组数据用 Geneious Prime v2021.2.2 的 MAFFT 工具进行比对后,使用在线工 具 CPGAVAS2 (http://47.90.241.85:16019/analyzer/ annotate2) (Shi et al., 2019), GeSeq (https:// chlorobox.mpimp-golm.mpg.de/geseq.html) (Tillich et al., 2017) 和 tRNA-scan-SE v2.0.3 (Lowe & Chan, 2016) 对叶绿体基因组的蛋白质编码区、核糖体 RNA (rRNA) 和转运 RNA (tRNA) 进行注释,参 考已发表的兜兰属叶绿体基因组对注释结果进行 校正。通过 OGDRAW (https://chlorobox.mpimpgolm.mpg.de/OGDraw. html) 在线网站绘制飘带兜 兰叶绿体基因组图谱 (Lohse et al., 2007)。使用 Geneious Prime 2021.2.2 软件分析 6 个飘带兜兰叶 绿体基因组的基本结构,统计 LSC、SSC、IR 的长度 以及 GC 含量、蛋白质编码基因、tRNA 基因、rRNA 基因的数目。

1.3 叶绿体基因组重复序列和 SSR 分析

通过 MISA 在线网站(https://webblast.ipkgatersleben.de/misa)(Beier et al., 2017)测算叶 绿体基因组中简单重复序列(simple sequence repeats, SSR)的分布,将核苷酸最小重复数分别 设置为10(单核苷酸重复mononucleotide repeats)、5(二核苷酸重复dinucleotide repeats)、4 (三核苷酸重复trinucleotide repeats)、3(四核苷酸 重复tetranucleotide repeats)、3(五核苷酸重复 pentanucleotide repeats)、3(六核苷酸重复 hexanucleotide repeats)。 通过 REPuter (https://bibiserv.cebitec.unibielefeld.de/reputer)(Kurtz et al., 2001)在线网 站测算叶绿体基因组中其他重复序列的分布,参 数设置为最小重复序列 30 bp,汉明距离(Hamming distance)设置为 3 (Liang et al., 2019)。

1.4 种间叶绿体基因组的比较分析

通过 mVISTA (https://genome.lbl.gov/vista) 在线网站 (Frazer et al., 2004),以 *P. parishii*_1 的 叶绿体基因组作为参考,将其余 5 条飘带兜兰的叶 绿体基因组的编码区、基因间隔区、内含子区进行 比对分析,评估各基因组序列之间的相似性和差 异。使用 R v4.0.2 软件运行 IRscope (Amiryousefi et al., 2018) 脚本,对 6 个个体的叶绿体基因组序列 的相邻边界区域进行绘制,比较分析边界区域的扩 张和收缩情况。使用 DnaSP v5.10.0.1 软件,统计飘 带兜兰不同个体间序列的单核苷酸变异 (SNPs) 和 插入缺失 (InDels) 情况,计算各序列间核苷酸多样 性 (P_i)。

1.5 系统发育分析

从 GenBank 上下载 15 种兜兰属叶绿体全基 因组序列,与本研究新测序拼装的 4 个个体以及 已发表的 2 条飘带兜兰叶绿体基因组序列,以 3 种 杓兰属植物为外类群来构建系统发育树(物种的 基因登录号见图 5)。使用 PhyloSuite v1.2.2 软件, 利用 ModelFinder 计算最佳碱基替换模型(Zhang et al., 2020a),使用叶绿体基因组全序列,经 MAFFT 进行多序列比对后,采用 IQ-TREE 构建最 大似然法(maximum likelihood, ML)系统发育树 (Trifinopoulos et al., 2016),系统发育树分支的支 持率基于 bootstrap 自展法检测,将 bootstrap 值设 置为 5 000、重复次数设置为 1 000 次。

2 结果与分析

2.1 飘带兜兰叶绿体基因组基本特征

对原始数据进行过滤后,飘带兜兰4个样品 分别获得2.4~3.1 G的高质量 clean data。组装 和注释的叶绿体全基因组序列已登录至 GenBank (登录号为 OP 604356~OP 604359)。将本研究 获得的飘带兜兰4个个体和已公布的2个飘带 兜兰叶绿体基因组一起比对分析,发现6条序列 的叶绿体基因组均为环状四分体结构,包括 LSC 区、SSC 区和2个 IR 区(图2)。叶绿体基因组 序列全长为 154 403~154 809 bp,其中 LSC 的长 度为86 581~86 983 bp,SSC 的长度为 2 436~2 446 bp,IR 的长度为32 690~32 693 bp。总 GC 含量为35.9%,LSC 的 GC 含量为 33.4%,SSC 的 GC 含量为 29.1%~29.2%,IR 的 GC 含量为 39.5% (表 1)。

飘带兜兰6个个体叶绿体基因组的基因总数 均为129个,包括78个蛋白质编码基因、39个 tRNA 基因、8 个 rRNA 基因, 以及4 个假基因(*ndhJ*,*ndhD*,2个 *ycf*15)(附表1)。22个基因在 IR 区重复,具有2个拷贝,包括9个蛋白质编码基 因 (psaC,ndhB,rps7,rps15,rps19,rpl2,rpl23,ycf1, ycf2)、9个tRNA 基因(trnA-UGC、trnH-GUG、trnI-CAU_trnI-GAU_trnL-CAA_trnL-UAG_trnN-GUU_trnR-ACG、trnV-GAC) 和 4 个 rRNA 基因 (rrn16、rrn23、 rrn4.5、rrn5)。18个基因有内含子,其中15个基 因含有1个内含子,包括9个蛋白编码基因 (petB, petD, atpF, ndhB, rpoC1, rps16, rpl2, rpl16)accD) 和 6 个 tRNA 基因 (trnA-UGC、trnG-UCC、 trnI-GAU、trnK-UUU、trnL-UAA、trnV-UAC):2个基因 含有 2 个内含子 (clpP、ycf3); rps12 为反剪接基因 (附表1)。

2.2 SSR 位点分析

利用 MISA 软件在飘带兜兰 6 个个体的叶绿体基因组中分别检测到 103~107 个 SSR 位点,包括 47~51 个单核苷酸重复 (主要以 A、T 碱基重复为主)、20 个二核苷酸重复、15 个三核苷酸重复、14 个四核苷酸重复、2 个五核苷酸重复和 5 个六核苷酸重复类型 (图 3: A;附表 2)。SSR 位点大部分位于 LSC 区 (84~88 个),其次分布于 IR 区 (18~19 个),SSC 区无 SSR 位点(图 3: B)。另外,SSR 位点主要分布于叶绿体基因组非编码区的基因间隔区 (intergenic spacer, IGS),为 72~76个;位于基因内含子区 (intron)的有 17 个;位于编码区的有 14 个(图 3: C, D)。

将飘带兜兰 6 个个体同源区域的 SSR 位点进 行详细的比对,筛选出具有相同类型且重复数目 不同的 SSR 位点,可作为种内多态性位点,共发现 21 个 SSR 位点在 6 个个体中有差异(表 2)。

2.3 重复序列分析

利用 REPuter 对 6 条飘带兜兰叶绿体基因组 序列进行重复序列分析。在 6 个叶绿体基因组中 均鉴定到 60 个重复序列,包括 17~21 个正向重复

A. 生境; B. 结果植株; C. 开花植株; D. 花部结构图; Ds. 中萼片; P. 花瓣; S. 合萼片; Co. 合蕊柱; L. 唇瓣; E. 花。 A. Habitat; B. Fruiting individual; C. Flowering individual; D. Dissected flower; Ds. Dorsal sepal; P. Petals; S. Synsepals; Co. Column; L. Lip; E. Flower.

图 1 飘带兜兰 Fig. 1 Paphiopedilum parishii

(forward repeats)、18~29个反向重复(reverse repeats)、4~9个互补重复(complement repeats)、9~16个回文重复(palindromic repeats)(图4:A)。6条叶绿体基因组重复序列的长度范围虽然跨度较大,但都集中在30~40 bp之间(图4:B)。

2.4 飘带兜兰种间叶绿体基因组序列的多样性

以 P. parishii_1 为参考序列,利用 mVISTA 软件对 6条飘带兜兰序列进行序列多样性比较(附图1)。6条飘带兜兰序列相似性较高,LSC 区的多样性相对较高,略高于 IR 区和 SSC 区。多样性水平较高的片段主要在非编码区,如 atpH-atpI、psaA-ycf3、atpB-rbcL、accD-psaI、trnP-UGG-psaJ。编码区变异度较低,ycf1 基因的变异度稍高,tRNA和 rRNA 基因在飘带兜兰中极为保守。

6条序列边界比较图(附图 2)显示, rpl22、 trnL-UAG、rps19以及 psbA分别位于6条序列的 LSC/IRb、IR/SSC、IRa/LSC边界或边界附近。 rpl22位于LSC/IRb边界上,有58 bp的片段位于 IRb区域;重复基因 trnL-UAG位于IR区域内,离 IR/SSC边界相距176~186 bp;重复基因 rps19位 于IR区,离 IR/LSC边界282 bp; psbA位于LSC 区,离 IRa/LSC 边界 96 bp (附图 2),6 条序列边 界基因较为保守,扩张收缩现象不显著,仅 P. parishii_4 的 IR 区有微小扩张。

2.5 飘带兜兰种间叶绿体基因组核苷酸多样性

通过对6条飘带兜兰叶绿体基因组核苷酸多样 性的分析,发现6条叶绿体基因组序列中共存在10 个 SNPs 和 60 个 InDels, 其中基因间隔区有 4 个 SNPs 和 43 个 InDels, 内含子区有 1 个 SNP 和 13 个 InDels,编码区有 5 个 SNPs 和 4 个 InDels (表 3)。 在 10 个 SNPs 中有 3 个发生了非同义替换,导致密 码子改变,分别是在 rpoC1 基因中碱基 A 替换为碱 基C,使编码的氨基酸由异亮氨酸转变为丝氨酸;在 rpoB 基因中碱基 C 替换为碱基 T,使编码的甘氨酸 转变为精氨酸;在 ycf4 基因中碱基 G 替换为碱基 C, 使编码的蛋氨酸转变为异亮氨酸。此外,还有2个 SNPs 发生同义替换,密码子未改变,其余 SNPs 均位 于非编码区。对大于 3 bp 的 InDels 进行多态性分 析,发现共有19个位点呈现了种内的多态性(表 4),如基因间隔区 pasA-ycf3 分别在 P. parishii_1、3、 4 中发生插入, 在 P. parishii _2、5、6 中缺失; 而在 accD 基因的编码区及内含子分别存在的 2 个 InDels

图 2 飘带兜兰的叶绿体基因组图谱

Fig. 2 Chloroplast genome map of Paphiopedilum parishii

在个体间具有多态性。

利用 DnaSP 分别计算了飘带兜兰 6 个个体的 叶绿体基因组基因和基因间隔区的核苷酸多样性 值 (*P_i*),发现编码区的 *P_i* 值为 0~0.000 61,仅有 5 个基因的核苷酸多样性值大于 0,其中 *ycf*4 基因 的 *P_i* 值最高;基因间隔区的 *P_i* 值为 0~0.006 32, 仅有 3 个基因间隔区的核苷酸多样性值大于 0,其 中 *rps*3-*rpl*22 的 *P_i* 值最高 (附图 3),表明飘带兜 兰种内表现了较低水平的核苷酸多样性,基因间 隔区的核苷酸多样性相对较高。此外,还发现变 异程度较高的位点主要位于 LSC 区,而 IR 区和 SSC 区相对保守。

2.6 飘带兜兰的系统发育关系

通过 PhyloSuite 计算出最佳碱基替换模型为 TVM+F+R2,采用此模型构建系统发育树(图5)。 16 种兜兰属植物构成了支持率很高(支持率均为 100%)的3个分支,其中德氏兜兰(P. delenatii)、杏 黄兜兰(P. armeniacum)、白花兜兰(P. emersonii)和 硬叶兜兰(P. micranthum)构成了基部分支,归属于 小萼亚属(Subgenus Parvisepalum);文山兜兰(P. wenshanense)、同色兜兰(P. concolor)和巨瓣兜兰 (P. bellatulum)形成一个单系分支,归属于宽瓣亚属 (Subgenus Brachypetalum),本研究中的飘带兜兰6个 个体未分开,形成1个分支,与长瓣兜兰形成姐妹群。

表 1 飘带兜兰 6 个个体叶绿体基因组的基本特征

Table 1 Basic characteristics of chloroplast genomes of six Paphiopedilum parishii individuals

基因组特征 Genome characteristic	P. parishii_1 (0P604356)	P. parishii_2 (0P604357)	P. parishii_3 (0P604358)	P. parishii_4 (0P604359)	P. parishii_5 (MW528213)	P. parishii_6 (MN587822)
序列全长 Genome size (bp)	154 809	154 660	154 809	154 403	154 689	154 692
LSC 区长度 LSC length (bp)	86 983	86 834	86 983	86 581	86 863	86 866
SSC 区长度 SSC length (bp)	2 446	2 446	2 446	2 436	2 446	2 446
IR 区长度 IR length (bp)	32 690	32 690	32 690	32 693	32 690	32 690
GC 含量 GC content (%)	35.9	35.9	35.9	35.9	35.9	35.9
LSC 区 GC 含量 GC content of LSC (%)	33.4	33.4	33.4	33.4	33.4	33.4
SSC区GC含量 GC content of SSC (%)	29.1	29.2	29.1	29.2	29.2	29.2
IR区 GC 含量 GC content of IR (%)	39.5	39.5	39.5	39.5	39.5	39.5
CDS 区 GC 含量 GC content of CDS (%)	37.5	37.5	37.5	37.5	37.5	37.5
tRNA 区 GC 含量 GC content of tRNA (%)	53.2	53.2	53.2	53.2	53.2	53.2
rRNA 区 GC 含量 GC content of rRNA (%)	55.2	55.2	55.2	55.2	55.2	55.2
基因总数 Total genes	129	129	129	129	129	129
假基因数 No. pseudogene	4	4	4	4	4	4
编码蛋白基因数 No. of CDS	78	78	78	78	78	78
tRNA 基因数 No. of tRNA genes	39	39	39	39	39	39
rRNA 基因数 No. of rRNA genes	8	8	8	8	8	8

3 讨论与结论

本研究利用二代高通量测序技术对飘带兜兰 野生居群不同个体进行浅层基因组测序,通过组 装和注释得到飘带兜兰叶绿体全基因组。6个个 体的叶绿体基因组的基因数量和顺序一致,没有 发生基因组的重排或倒位事件。6个叶绿体基因 组均为叶绿体基因组的典型四分体式结构,由 IR 区、LSC 区、SSC 区组成 (Jansen et al., 2005)。飘 带兜兰叶绿体基因组长度为154 403~154 809 bp, 符合此前报道的兰科及兜兰属植物的叶绿体基因 组大小(Kim et al., 2014; Guo et al., 2021)。飘 带兜兰不同个体间的叶绿体基因组长度变化主要 在 LSC 区,为 86 581~86 983 bp;而 SSC 区和 IR 区基本保持一致,分别为 2 436~2 446 bp 和 32 690~32 693 bp。IR 区较其他被子植物有显著 的扩张,SSC 区则有较大程度的收缩,仅包含 rpl32 和 ccsA 2 个基因,这些特点符合兜兰属叶绿体基因 组特征(Guo et al., 2021)。与其他已报道的兰科

A. 不同类型重复单元的数量; B. SSR 位点在叶绿体基因组大单拷贝区(LSC)、小单拷贝区(SSC)和反向重复区(IR)的数量;
C. SSR 位点在 CDS、IGS、Intron 区域的数量; D. SSR 位点分别在叶绿体基因组 CDS、IGS、Intron 区域不同重复类型的数量分布。
A. Numbers of SSRs in different types; B. Numbers of SSRs in the LSC, SSC, and IR regions; C. Numbers of SSRs identified in CDS, IGS, and introns of the cp genome; D. Frequency distribution of different types of SSRs identified in CDS, IGS, and introns of the cp genome.

图 3 飘带兜兰 6 个个体叶绿体基因组 SSR 分析

属种的叶绿体全基因组的 SSC 区长度相比,如凌 氏石豆兰(Bulbophyllum lingii, 18 244 bp)、王氏 石斛(Dendrobium wangliangii, 18 373 bp)、扇脉 杓兰(Cypripedium japonicum, 21 911 bp)(Kim et al., 2020; Shao et al., 2020; Tang et al., 2021), 兜兰属的 SSC 区收缩严重,导致整个基因组的长 度远低于兰科植物其他物种。大量 SSC 区的基因 转移至 IR 区,使得 SSC 区的收缩在兜兰属极为常见,杏黄兜兰中甚至一些典型的 SSC 区基因,如 ycf1、psaC、ndhD 转移至 IR 区 (Kim et al., 2015; Lin et al., 2015; Niu et al., 2017)。有研究认为, 由于 IR 区的基因可以利用同源重组机制修复 DNA 损伤,较大的 IR 区域更有利于质体基因组的 稳定性,因此基因的转移可能更利于该基因的表达

表 2 飘带兜兰 6 个个体叶绿体基因组

的多态性 SSR 位点

Table 2 Polymorphic simple sequence repeats (SSR) in chloroplast genomes of six *Paphiopedilum parishii* individuals

SSR 类型 SSR type	P. parishii_1/ P. parishii_2/ P. parishii_3/ P. parishii_4/ P. parishii_5/ P. parishii_6	位置 Location	区域 Region
А	0/0/0/10/0/0	trnK-UUU	Intron
А	11/0/11/0/0/0	trnK-UUU-rps16	IGS
Т	17/15/17/20/15/15	atpF	Intron
Т	10/0/10/10/0/0	atpH-atpI	IGS
А	10/11/10/0/11/11	atpI-rps2	IGS
А	0/0/0/10/0/0/0	petN-psbM	IGS
Т	10/0/10/0/0/0	trnL-UAA-trnF-GAA	IGS
Т	10/0/10/0/0/0	trnF-GAA-ndhJ	IGS
Т	12/10/12/14/10/10	atpB-rbcL	IGS
А	0/10/0/10/10/10	rbcL-accD	IGS
Т	0/10/0/10/10/10	petA-psbJ	IGS
Т	15/14/15/10/19/20	trnP-UGG-psaJ	IGS
Т	23/0/23/24/24/24	trnP-UGG-psaJ	IGS
Т	10/10/10/0/10/10	clpP	Intron
Т	12/12/12/0/12/12	clpP	Intron
Т	10/0/10/0/0/0	rpl36-infA	IGS
Т	15/12/15/10/12/12	rpl14-rpl16	IGS
G	10/10/10/0/10/10	trnI-GAU	Intron
ТА	8/8/8/6/8/8	trnE-UUC-trnT-GGU	IGS
ТА	9/9/9/11/9/9	psbB-psbT	IGS
GGAAGA	6/6/6/5/6/6	ycf1	CDS

注: 数字代表重复个数。

Note: Number indicates SSR repeats.

(Palmer & Thompson, 1982; Wicke et al., 2011)。 这种基因转移使得兜兰属 SSC 区具有极高多样 性,序列长度差异大,长度为 524~5 913 bp,基因 数目显著不同,其种间多样性和种内的稳定性使 其具有开发成用于物种鉴定的分子标记的潜力 (Guo et al., 2021)。

飘带兜兰的叶绿体基因组共编码 129 个基因,包括 78 个蛋白质编码基因、39 个 tRNA 基因、

8个 rRNA 基因, 以及 4 个 假 基因, 与 Guo 等 (2021)报道的相同。4个假基因都是因大量基因 片段缺失而造成功能丧失,其中 ndhJ 因片段缺失 而导致基因缺少起始密码子,而 ndhD 和 vcf15 的 碱基缺失在 50%以上。飘带兜兰叶绿体基因组中 存在大量的 ndh 基因丢失,只保留了 ndhB、ndhD和 ndhJ,其中 ndhD 和 ndhJ 为假基因,这是 SSC 区 收缩的原因之一。兰科植物普遍存在 ndh 基因的 丢失现象 (Yang et al., 2013; Feng et al., 2016; Niu et al., 2017; Zavala-Páez et al., 2020),但 ndh 基因的丢失程度不同,如石豆兰属叶绿体基因组 中存在 12 个 ndh 基因 (Tang et al., 2021), 兰属植 物叶绿体基因组中存在 10 个 ndh 基因 (胡国家, 2020),石斛属的 ndh 基因丢失现象极为严重(牛 志韬, 2017)。叶绿体 ndh 基因与核基因组部分基 因共同编码 NAD (P) H 脱氢酶复合体,参与环式 电子传递链 (CET) 途径,在植物抗逆胁迫中起重 要作用。除了兰科植物外,在裸子植物松杉类和 麻黄类中也发现 ndh 基因的丢失 (Braukmann et al., 2009; Wu et al., 2009)。Lin 等(2017)研究 认为.ndh 基因的缺失可能是植物由自养转为异养 的进化过程。

本研究在飘带兜兰6个个体的基因组中共鉴 定到 103~107 个 SSR 位点,其中数量最多的是单 核苷酸重复序列,其次是二核苷酸重复序列,多以 A、T碱基为基本重复单元,显示了高度的 A/T 偏 好,与 Qin 等(2015)、陈模舜和杨仲毅(2022)在被 子植物叶绿体基因组中观察到的情况一致。重复 序列在植物基因组中扮演重要角色,因多态性较 高而在群体遗传和进化研究中经常被用来做分子 标记 (Muraguri et al., 2020)。本研究共筛选到 21 个 SSR 位点具有多态性,这些位点可开发为分子 标记用于评估飘带兜兰种群的遗传多样性。此 外,本研究发现非编码区的 SSR 数量远多于编码 区,说明非编码区比编码区具有更高遗传多样性, 这可能由于非编码区面临着更大的选择压力 (Shaw et al., 2007)。正向重复、反向重复、互补重 复和回文重复在6个个体的叶绿体基因中都表现 了多样性。同种植物长序列重复的不同可能因序 列的插入缺失而导致重复序列的类型发生改变, 可能与基因重组有关 (Somaratne et al., 2019)。

插入缺失和突变引起基因结构的差异是遗传 变异的重要来源,代表生物个体适应环境变化的

A. 不同类型重复序列的数量; B. 重复序列的类型在不同重复长度中的数量分布。

A. Numbers of repeat sequences in different types; B. Frequency distributions of different types of repeat sequences identified in different sizes of the chloroplast.

图 4 飘带兜兰 6 个个体叶绿体基因组重复序列分析

Fig. 4 Repeat sequences analysis of chloroplast genomes of six Paphiopedilum parishii individuals

表 3 飘带兜兰 6 个个体叶绿体基因组插入缺失的统计

Table 3 Summary of variants detected in chloroplast genomes of six Paphiopedilum parishii individuals

总数		插入缺失 InDels			单核苷酸变异 SNPs		
Total	蛋白编码区 CDS	基因间隔区 IGS	内含子区 Intron	蛋白编码区 CDS	基因间隔区 IGS	内含子区 Intron	
70	4	43	13	5	4	1	

注: CDS. 编码序列; IGS. 基因间隔区; InDels. 插入缺失; SNP. 单核苷酸多态性。

Note: CDS. Coding sequence; IGS. Intergenic spacer; InDels. Insertion or deletion; SNP. Single nucleotide polymorphism.

能力(Han & Xue, 2003)。种间或种内的叶绿体 基因结构差异可用于近缘种间和种内的系统发育 关系及群体遗传学研究(McCauley, 1995; Kersten et al., 2016)。本研究在飘带兜兰的6个个体的叶 绿体基因组中鉴定到60个 InDels 和10个 SNPs, 主要分布在基因间隔区。与其他种内叶绿体基因 组比较分析相比,飘带兜兰的 InDels 和 SNPs 数量 并不多。Muraguri 等(2020)在蓖麻(*Ricinus* communis)12个个体的叶绿体基因组中共鉴定到 162个 SNPs 和92个 InDels; Zhang 等(2020b)在 麻栎 (Quercus acutissima) 3 个个体中共检测到 77 个 SNPs 和 255 个 InDels。Alexander 等 (2014) 在 红槲栎 (Quercus rubra) 4 个个体中鉴定到 8 个 SNPs 和 45 个 InDels。本研究共发现 19 个位点呈 现种内多态性,通过 mVISTA 基因组比对和核苷酸 多样性 (P_i) 值的计算,发现非编码区的核苷酸多 样性远高于编码区,其中 rps3-rpl22 的 P_i 值最高 (0.006 32)。在飘带兜兰叶绿体基因组中存在的 这些基因组的结构变异可广泛用于种间和种内关 系以及遗传多样性研究。

表 4 飘带兜兰 6 个个体叶绿体基因组插入缺失 (>3 bp) 统计

Table 4 Summary of InDels (>3 bp) in chloroplast genomes of six Paphiopedilum parishii individuals

插入缺失大小 InDels size(bp)	P. parishii_1/P. parishii_2/P. parishii_3/ P. parishii_4/P. parishii_5/P. parishii_6	位置 Location	区域 Region
18	0/1/0/1/1/1	trnS-GCU-trnG-UCC	IGS
5	0/0/0/1/0/0	atpF	Intron
273	1/1/1/0/1/1	atpH-atpI	IGS
4	1/1/1/0/1/1	trnE-UUC-trnT-GGU	IGS
19	1/0/1/1/0/0	psaA-ycf3	IGS
7	1/0/1/0/0/0	trnT-UGU-trnL-UAA	IGS
4	1/1/1/0/1/1	ndhJ	CDS *
4	0/0/0/1/0/0	atpB-rbcL	IGS
7	0/1/0/0/1/1	atpB-rbcL	IGS
12	1/1/1/0/1/1	accD	CDS
54	1/0/1/0/0/0	accD	Intron
89	1/1/1/0/1/1	accD-psaI	IGS
31	1/0/1/0/1/1	trnP-UGG-psaJ	IGS
60	1/0/1/1/0/0	trnP-UGG-psaJ	IGS
4	0/0/0/1/0/0	psbB-psbT	IGS
5	1/0/1/0/0/0	rpl14-rpl16	IGS
6	1/1/1/0/1/1	ycfl	CDS
8	0/0/0/1/0/0	ccsA-trnL-UAG	IGS
6	1/1/1/0/1/1	ycf1	CDS

注:1表示插入:0表示缺失:*表示假基因。

Note: 1 indicates insersion; 0 indicates deletion; * indicates pseudogene.

遗传多样性是评估物种对栖息地环境适应能 力以及抗逆能力的重要指标,研究遗传多样性和 遗传结构是制定物种保护措施的前提(张亚红等, 2019)。通过叶绿体全基因组的比较分析,本研究 筛选出了一些多态性叶绿体基因组分子标记,为 评估飘带兜兰的遗传多样性,探讨系统发生、进化 以及保护遗传学研究提供遗传学基础。

致谢 中国科学院西双版纳热带植物园 Sven Landrein、杨国平协助野外调查,云南野兰堂生物 有限公司张泽提供照片,谨致谢意。

参考文献:

ALEXANDER LW, WOESTE KE, 2014. Pyrosequencing of the northern red oak (*Quercus rubra* L.) chloroplast genome reveals high quality polymorphisms for population management [J]. Tree Genet Genomes, 10: 803-812.

- AMIRYOUSEFI A, HYVONEN J, POCZAI P, 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17); 3030-3031.
- BEIER S, THIEL T, MUNCH T, et al., 2017. MISA-web: a web server for microsatellite prediction [J]. Bioinformatics, 33(16): 2583-2585.
- BRAUKMANN TW, KUZMINA M, STEFANOVIC S, 2009. Loss of all plastid *ndh* genes in gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny [J]. Curr Genet, 55(3): 323–337.
- CHEN LJ, LIU KW, XIAO XJ, et al., 2012. The anther steps onto the stigma for self-fertilization in a slipper Orchid [J]. PLoS ONE, 7(5): e37478.
- CHEN MS, YANG ZY, 2022. Genealogical structure and differentiation analysis of *Carpinus tientaiensis* based on

分支上的数值代表自展值。

Numbers above branches represent bootstrap percentage (BP) of ML.

图 5 基于叶绿体全基因组序列最大似然法构建的系统发育树

Fig. 5 Phylogenetic tree conducted using Maximum Likelihood (ML) methods based on whole chloroplast genomes

single nucleotide polymorphism of chloroplast genome [J]. Guihaia, 42(10): 1703-1716. [陈模舜,杨仲毅, 2022. 基于叶绿体基因组 SNP 的天台鹅耳枥谱系结构与 分化分析 [J]. 广西植物, 42(10): 1703-1716.]

- CRIBB P, 1998. The Genus *Paphiopedilum* [M]. Borneo, Malaysia: National History Publications.
- FENG YL, WICKE S, LI JW, et al., 2016. Lineage-specific reductions of plastid genomes in an orchid tribe with partially and fully mycoheterotrophic species [J]. Genome Biol Evol, 8(7): 2164-2175.
- FRAZER KA, PACHTER L, POLIAKOV A, et al., 2004. VISTA: computational tools for comparative genomics [J]. Nucl Acid Res, 32: W273-W279.
- GUERRANT EO, PAVLIK BM, 1998. Reintroduction of rare plants: Genetics, demography, and the role of ex situ conservation methods [M]// FIEDLER PL, KAREIVA PM, Conservation Biology: For the Coming Decade. Boston, MA: Springer US: 80-108.
- GUO YY, YANG JX, BAI MZ, et al., 2021. The chloroplast genome evolution of Venus slipper (*Paphiopedilum*): IR expansion, SSC contraction, and highly rearranged SSC regions [J]. BMC Plant Biol, 21(1): 248.
- HAN B, XUE YB, 2003. Genome-wide intraspecific DNA-

sequence variations in rice [J]. Curr Opin Plant Biol, 6(2): 134-138.

- HE J, YAO M, LYU RD, et al., 2019. Structural variation of the complete chloroplast genome and plastid phylogenomics of the genus *Asteropyrum* (Ranunculaceae) [J]. Sci Rep, 9(1): 15285.
- HU GJ, 2020. The complete chloroplast genomes of *Paphiopedilum* and *Cymbidium* (Orchidaceae) species: comparative genomic and phylogenetic analyses [D]. Xi'an: Northwest University: 28-30. [胡国家, 2020. 兰科兜兰属 与兰属植物比较叶绿体基因组学与系统发育研究 [D]. 西安: 西北大学: 28-30.]
- HUANG HW, 2018. The principle and practice of ex situ plant conservation [M]. Beijing: Science Press: 176-179. [黄宏 文, 2018. 植物迁地保育原理与实践 [M]. 北京: 科学出 版社: 176-179.]
- ISHIZUKA W, TABATA A, ONO K, et al., 2017. Draft chloroplast genome of *Larix gmelinii* var. *japonica*: insight into intraspecific divergence [J]. J For Res, 22(6): 393–398.
- IVANOVA Z, SABLOK G, DASKALOVA E, et al., 2017. Chloroplast genome analysis of resurrection tertiary relict *Haberlea rhodopensis* highlights genes important for desiccation stress response [J]. Front Plant Sci, 8: 204.

- JANSEN RK, RAUBESON LA, BOORE JL, et al., 2005. Methods for obtaining and analyzing whole chloroplast genome sequences [M]//ZIMMER EA, ROALSON EH, Molecular Evolution: Producing the Biochemical Date: Part B: 348-384.
- JIN J, YU WB, YANG JB, et al., 2018. GetOrganelle: a simple and fast pipeline for *de novo* assembly of a complete circular chloroplast genome using genome skimming data [J]. Genome Biol, 21(1): 241.
- KAO H, ZHAO Y, YANG M, et al., 2021. The complete chloroplast genome sequences of an endangered orchid species *Paphiopedilum parishii* (Orchidaceae) [J]. Mitochondrial DNA B, 6(9): 2521-2522.
- KERSTEN B, RAMPANT PF, MADER M, et al., 2016. Genome sequences of *Populus tremula* chloroplast and mitochondrion: Implications for holistic poplar breeding [J]. PLoS ONE, 11(1): e0147209.
- KIM HT, KIM JS, MOORE M, et al., 2015. Seven new complete plastome sequences reveal rampant independent loss of the *ndh* gene family across orchids and associated instability of the inverted repeat/small single-copy region boundaries [J]. PLoS ONE, 10(11): e0142215.
- KIM JS, KIM HT, KIM JH, et al., 2014. The largest plastid genome of monocots: a novel genome type containing AT residue repeats in the slipper orchid *Cypripedium japonicum* [J]. Plant Mol Biol Rep, 33(5): 1–11.
- KIM YK, JO SJ, SE-HWAN C, et al., 2020. Plastome evolution and phylogeny of Orchidaceae, with 24 new sequences [J]. Front Plant Sci, 11: 22.
- KURTZ S, CHOUDHURI JV, OHLEBUSCH E, et al., 2001. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucl Acid Res, 29(22): 4633-4642.
- LIANG CL, WANG L, LEI J, et al., 2019. A comparative analysis of the chloroplast genomes of four *Salvia* medicinal plants [J]. Engineering, 5(5): 907–915.
- LIN CS, CHEN JJ, HUANG YT, et al., 2015. The location and translocation of *ndh* genes of chloroplast origin in the Orchidaceae family [J]. Sci Rep, 5(1): 9040.
- LIN CS, CHEN JJW, CHIU CC, et al., 2017. Concomitant loss of *NDH* complex-related genes within chloroplast and nuclear genomes in some orchids [J]. Plant J, 90(5): 994–1006.
- LIU ZJ, CHEN XQ, CHEN LJ, 2009. The genus *Paphiopedilum* in China [M]. Beijing: Science Press: 8-10. [刘仲健, 陈 心启, 陈利君, 2009. 中国兜兰属植物 [M]. 北京: 科学 出版社: 8-10.]
- LI RZ, CAI J, YANG JB, et al., 2022. Plastid phylogenomics resolving phylogenetic placement and genera phylogeny of Sterculioideae (Malvaceae s.l.) [J]. Guihaia, 42(1): 25-

38. [黎若竹, 蔡杰, 杨俊波, 等, 2022. 利用叶绿体基因 组数据解析锦葵科梧桐亚科的系统位置和属间关系 [J]. 广西植物, 42(1): 25-38.]

- LOHSE M, DRECHSEL O, BOCK R, 2007. OrganellarGenome-DRAW (OGDRAW): a tool for the easy generation of highquality custom graphical maps of plastid and mitochondrial genomes [J]. Curr Genet, 52(5/6): 267-274.
- LOWE TM, CHAN PP, 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes [J]. Nucl Acid Res, 44(1): W54–W57.
- LUO YB, JIA JS, WANG CL, 2003. A general review of the conservation status of Chinese orchids [J]. Biodivers Sci, 11 (1): 70-77. [罗毅波, 贾建生, 王春玲, 2003. 中国兰科植 物保育的现状和展望 [J]. 生物多样性, 11(1): 70-77.]
- MCCAULEY DE, 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants [J]. Trend Ecol Evol, 10(5): 198-202.
- MURAGURI S, XU W, CHAPMAN M, et al., 2020. Intraspecific variation within Castor bean (*Ricinus communis* L.) based on chloroplast genomes [J]. Ind Crops Prod, 155: 112779.
- NIU ZT, XUE QY, ZHU SY, et al., 2017. The complete plastome sequences of four orchid species: Insights into the evolution of the Orchidaceae and the utility of plastomic mutational hotspots [J]. Front Plant Sci, 8: 715.
- NIU ZT, 2017. Comparative plastomic studies of *Dendrobium* species and comparison of the physiogical effects and transcriptome responses of *Dendrobium officinale* under different abiotic stresses [D]. Nanjing: Nanjing Normal University: 25-26. [牛志韬, 2017. 石斛属植物叶绿体基 因组研究及其代表种逆境下光合作用途径探讨 [D]. 南京:南京师范大学: 25-26.]
- PALMER JD, THOMPSON WF, 1982. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost [J]. Cell, 29(2): 537-550.
- QIN Z, WANG YP, WANG QM, et al., 2015. Evolution analysis of simple sequence repeats in plant genome [J]. PLoS ONE, 10(12): e0144108.
- RANKOU H, AVERYANOV L, 2015. Paphiopedilum parishii. The IUCN red list of threatened species, 2015: e. T193512A2240580.
- SHAO SC, TANG L, LUO Y, 2020. The complete chloroplast genome sequence of *Dendrobium wangliangii* (Orchidaceae) [J]. Mitochondrial DNA B, 5(3): 3513-3515.
- SHAW J, LICKEY EB, SCHILLING EE, et al., 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III [J]. Am J Bot, 94(3): 275–288.

- SHI LC, CHEN HM, JIANG M, et al., 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer [J]. Nucl Acid Res, 47(1): W65-W73.
- SOMARATNE Y, GUAN DL, WANG WQ, et al., 2019. Complete chloroplast genome sequence of *Xanthium sibiricum* provides useful DNA barcodes for future species identification and phylogeny [J]. Plant Syst Evol, 305(10): 949–960.
- TANG HQ, TANG L, SHAO SC, et al., 2021. Chloroplast genomic diversity in *Bulbophyllum* section *Macrocaulia* (Orchidaceae, Epidendroideae, Malaxideae): insights into species divergence and adaptive evolution [J]. Plant Diverers, 43(5): 350-361.
- TIAN X, LI DZ, 2002. Application of DNA sequences in plant phylogenetic study [J]. Acta Bot Yunnan, 24(2): 170-184. [田欣, 李德铢, 2002. DNA 序列在植物系统学研究 中的应用 [J]. 云南植物研究, 24(2): 170-184.]
- TILLICH M, LEHWARK P, PELLIZZER T, et al., 2017. GeSeq-versatile and accurate annotation of organelle genomes [J]. Nucl Acid Res, 45(1): W6–W11.
- TRIFINOPOULOS J, LAMTUNG N, VON HAESELER A, et al., 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis [J]. Nucl Acid Res, 44(1): W232-W235.
- WICKE S, SCHNEEWEISS G, DEPAMPHILIS C, et al., 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function [J]. Plant Mol Biol, 76(3-5): 273-297.
- WOLFE KH, LI WH, SHARP PM, 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs [J]. Proc Natl Acad Sci USA, 84(24): 9054–9058.
- WU CS, LAI YT, LIN CP, et al., 2009. Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes:

Selection toward a lower-cost strategy [J]. Mol Phylogenet Evol, 52(1): 115-124.

- YANG JB, TANG M, LI HT, et al., 2013. Complete chloroplast genome of the genus *Cymbidium*: lights into the species identification, phylogenetic implications and population genetic analyses [J]. BMC Evol Biol, 13(1); 84.
- YANG YJ, HUANG JL, HU H, et al., 2021. Progress on conservation and utilization of *Paphiopedilum* species in China [J]. J W Chin For Sci, 50(5): 108-112. [杨颖婕, 黄家林, 胡虹, 等, 2021. 中国兜兰属植物种质资源保护 和利用研究进展 [J]. 西部林业科学, 50(5): 108-112.]
- ZAVALAPAEZ M, VIEIRA LDN, DEBAURA VA, et al., 2020. Comparative plastid genomics of neotropical Bulbophyllum (Orchidaceae; Epidendroideae) [J]. Front Plant Sci, 11: 799.
- ZHANG D, GAO FL, JAKOVLIC I, et al., 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol Ecol Resour, 20(1): 348–355.
- ZHANG RS, YANG J, HU HL, et al., 2020. A high level of chloroplast genome sequence variability in the Sawtooth Oak *Quercus acutissima* [J]. Int J Biol Macromol, 152: 340–348.
- ZHANG YH, JIA HX, WANG ZB, et al., 2019. Genetic diversity and population structure of *Populus yunnanensis* [J]. Biodivers Sci, 27(4): 355-365.
- ZHANG YJ, LI DZ, 2011. Advances in phylogenomics based on complete chloroplast genomes [J]. Plant Divers Resour, 33(4): 365-375. [张韵洁, 李德铢, 2011. 叶绿体系统发 育基因组学的研究进展 [J]. 植物分类与资源学报, 33(4): 365-375.]

(责任编辑 蒋巧媛)

本文附录请到本刊网站(http://guihaia-journal.com/ajax/publisher/download_pdf.aspx? psu= 2CCD15A72AA65E14BBCDF14DB5AA9DCA898549C99465EE9B&journal_id= gxzw&file_no=240102&year_id=2024&issue=1)下载。