广步植物 Guihaia May 2024, 44(5): 873-884

DOI: 10.11931/guihaia.gxzw202205011

王德福,赵楠,邱万滨,等,2024. 两个种源木荷幼苗对干旱-复水的生理生态响应 [J]. 广西植物,44(5):873-884. WANG DF, ZHAO N, QIU WB, et al., 2024. Eco-physiological responses of *Schima superba* seedlings from two provenances to drought and rewatering [J]. Guihaia, 44(5):873-884.

两个种源木荷幼苗对干旱-复水的生理生态响应

王德福^{1,2,3},赵 楠¹,邱万滨¹,桑栋鑫¹,黄国敏¹,刘文飞¹,沈芳芳¹,段洪浪^{1,4*}

 (1.南昌工程学院 江西省退化生态系统修复与流域生态水文重点实验室,南昌 330099;2.中国科学院华南植物园 退化生态系统植被恢复与管理重点实验室,广州 510650;3.四川文理学院 四川革命老区发展研究中心, 四川 达州 635000;4.贵州大学 贵州省森林资源与环境研究中心,贵阳 550025)

摘 要:为探讨不同种源树木对干旱-复水的生理生态响应,该研究以广东与福建种源木荷为对象,通过盆栽 控水方式模拟干旱及复水条件,研究两个种源木荷的水力及碳生理特征、脯氨酸(Pro)及超氧化物歧化酶 (SOD)对干旱-复水的响应。结果表明:(1)对照情况下,广东种源木荷的茎木质部水势(Ψ_{xylen})、叶片相对含 水量(RWC)、光合速率(A_{sat})与气孔导度(G_{s})均低于福建种源木荷的。(2)两个种源木荷的水力特征、Pro 与 SOD 对干旱-复水的响应呈一致趋势,其中 Ψ_{xylen} 、RWC 与 Pro 均能较快恢复至对照水平,而茎木质部栓塞程 度与 SOD 未恢复至对照水平。(3)福建种源木荷叶片的 A_{sat} 对干旱的敏感性较广东种源的高且复水后恢复至 对照水平需要更长时间。(4)复水后福建种源木荷非结构性碳水化合物(NSC)的恢复速率高于广东种源木荷。综上认为,福建与广东两个种源木荷均不能通过短期复水(30 d)来修复被栓塞的木质部。尽管广东种源 木荷的光合速率能够更快地恢复至对照水平,但其光合速率低于福建种源木荷,并且其 NSC 的恢复能力较福 建种源荷的低。因此,在未来干旱加剧背景下,广东种源木荷的生长及存活可能受到更大威胁。该研究结果 有助于了解种源地气候条件对树木抗旱性的影响,为未来森林的经营与管理提供了理论参考。

关键词:干旱-复水,光合特征,水力特征,木荷,种内差异

中图分类号: Q945 文献标识码: A 文章编号: 1000-3142(2024)05-0873-12

Eco-physiological responses of *Schima superba* seedlings from two provenances to drought and rewatering

WANG Defu^{1,2,3}, ZHAO Nan¹, QIU Wanbin¹, SANG Dongxin¹, HUANG Guomin¹, LIU Wenfei¹, SHEN Fangfang¹, DUAN Honglang^{1,4*}

(1. Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China; 2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 3. Research Center for Sichuan Old Revolutionary Base Areas Development, Sichuan University of Arts and Science, Dazhou 635000, Sichuan, China; 4. Institute for Forest

Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China)

收稿日期: 2023-02-26 接受日期: 2023-03-29

基金项目:国家自然科学基金 (31760111);四川文理学院高层次人才科研启动项目(2023RC002Z)。

第一作者: 王德福(1993—),博士,讲师,研究方向为植物生理生态学,(E-mail)wangdefu16@163.com。

^{*}通信作者:段洪浪,博士,教授,研究方向为植物生理生态学,(E-mail)hlduan@gzu.edu.cn。

Abstract: In the context of global climate change, the research on eco-physiological responses to drought and rewatering among provenances of trees species will help to understand the effect of climate conditions of provenances on drought resistance of trees, further providing theoretical references for cultivation and management of forests in the future. In this study, Schima superba from two provenances in southern China were selected. Potted seedlings were subjected to simulated drought and rewatering conditions. Eco-physiological traits (photosynthesis traits, hydraulic traits, nonstructural carbohydrates-NSC, proline concentrations-Pro and superoxide dismutase-SOD activity) of seedlings were examined. The results were as follows: (1) Under well-watered condition, stem xylem water potential ($\Psi_{\rm xylem}$), leaf relative water content (RWC), photosynthetic rate (A_{sot}) and stomatal conductance (G_s) were lower in seedlings from Guangdong provenance compared with Fujian provenance. (2) Responses of hydraulic traits, Pro and SOD to drought and rewatering were consistent between the two provenances. $\Psi_{\rm xvlem}$, RWC and Pro could recover to control values rapidly, while percent of stem xylem embolism and SOD could not recover to control values in the end. (3) A_{ex} was more sensitive to drought from Fujian provenance than Guangdong provenance, and it took more time to recover to control in Fujian provenance. (4) The recovery rate of NSC from Fujian provenance was faster than Guangdong provenance. Collectively, seedlings from both provenances could not repair their embolized xylem in the short-term rewatering period (30 days). Although photosynthesis rate in Guangdong provenance could recover to control faster than from Fujian provenance, it was lower than that from Fujian provenance. Furthermore, the recovery rate of NSC was slower in Guangdong provenance than Fujian provenance, indicating that growth and survivals of seedlings from Guangdong provenance may experience greater risk in future characterized with increasing drought stress.

Key words: drought-rewatering, photosynthetic traits, hydraulic traits, Schima superba, intra-specific differences

全球气候变化背景下,未来降水格局将会发 生变化,干旱强度与持续时间均可能增加 (Pachauri & Reisinger, 2014)。干旱胁迫会威胁 树木的存活,进而引起群落结构与功能的改变 (Barros et al., 2019; Brodribb et al., 2020)。此 外,在树木的生命历程中,经常会出现多次干旱及 干旱-复水现象,树木也会通过自身调节来应对干 旱环境(段娜等,2019; Gessler et al., 2020)。但 是,树木响应干旱-复水的生理生态机制是否存在 种内差异还具有很大的不确定性。因此,在全球 降水格局变化背景下,研究树木对干旱-复水生理 生态响应策略的种内差异,可为研究树木如何响 应干旱-复水以及生态模型的优化提供基础数据 支撑,也为未来森林的经营与管理提供理论参考。

干旱胁迫通常会抑制树木生长、导致叶片水势与光合速率降低、进一步加剧木质部栓塞(Yan et al., 2017; Duan et al., 2019;吕朝燕等,2021),还会引起树木叶片脯氨酸(Pro)的积累与超氧化物歧化酶(SOD)活性的增强,有助于缓解水分亏缺对植物细胞造成的损伤(Duan et al., 2020; Sun et al., 2020)。此外,干旱胁迫也会改变非结构性碳水化合物(non-structural carbohydrates, NSC)的含量(He et al., 2020)。He 等(2020)研究表明干

旱对树木 NSC 的影响与干旱强度和持续时间有 关,轻度干旱下叶片可溶性糖未发生显著变化,而 重度干旱使叶片可溶性糖显著升高。

干旱胁迫后树木生理生态指标的恢复能力是 评价树木适应干旱的重要依据。其中,木质部导 水率是否能在短期内恢复以及恢复能力的种间差 异已成为近年来的研究热点。叶片水势能够较快 地恢复至对照水平,而与叶片水势相比,光合速率 与木质部导水率恢复较慢(Duan et al., 2019; Ruehr et al., 2019)。此外, NSC 在维持树木水力 功能及茎木质部栓塞修复过程中均发挥着重要作 用,栓塞修复时往往伴随 NSC 的消耗(Tomasella et al., 2019)。前人研究发现,树木光合与水分生理 指标对干旱-复水的响应不仅因物种不同而存在 差异,同一物种不同分布地或种源对干旱-复水的 响应也存在差异(刘菲等,2018;陈梦园等,2019); 刘菲等(2018)研究发现福建种源油杉的抗旱性大 于贵州种源的。然而,树种不同种源生理生态指 标的旱后恢复能力是否有差异仍不清楚,特别是 木质部导水率恢复的种内差异仍鲜有报道。

木荷(Schima superba)是山茶科(Theaceae)木 荷属(Schima)大乔木,在我国福建、江西、湖南、广 东等南方地区广泛分布,是亚热带常绿阔叶林的

875

优势树种,也是绿化和造林的常用树种。此外,木 荷也是良好的防火树种,既可与其他树木混种,也 可单独种植作为防火林带。然而,不同种源的木 荷对干旱-复水的生理生态响应差异还不清楚。 以往的研究发现,植物的抗旱能力与当地气候条 件(如年均降雨量)有关(Liang et al., 2019),说明 植物对原生地气候条件具有一定的适应性,并且 不同种源的植物对干旱的响应可能存在差异。因 此,本研究选取来自具有一定气候差异的两个种 源木荷作为研究对象,通过盆栽控制干旱与复水 条件,研究两个种源木荷幼苗对干旱-复水的生理 生态响应。我们提出的假设:两个种源木荷的气 体交换与水力特征对干旱-复水的响应存在差异, 其中降水量低的种源具有更强的抗旱性。

1 材料与方法

1.1 材料和实验设计

在南昌工程学院瑶湖校区(116°01′50.16″E, 28°41′17.12″N)开展本实验。该地区属亚热带季 风气候,年均降雨量1600~1700 mm(4-6月约 占 50%,7-9 月约占 19%)。从福建尤溪九阜山 自然保护区(118°01′58″—118°07′16″E、 26°03′37″—26°06′59″N)、广东化陈禾洞自然保 护区 (113°49'30"—114°01'50" E、23°43'02"— 23°48′10″N)两地分别采集木荷种子,两个种源地 的年均降水量分别为1665、1801mm,年均温分 别为 19.6 ℃、22.8 ℃。2018 年 4 月对种子进行播 种,2019年3月将幼苗移栽至7.6L的花盆中,每 盆1株,盆栽所用土壤为砖红壤。之后,将所有盆 栽搬至遮雨棚(长×宽×高为 20 m×4 m×3 m)下 进行自然生长。遮雨棚顶部所用材料为透明 PVC 板,遮光率为15%,四周通风良好。实验开始前所 有盆栽的土壤保持在田间持水量,并且每周向土 壤施可溶性营养肥料(施可得园艺肥料有限公司, 武汉产,N≥30g·L⁻¹,P₂O₅≥ 14g·L⁻¹,K₂O≥16 $g \cdot L^{-1}$, Fe ≥ 0.14 g $\cdot L^{-1}$, Mn ≥ 0.06 g $\cdot L^{-1}$)的稀释 液1次,每次200mL,使幼苗保持良好生长。

待幼苗生长4个月后,对每个种源选取长势良 好、高度一致的幼苗50株作为本实验的研究对 象。实验设置2个水分处理,即(1)对照:选取20 株幼苗,实验期间保持土壤湿度在田间持水量; (2)干旱-复水:每个种源剩余的30株幼苗,在实 验处理开始后不浇水,使土壤自然变干。期间,监 测茎木质部水势变化情况,当水势达到前期研究 测定的木质部导水率曲线预测以及茎木质部栓塞 在88%[木质部导水率下降88%,通常表示严重干 旱(Uril et al., 2013; Duan et al., 2021)]的水势 附近时,收割样品,并测定茎木质部栓塞程度(方 法见1.2.2)。当茎木质部栓塞程度为88%左右 时,对所有幼苗进行复水,使土壤湿度达到并保持 在田间持水量,直到实验结束。

1.2 指标测定方法

1.2.1 叶片气体交换参数测定 使用 Li-6400 便携 式气体交换系统(LI-Cor, Inc, Lincoln, NE, USA) 测定植物的气体交换参数。分别于干旱的第0 天、第2天、第4天、第5天和第6天及复水后的第 3天、第7天和第15天的上午9:00—11:00 对气 体交换参数进行测定。每个种源的每个处理选取 4 株幼苗(每株选取1片当年生成熟叶片)测定叶 片饱和光强光合速率(A_{sat} , µmol·m⁻²·s⁻¹)、气孔 导度(G_s , mol·m⁻²·s⁻¹)、蒸腾速率(E, mmol·m⁻²· s⁻¹)。光源采用人工红蓝光源(6400-2B),光强设 置为1500 µmol·m⁻²·s⁻¹,二氧化碳浓度设为400 µmol·mol⁻¹,空气温度控制在(31.1±0.2)℃,相对 湿度控制在60%~80%。

1.2.2 水力特征参数测定

1.2.2.1 水势 于正午测定茎木质部水势,测定之前用保鲜膜与锡箔纸包裹叶片(保鲜膜在内,锡箔 纸在外)1h以上,以保证叶片与木质部之间的水势平衡(可以用此时的叶片水势代替茎木质部水势)。之后,采集叶片于自封袋中并放入保温箱内保存,带回实验室。利用 PMS-Model 1505D 数显便携式植物水势压力室(PMS instruments, Corvalis, Oregon USA)测定干旱的第0天、第4天、第6天、第7天、第9天与复水后的第3天和第7天的茎木质部水势(Ψ_{xylem}, MPa)。每个种源的每个处理选取4株幼苗(每株选取2片当年生成熟叶片)。

1.2.2.2 叶片相对含水量(relative water content, RWC) 首先,将叶片从枝条上取下后,称量叶片 鲜重。然后,于水下用剪刀剪掉一段叶柄,在黑暗 处将叶柄浸没于水中 12 h,待叶片充分吸收水分 后,将叶片取出,用纸巾擦干表面水分,称量叶片 饱和鲜重。最后,将叶片放入 70 ℃烘箱中烘至恒 重,称取叶片干重。叶片相对含水量=(叶片鲜 重-叶片干重)/(叶片饱和鲜重-叶片干重)× 100%。叶片相对含水量的测定时间与水势测定 同步。

1.2.2.3 茎木质部栓塞程度(percentage loss of conductivity, PLC) 先将盆栽放入装满水的水桶 中,于水下用枝剪将茎取下,用封口膜将切口缠 紧:再迅速将茎的下端浸没于另一水桶中,并用黑 色塑料袋罩住。为减少人为因素造成的木质部栓 塞,将样品带到实验室后,于水下从茎底部剪掉5 cm,并用黑色塑料袋罩住整个植株1h左右(茎底 部依然浸没于水中),使木质部张力释放(Wheeler et al., 2013)。待叶片水势恢复至大于-1 MPa 时,取5~10 cm 长的茎(Creek et al., 2018),用 XYL'EM 木质部栓塞测量仪测定茎木质部初始导 水率(此过程中茎木质部始终被水浸没)。随后用 100 kPa 的压力冲洗木质部(约 30 min),当木质部 末端不再有气泡出现时停止冲洗,之后用 XYL' EM木质部栓塞测量仪测定茎木质部的最大导水 率(此过程中茎木质部始终被水浸没)。测定导水 率与冲洗木质部所用溶液为2 mmol·L⁻¹的 KCl 溶 液,测定导水率时的压力梯度为 5.4 kPa。茎木质 部栓塞程度=(最大导水率-初始导水率)/最大导 水率×100%,具体实验参照 Cochard 等(2002)的 方法。本研究分别测定了复水后的第0天与第30 天的茎木质部栓塞程度,每个种源的每个处理选 取3~4株幼苗的茎进行测定。

1.2.3 生化指标测定 非结构性碳水化合物 (NSC)[包括可溶性糖(soluble sugar, SS)与淀粉 (starch, ST)]含量的测定采用恩酮法。将复水后 第0天(干旱临界点)与第30天的植物各器官样 品烘干并磨成粉末,分别称取0.05g于15mL离 心管中,加入4mL80%的酒精,漩涡振荡。之后 置于80℃水浴锅中加热30min,待冷却后以 10000r・min⁻¹离心8min,收集上清液于15mL 离心管中(重复3次)。上层清液用于可溶性糖测 定,下层残渣用于淀粉测定(王德福,2019)。每个 种源的每个处理选取4片当年生成熟叶片进行 测定。

脯氨酸(proline, Pro)含量测定采用酸性茚三酮显色法(李合生等,2000)。超氧化物歧化酶(superoxide dismutase, SOD)活性测定采用氮蓝四唑比色法(Giannopolitis & Ries, 1977)。每个种源的每个处理选取4片当年生成熟叶片进行测定。

1.3 数据处理

首先,对数据进行正态性及方差齐性检验,如 果不符合,则进行数据转换。然后,利用 SPSS 19.0 (SPSS Inc. USA)对指标进行单因素方差分 析,通过 Duncan 法进行数据之间的差异显著性检 验。最后,利用重复度量来检验种源、水分与时间 对各指标的影响。所有结果中 P<0.05 即显著,采 用 Sigmaplot 12.5 作图。图中所有结果均为平均 值±标准误(x±s_z)。

2 结果与分析

2.1 两个种源木荷幼苗对干旱胁迫的生理生态 响应

2.1.1 水力特征 由图 1 可知,干旱胁迫下,两个种 源木荷叶片相对含水量(RWC)与茎木质部水势 (Ψ_{xylem})均呈下降趋势。在干旱的第 4 天, Ψ_{xylem} 均 显著低于对照水平。干旱的第 6 天,RWC 均显著 低于对照水平。干旱的第 9 天(复水 0 d)时, Ψ_{xylem} 均已远低于对照水平,其中福建种源木荷的 Ψ_{xylem} 降至-2.4 MPa,广东种源木荷的 Ψ_{xylem} 降至-2.5 MPa。此外,干旱的第 9 天,福建与广东两个种源 木荷的茎木质部栓塞程度(PLC)分别为 94%、 90%,均已达到 88%,达到复水临界点(图 4)。在 对照条件下,广东种源木荷的 Ψ_{xylem} 与 RWC 比福 建的低。

2.1.2 光合特征 由图 2 可知, 干旱胁迫下, 福建种 源木荷的光合速率 (A_{sat}) 、气孔导度 (G_s) 及蒸腾速 率(E)较广东种源的先下降, 于干旱胁迫的第 4 天 起, 叶片的 A_{sat} 、 G_s 、E(5.99, 0.06, 1.67)均显著低于 对照水平(11.64, 0.19, 3.93)。广东种源的木荷, 于干旱胁迫的第 6 天起, 叶片的 A_{sat} 、 G_s 、E(0.16, 0.01, 0.27)均显著低于对照水平(2.66, 0.03, 0.90)(图 2)。此外, 在对照条件下, 广东种源木荷 叶片的 A_{sat} 、 G_s 始终处于较低水平, 并远低于福建 种源木荷的。

2.2两个种源木荷幼苗对旱后复水的生理生态 响应

2.2.1 水力特征 复水后,两个种源木荷的 Ψ_{xylem} 与 RWC 均升高,于复水后的第 3 天起, Ψ_{xylem} 与 RWC 均恢复至对照水平(图 3)。广东种源木荷的 Ψ_{xylem} 与 RWC 均显著低于福建种源木荷的。种源对 Ψ_{xylem} 与 RWC 产生显著影响(表 1)。

同一时间下,不同字母表示数据之间存在显著性差异(P<0.05)。下同。 Different letters indicate significant differences at each sampling time (P<0.05). The same below.

图 1 两个种源木荷幼苗叶片相对含水量(RWC)与茎木质部水势(Ψ_{xylem})对干旱胁迫的响应 Fig. 1 Responses of leaf relative water content (RWC) and stem xylem water potential (Ψ_{xylem}) of *Schima superba* seedlings from two provenances to drought stress

相对于 Ψ_{xylem} 与 RWC, PLC 恢复较慢。复水的 第 30 天, 福建与广东种源木荷的 PLC (分别为 83%、93%) 仍显著高于对照水平 (分别为 23%、 30%), 表明茎木质部栓塞未恢复(图 4)。复水的 第 0 天与第 30 天, 在对照与复水条件下, 两个种 源木荷的 PLC 之间均不存在显著差异。

2.2.2 光合特征 复水后,福建种源木荷叶片的 A_{sat}、G_s、E均呈上升趋势,于第15天均恢复至对照 水平(图5)。对于广东种源的木荷,复水的第3 天,叶片的A_{sat}、G_s、E均恢复至对照水平,但随着复 水的进行,叶片的A_{sat}、G_s出现小幅波动(图5)。总 体分析,在两个种源木荷中,广东种源木荷叶片的 光合特征恢复较快。这说明种源对叶片A_{sat}、G_s和 E产生显著影响(表1)。

2.2.3 生化特征 由图 6 可知,复水后,福建种源木 荷的根、茎与叶的可溶性糖(SS)、淀粉(ST)以及 NSC 含量均升高,并恢复至或高于对照水平。与 福建种源木荷不同,广东种源木荷茎与根的 SS、ST 以及 NSC 的含量均降低,叶片的 ST 与 NSC 含量呈 升高趋势(图 6),但各器官 NSC 含量仍显著低于 对照水平。这说明种源对叶片 ST、NSC 及根茎 SS、ST 和 NSC 产生显著影响(表 1)。

复水后,两个种源木荷叶片的超氧化物歧化 酶(SOD)与脯氨酸(Pro)表现出一致的变化。其 中,SOD活性虽逐渐升高,但仍显著低于对照水平;Pro含量逐步降低,于第15天恢复至对照水平(图7)。这说明种源对叶片 Pro和 SOD 产生显著影响(表1)。

3 讨论与结论

3.1 两个种源木荷幼苗对干旱胁迫的生理生态 响应

通常在干旱胁迫下,植物水势与相对含水量 会降低,茎木质部栓塞程度显著升高(José et al., 2018; Romy et al., 2020)。本研究也发现,干旱胁 迫显著降低了两个种源木荷茎木质部水势与叶片 相对含水量,茎木质部栓塞程度显著升高。此外, 木荷叶片的气孔导度、光合速率与蒸腾速率也随 干旱的进行而降低,与以往其他的研究结果类似 (陈梦圆等,2019;邓秀秀等,2020)。但是,在本研 究中,福建种源木荷的光合速率、气孔导度及蒸腾 速率对干旱更敏感,较广东种源的先下降,有助于 减少水分的散失。两个种源木荷的光合生理对干 旱的响应存在差异,可能与两个种源地的年均降 雨量(福建的年均降雨量低于广东地区)有关,是 植物适应生境的一种策略(Liang et al., 2019)。 非结构性碳水化合物能够反映植物的碳平衡状态

图 2 两个种源木荷幼苗叶片光合特征 对干旱胁迫的响应

(郑云普等,2014)。在干旱胁迫过程中,当树木呼吸消耗的能量高于光合速率累积的能量时,则会引起树木体内非结构性碳水化合物的降低(Mcdowell, 2011),进一步干旱可能会导致碳饥饿

的发生。本研究中,干旱胁迫显著降低了两个种 源木荷叶片、茎和根的可溶性糖、淀粉及非结构性 碳水化合物浓度,表明干旱胁迫下植物体处于负 的碳平衡状态。在各器官中,福建种源木荷根的 非结构碳水化合物降低最多,而广东种源木荷叶 的非结构性碳水化合物降低最多,说明干旱胁迫 对树木非结构性碳水化合物的影响因器官、种源 的不同而存在差异(Li et al., 2018)。

当植物遭受干旱胁迫时,细胞内的脯氨酸含 量通常会升高以调节渗透,并对酶、蛋白质起保护 作用(Sun et al., 2020)。王曦等(2018)研究发 现,干旱胁迫下桢楠(Phoebe zhennan)幼苗叶片的 脯氨酸含量显著升高,本研究也发现两个种源木 荷的叶片脯氨酸含量均显著升高以应对干旱胁 迫。干旱胁迫还会引起植物体活性氧的增加,活 性氧的存在不仅会对植物的光合系统产生不利影 响,还会造成细胞的脂质过氧化与细胞死亡(Xu et al., 2010: Sun et al., 2020)。然而,植物会通过增 强活性氧清除酶的活性,如超氧化物歧化酶可清 除过多活性氧,减少对植物的伤害(Xu et al., 2010; 刘菲等, 2018), 但也有研究发现干旱胁迫 使超氧化物歧化酶活性降低(Zhang et al., 2017; 吴玲等,2017)。本研究中,干旱胁迫下叶片的超 氧化物歧化酶活性显著降低,可能是木荷叶片超 氧化物歧化酶的活性容易遭到活性氧的破坏而下 降(吴志华等,2004;吴玲等,2017)。

3.2 两个种源木荷幼苗对旱后复水的生理生态响应

干旱复水后,植物水分状态与细胞膨压恢复, 有助于后期代谢的恢复(Ruehr et al., 2019)。本研 究中,两个种源木荷的茎木质部水势与叶片相对含 水量均于复水后第3天恢复至对照水平,表明两个 种源木荷的枝条与叶片具有同样的恢复水分状态 的能力(Yan et al., 2017)。复水后叶片相对含水量 快速恢复,表明木质部仍具有水分运输能力(Ruehr et al., 2019)。相比于相对含水量与水势而言,两个 种源木荷叶片的光合速率、气孔导度的恢复较为滞 后,可能是由脱落酸(Duan et al., 2020)、乙烯(Yao et al., 2020)的抑制作用引起的。本研究发现,广东 种源木荷叶片的光合速率恢复速率高于福建种源 木荷的,表明不同种源木荷叶片的光合速率对复水 的响应存在差异。两个种源木荷叶片气体交换参 数恢复速率不一致,可能与以下原因有关;第一,以 往研究发现叶片导水率在旱后的恢复能力会影响

表 1 种源、水分与时间对木荷幼苗各指标影响的双因素重复度量方差分析

Table 1 Summary of two-way repeated measures ANOVA on provenances, water

and time on parameters of Schima superba seedlings

指标 Index	P值或F P or F value	值 种源 Provenance	水分 Water	时间 Time	种源×水分 Provenance× Water	种源×时间 Provenance× Time	水分×时间 Water× Time	种源×水分×时间 Provenance× Water×Time
饱和光强下光合速率 A_{sat}	Р	< 0.001	0.002	< 0.001	0.031	0.001	0.001	0.008
	F	138.793	19.451	22.014	6.551	8.089	8.101	4.834
气孔导度 G_s	Р	< 0.001	0.002	< 0.001	0.020	< 0.001	0.003	0.006
	F	103.662	18.309	21.152	7.971	12.294	6.134	5.106
蒸腾速率 E	Р	< 0.001	0.001	0.020	0.019	0.139	0.022	0.037
	F	99.300	24.287	3.865	8.198	1.994	6.251	5.055
相对含水量 RWC	Р	0.007	0.004	< 0.001	0.358	0.045	< 0.001	0.018
	F	10.499	12.564	46.168	0.915	4.507	82.032	6.533
茎木质部水势 Ψ _{xylem}	Р	< 0.001	< 0.001	< 0.001	0.633	< 0.001	< 0.001	< 0.001
	F	38.274	27.436	276.840	0.239	11.539	276.336	12.029
茎木质部栓塞程度 PLC	Р	0.705	< 0.001	0.915	0.948	0.216	0.695	0.746
	F	0.151	280.703	0.012	0.005	1.747	0.163	0.111
脯氨酸 Pro	Р	< 0.001	< 0.001	< 0.001	0.975	< 0.001	< 0.001	0.278
	F	1 897.788	81.323	9.125	0.001	7.856	15.707	1.335
超氧化物歧化酶 SOD	Р	< 0.001	< 0.001	0.524	< 0.001	0.025	< 0.001	< 0.001
	F	1 859.340	2 892.839	0.760	1 325.394	3.499	14.862	15.800
叶可溶性糖 Leaf SS	Р	0.154	< 0.001	0.012	< 0.001	< 0.001	< 0.001	< 0.001
	F	2.313	235.704	8.805	95.891	38.968	26.530	40.469
叶淀粉 Leaf ST	Р	< 0.001	< 0.001	< 0.001	< 0.001	0.879	< 0.001	0.021
	F	168.074	28.508	109.934	47.019	0.024	118.815	7.008
叶非结构性碳水化合物 Leaf NSC	Р	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001
	F	117.125	144.797	51.528	107.082	16.007	77.658	30.023
茎可溶性糖 Stem SS	Р	< 0.001	< 0.001	0.086	< 0.001	0.001	0.079	< 0.001
	F	121.048	82.654	3.486	58.977	21.316	3.679	23.075
茎淀粉 Stem ST	Р	< 0.001	< 0.001	0.430	0.219	0.001	0.777	0.003
	F	27.200	34.107	0.666	1.682	17.804	0.084	13.381
茎非结构性碳水化合物 Stem NSC	Р	< 0.001	< 0.001	0.207	< 0.001	< 0.001	0.356	0.001
	F	273.476	240.338	1.778	76.193	24.465	0.920	21.142
根可溶性糖 Root SS	Р	< 0.001	< 0.001	0.238	0.002	< 0.001	0.486	< 0.001
	F	205.299	24.501	1.557	15.896	37.269	0.519	32.390
根淀粉 Root ST	Р	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	F	47.322	780.765	286.678	130.698	237.255	152.426	173.745
根非结构性碳水化合物 Root NSC	Р	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	F	320.464	569.509	176.782	133.717	297.953	117.898	228.152

注:表中P值小于0.05表示显著影响。

Note: Significant effect is considered when P value in the table is less than 0.05.

图 3 两个种源木荷幼苗茎木质部水势(Ψ_{xylem})与叶片相对含水量(RWC)对旱后复水的响应 Fig. 3 Response of stem water potential (Ψ_{xylem}) and relative water content (RWC) of *Schima superba* seedlings from two provenances to rewatering

气体交换参数的恢复能力(Blackman et al., 2009), 因此我们推测本研究中两个种源木荷气体交换参 数的旱后恢复能力差异与其叶片导水率的恢复有 关。第二,脱落酸与乙酸会对气体交换参数的恢复 产生影响(Duan et al., 2020; Yao et al., 2020),本 研究中两个种源木荷气体交换参数的旱后恢复能 力差异可能与植物体内的激素水平有关。因此,在 未来的研究中,需要考虑叶片导水率与激素(如脱 落酸)水平在复水后的变化情况,为解释植物气体 交换对复水响应的种间差异提供新的机制。

干旱复水后,虽然植物可以通过木质部栓塞 修复或长出新的木质部进而恢复导水率(Cardoso et al., 2020),但木质部栓塞修复所需时间往往高 于长出新的木质部所需时间(Brodribb et al., 2010; Martorell et al., 2014)。本研究发现复水 30 d后,两个种源木荷茎木质部栓塞程度仍显著高于 对照水平,表明复水后茎木质部栓塞未修复至对 照水平,可能需要更长时间的修复或通过长出新 的木质部进行导水率的恢复。此外,复水 30 d 后 福建种源木荷各器官的非结构性碳水化合物逐步 恢复至或超过对照水平,而广东种源木荷的则呈 相反趋势。非结构性碳水化合物对复水后导水率 的恢复具有重要贡献,可以提供渗透调节物质与 能量(Tomasella et al., 2019)。因此,相比于福建 种源木荷,广东种源木荷较低的非结构性碳水化 合物浓度可能不利于后期茎木质部导水率的恢 复。复水后,随着叶片相对含水量的提高,植物体 内渗透调节能力逐渐降低(周欢欢等,2019)。本 研究发现,复水后两个种源木荷的叶片脯氨酸含 量逐步降低,并恢复至对照水平;而两个种源木荷 叶片的超氧化物歧化酶活性均逐步升高,可能原因 是活性氧在复水后减少,进而对超氧化物歧化酶的 破坏降低(吴志华等,2004; Naya et al., 2007)。

本研究测定了两个种源木荷的生理生态(光 合特征、水力特征、NSC、脯氨酸与超氧化物歧化 酶)在极端干旱(茎木质部导水率下降 88%左右) 及复水中的变化情况。研究结果表明:(1)两个种 源木荷均通过关闭气孔与提高脯氨酸含量来响应 干旱胁迫;(2)两个种源木荷的茎木质部水势、叶 片 RWC、Pro、SOD 以及茎 PLC 对干旱复水的响应 呈一致趋势,并且茎 PLC 在复水 30 d 后未恢复至 对照水平;(3)福建种源木荷的光合速率较广东种 源的先下降且复水后恢复至对照水平需要更长时 间;(4)福建种源木荷的 NSC 恢复速率高于广东 种源木荷的。综上所述,在未来干旱加剧背景下, 福建与广东两个种源木荷均不能通过短期复水 (30 d)来修复被栓塞的木质部。尽管广东种源木 荷的光合速率能够更快地恢复至对照水平,但其 光合速率低于福建种源木荷的,并且其 NSC 的恢 复能力较福建种源的低。因此,在未来干旱加剧 背景下,广东种源木荷的生长及存活可能受到更 大威胁。

参考文献:

- BARROS FDV, BITTENCOURT PRL, BRUM M, et al., 2019. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought [J]. New Phytol, 223(3); 1253-1266.
- BLACKMAN CJ, BRODRIBB TJ, JORDAN, GJ, 2009. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species [J]. Plant Cell Environ, 32(11): 1584–1595.
- BRODRIBB TJ, BOWMAN D, NICHOLS S, et al., 2010. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit [J]. New Phytol, 188(2): 533-542.
- BRODRIBB TJ, POWERS J, COCHARD H, et al., 2020. Hanging by a thread? forests and drought [J]. Science, 368(6488): 261-266.
- CARDOSO AA, BILLON LA, BORGES AF, et al., 2020. New developments in understanding plant water transport under drought stress [J]. New Phytol, 227(4): 1025–1027.
- CHEN MY, LI YC, WANG LB, et al., 2019. Photosynthetic responses to drought and subsequent re-watering in seedlings from two different provenances of *Quercus variabilis* Bl [J]. Chin J Ecol, 38(10): 2950–2958. [陈梦园, 李迎超, 王利兵,等, 2019. 2 个种源栓皮栎对干旱及复水的光合 生理响应 [J]. 生态学杂志, 38(10): 2950–2958.]
- COCHARD H, COLL L, ROUX XL, et al., 2002. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut [J]. Plant Physiol, 128(1): 282-290.

- CREEK D, BLACKMAN C, BRODRIBB TJ, et al., 2018. Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery [J]. Plant Cell Environ, 41(12): 2869-2881.
- DENG XX, SHI Z, XIAO WF, et al., 2020. Effects of drought and shading on growth and photosynthetic characteristics of *Pinus massoniana* seedlings [J]. Acta Ecol Sin, 40(8):

2735-2742. [邓秀秀, 施征, 肖文发, 等, 2020. 干旱和遮 荫对马尾松幼苗生长和光合特性的影响 [J]. 生态学报, 40(8): 2735-2742.]

- DUAN HL, DE DIOS VR, WANG DF, et al., 2021. Testing the limits of plant drought stress and subsequent recovery in four provenances of a widely distributed subtropical tree species [J]. Plant Cell Environ, 45(4): 1187-1203.
- DUAN HL, LI YY, XU Y, et al., 2019. Contrasting drought

图 7 两个种源木荷幼苗叶片 SOD 活性与脯氨酸含量对旱后复水的响应 Fig. 7 Response of SOD activity and proline content to rewatering of *Schima superba* seedlings from two provenances

sensitivity and post-drought resilience among three cooccurring tree species in subtropical China [J]. Agric For Meteorol, 272/273: 55-68.

- DUAN HL, WANG DF, WEI, XH, et al., 2020. The decoupling between gas exchange and water potential of *Cinnamomum camphora* seedlings during drought recovery and its relation to ABA accumulation in leaves [J]. J Plant Ecol, 13(6): 683–692.
- DUAN N, XU J, CHEN HL, et al., 2019. Effects of drought stress on phenotypic plasticity of *Cerasus humilis* [J]. Guihaia, 39(9): 1159–1165. [段娜, 徐军, 陈海玲, 等, 2019. 干旱胁迫对欧李幼苗表型可塑性的影响 [J]. 广西 植物, 39(9): 1159–1165.]
- GESSLER A, BOTTERO A, MARSHALL J, et al., 2020. The way back: recovery of trees from drought and its implication for acclimation [J]. New Phytol, 228(6): 1704–1709.
- GIANNOPOLITIS CN, RIES SK, 1977. Superoxide dismutases, 1:occurrence in higher plants [Corn, oats, peas] [J]. Plant Physiol, 59(2): 309–314.
- HE W, LIU H, QI Y, et al., 2020. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration [J]. Glob Change Biol, 26(6): 3627–3638.
- JOSÉ PP, ÓSCAR MH, EUSTAQUIO GP, et al., 2018. Cavitation limits the recovery of gas exchange after severe drought stress in Holm Oak (*Quercus ilex* L.) [J]. Forests, 9(8): 443-455.
- LIU F, ZHOU LT, JIANG Y, et al., 2018. Physiological response from different provenances of *Keteleeria fortunei* seedlings to drought stress [J]. J Centr S Univ For Technol, 38(11): 35-45. [刘菲, 周隆腾, 蒋燚, 等, 2018. 不同种

源江南油杉幼苗对干旱胁迫的生理响应 [J]. 中南林业 科技大学学报, 38(11): 35-45.]

- LI HS, SUN Q, ZHAO SJ, et al., 2000. Principle and technology of plant physiological and biochemical experiment [M]. Beijing: Higher Education Press: 164-261. [李合生, 孙群,赵世杰,等, 2000. 植物生理生化实验原理和技术 [M]. 北京:高等教育出版社: 164-261.]
- LI W, HENRIK H, ADAMS HD, et al., 2018. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO₂ and nitrogen fertilization in tree species [J]. Tree Physiol, 38(11): 11–28.
- LIANG XY, HE PC, LIU H, et al., 2019. Precipitation has dominant influences on the variation of plant hydraulics of the native *Castanopsis fargesii* (Fagaceae) in subtropical China [J]. Agric For Meteorol, 271: 83–91.
- LÜ CY, GAO ZX, YAN Y, et al., 2021. Effects of droughtrewatering on leaf water potential of two *Dendrobium* plants [J]. Guihaia, 41(2): 177-182. [吕朝燕, 高智席, 严羽, 等, 2021. 干旱-复水对两种石斛属植物叶水势的影响 [J]. 广西植物, 41(2): 177-182.]
- MARTORELL S, DIAZ-ESPEJO A, MEDRANO H, et al., 2014. Rapid hydraulic recovery in *Eucalyptus pauciflora* after drought: linkages between stem hydraulics and leaf gas exchange [J]. Plant Cell Environ, 37(3): 617–626.
- MCDOWELL NG, 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality [J]. Plant Physiol, 155(3): 1051-1059.
- NAYA L, LADREA R, RAMOS J, et al., 2007. The response of carbon metabolism and antioxidant defenses of *Alfalfa*

- PACHAURI R, REISINGER A, 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [J]. J Romance Stud, 4(2): 85–88.
- ROMY R, ANGELICA C, MARCUS Z, et al., 2020. Droughtinduced xylem embolism limits the recovery of leaf gas exchange in *Scots pine* [J]. Plant Physiol, 184(2): 852–864.
- RUEHR NK, RÜDIGER G, STEFAN M, et al., 2019. Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress [J]. Tree Physiol, 1(8): 1-15.
- SUN Y, WANG C, CHEN HYH, et al., 2020. Response of plants to water stress: a meta-analysis [J]. Front Plant Sci, 11(4): 978-985.
- TOMASELLA M, PETRUSSA E, PETRUZZELLIS F, et al., 2019. The possible role of non-structural carbohydrates in the regulation of tree hydraulics [J]. Int J Mol Sci, 21(1): 144–163.
- URIL M, PORTE AJ, COCHARD H, et al., 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees [J]. Tree Physiol, 33(7): 672-683.
- WANG DF, 2019. The effect of drought and water-logging stresses on eco-physiology of *Cinnamomum camphora* seedlings [D]. Nanchang: Nanchang Institute of Technology: 10-11. [王德福, 2019. 干旱与水淹胁迫对樟 树幼苗生理生态特征的影响 [D]. 南昌: 南昌工程学院: 10-11.]
- WANG X, HU HL, HU TX, et al., 2018. Effects of drought stress on the osmotic adjustment and active oxygen metabolism of *Phoebe zhennan* seedlings and its alleviation by nitrogen application [J]. Chin J Plant Ecol, 42(2): 240– 251. [王曦, 胡红玲, 胡庭兴, 等, 2018. 干旱胁迫对桢楠 幼树渗透调节与活性氧代谢的影响及施氮的缓解效应 [J]. 植物生态学报, 42(2): 240–251.]
- WHEELER JK, HUGGETT BA, TOFTE AN, et al., 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism [J]. Plant Cell Environ, 36(11): 1938-1949.
- WU L, LI ZH, WU JY, et al., 2017. Response of drought stress

on cholorophyll content and anti-oxydant enzyme of *Cyclobalanopsis glauca* provenance clone seedlings [J]. J Centr S Univ For Technol, 37(6): 51-55. [吴玲, 李志辉, 吴际友, 等, 2017. 干旱胁迫对青冈栎种源叶绿素含量与 抗氧化酶活性的影响 [J]. 中南林业科技大学学报, 37(6): 51-55.]

- WU ZH, ZENG FH, MA SJ, et al., 2004. A review of advances in active oxygen metabolism in plants under water stress [J]. Subtrop Plant Sci, 33(2): 77-80. [吴志华, 曾富华, 马生健, 等, 2004. 水分胁迫下植物活性氧代谢研究进展 (综述 1) [J]. 亚热带植物科学, 33(2): 77-80.]
- XU Z, ZHOU G, SHIMIZU H, 2010, Plant responses to drought and rewatering [J]. Plant Signal Behav, 5(6): 649-654.
- YAN W, ZHENG S, ZHONG Y, et al., 2017. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in *Amorpha fruticosa* and *Robinia pseudoacacia* [J]. Sci Rep, 7(1): 4470–4481.
- YAO GQ, LI FP, NIE ZF, et al., 2020. Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four *Caragana* species [J]. Plant Cell Environ, 44(2): 399-411.
- ZHANG C, LI X, HE YF, et al., 2017. Physiological investigation of C₄-phosphoenolpyruvate-carboxylaseintroduced rice line shows that sucrose metabolism is involved in the improved drought tolerance [J]. Plant Physiol Biochem, 115: 328–342.
- ZHENG YP, WANG HX, LOU X, et al., 2014. Changes of non-structural carbohydrates and its impact factors in trees: A review [J]. Chin J Appl Ecol, 25(4): 1188-1196. [郑 云普,王贺新,娄鑫,等, 2014. 木本植物非结构性碳水 化合物变化及其影响因子研究进展 [J]. 应用生态学报, 25(4): 1188-1196.]
- ZHOU HH, FU LC, MA L, et al., 2019. Physiological characteristics of Osmanthus fragrans 'Boyejingui' with drought stress and rewatering [J]. J Zhejiang A & F Univ, 36(4): 687-696. [周欢欢, 傅卢成, 马玲, 等, 2019. 干 旱胁迫及复水对'波叶金桂'生理特性的影响 [J]. 浙江 农林大学学报, 36(4): 687-696.]

(责任编辑 蒋巧媛 王登惠)