广步植物 Guihaia Jun. 2024, 44(6): 1105-1117

DOI: 10.11931/guihaia.gxzw202307014

黄玉妹, 滕建北, 涂冬萍, 等, 2024. 蛇足石杉 COBRA 基因家族的分子生物信息学及表达分析 [J]. 广西植物, 44(6): 1105-1117.

HUANG YM, TENG JB, TU DP, et al., 2024. Molecular bioinformatics and expression analysis of the COBRA gene family in Huperzia serrata [J]. Guihaia, 44(6): 1105-1117.

蛇足石杉 COBRA 基因家族的分子生物信息学及表达分析

黄玉妹,滕建北,涂冬萍*,梁柳观

(广西中医药大学 药学院,南宁 530200)

摘 要:为探明蛇足石杉 COBRA 基因家族成员分子生物信息学特征及组织表达规律,该文基于蛇足石杉的 全长转录组数据,通过生物信息学技术对该家族成员(HsCOBRAs)的理化性质、结构域、保守基序、顺式作 用元件、基因表达量等进行分析。结果表明:(1)在蛇足石杉全长转录组中共筛选出 24 个 HsCOBRAs 家族 成员,其中酸性蛋白9个,稳定蛋白11个,疏水性蛋白5个,具有跨膜结构的蛋白7个,具有信号肽的蛋白3 个。(2)亚细胞定位在细胞壁、叶绿体、细胞核、细胞膜上。(3)结构分析发现 HsCOBRAs 有7种结构域和6 种保守基序,部分成员具有高度保守的 CCVS 结构。(4)HsCOBRAs 具有 CAAT-box、TATA-box 等 45 种顺式 作用元件。(5)HsCOBRA2 在叶、孢子、茎、芽胞中的表达量均最高。该研究结果可为 HsCOBRAs 的进一步研 究及生物学功能验证等提供理论依据。

关键词:蛇足石杉, COBRA 基因家族, 生物信息学, 全长转录组, 表达分析 中图分类号: 0943 文献标识码: A 文章编号: 1000-3142(2024)06-1105-13

Molecular bioinformatics and expression analysis of the COBRA gene family in Huperzia serrata

HUANG Yumei, TENG Jianbei, TU Dongping*, LIANG Liuguan

(College of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China)

Abstract: In order to clarify the molecular bioinformatics characteristics and tissue expression patterns of the *COBRA* gene family members of *Huperzia serrata*, the physicochemical properties, domains, conserved motifs, *cis*-acting elements, and genes expression of the family members (HsCOBRAs) were analyzed by bioinformatics techniques, based on the full-length transcriptome data of the *H. serrata*. The results were as follows: (1) A total of 24 HsCOBRAs family members were screened in the full-length transcriptome of *H. serrata*, including 9 acidic proteins, 11 stabilizing proteins, 5 hydrophobic proteins, 7 proteins with transmembrane structures, and 3 proteins with signal peptides. (2) Subcellular localization was found in the cell wall, chloroplast, nucleus, and cell membrane. (3) Structural analysis revealed that HsCOBRAs had 7 domains and 6 conserved motifs, and partial members had a highly conserved CCVS

收稿日期: 2023-10-09 接受日期: 2023-11-03

基金项目:广西自然科学基金(2022JJA140897);广西中医药大学桂派中医药传承创新团队项目(2022B005);广西中医药大学 桂派杏林青年英才项目(2022C033);广西中医药大学研究生教育创新计划项目(YCSY2022007)。

第一作者:黄玉妹(1998—),硕士研究生,研究方向为中药(壮瑶药)鉴定,(E-mail)1989543360@qq.com。

[&]quot;通信作者:涂冬萍,博士,副教授,研究方向为中药、民族药的品质研究,(E-mail)fairytdp@163.com。

structure. (4) HsCOBRAs had 45 *cis*-acting elements such as CAAT-box and TATA-box. (5) *HsCOBRA2* had the highest expressions in leaves, spores, stems and gemma. The study results can provide theoretical basis for further research and biological function verification of *HsCOBRAs*.

Key words: Huperzia serrata, COBRA gene family, bioinformatics, full-length transcriptome, expression analysis

COBRA 基因最早发现于拟南芥根细胞中 (Borner et al., 2003), 是一类广泛存在于高等植物 和藻类植物(任昂彦等,2021)中的纤维素合成酶基 因(Kasirajan et al., 2018),其编码的蛋白属于糖基 磷脂酰肌醇锚定蛋白(glycosyl-phosphatidyl inositol, GPI),包含N端信号肽、碳水化合物结合域、富含半 胱氨酸的 CCVS 结构域和 C 末端 GPI 蛋白的 ω-位 点(Roudier et al., 2002)。目前,已鉴定了棉花、大 白菜、茶树、番茄、玉米等多种植物的 COBRA 基因。 有研究表明 COBRA 可通过调节纤维素微纤丝的合 成及沉积,在初生和次生细胞壁纤维素的生物合成 中发挥核心作用(Li et al., 2019:任昂彦等, 2021), 并广泛参与根、茎、叶、花及果实的发育,影响植物 的生物量(元志成等, 2020; Zaheer et al., 2022; Li et al., 2022),如棉花 GhCOBL9A 的过量表达可使生 物量增加(Niu et al., 2018),茶树 CsCOBRA 基因可 通过调控叶片细胞壁及机械强度,从而影响茶叶的 产量(艾安涛等,2021)。

蛇足石杉(Huperzia serrata)是中药材千层塔的 来源之一,具有活血行瘀、止血生肌、消肿定痛、清 热解毒、退热除湿等功效,用于治疗跌打损伤、劳 伤吐血、痔疮便血、肺痈、烧烫伤等(黄玉妹等, 2023)。其主要成分石杉碱甲对阿尔茨海默病 (alzheimer's disease, AD)具有良好的疗效且外周 不良反应轻微(姬生国,2007)。预计到 2050 年, 全球 AD 患病人数将达 1.39 亿(Jia et al., 2018), 我国老年人患病人数将达3003万(王英全等, 2019),蛇足石杉需求量不断增大,市场前景良好。 近年来,蛇足石杉的人工栽培取得了一定进展,但 因其生长缓慢,繁殖困难,至今尚未实现大规模栽 培,产量远远不能满足市场需求。高产量、高效益 的蛇足石杉现代化生产已成迫切需要,通过 COBRA 等纤维素合成酶基因的调控有望成为蛇足 石杉生物产量增长的新途径。

本研究以蛇足石杉为研究材料,从其全长转录组测序数据中筛选 COBRA 基因,通过生物信息学技术对基因特征及在组织中的表达量进行分析,探讨以下问题:(1)蛇足石杉 COBRA 基因家族

的生物信息学特征;(2) COBRA 基因在蛇足石杉 生长发育中可能发挥的作用。旨在为将来蛇足石 杉 COBRA 基因功能的鉴定和调控奠定基础,以及 为蛇足石杉的分子育种提高产量提供依据。

1 材料与方法

1.1 材料

蛇足石杉植株于 2019 年 8 月在广西南宁市大 明山采集,经广西药用植物园冯世鑫高级工程师 鉴定为石杉科植物蛇足石杉(*Huperzia serrata*)的 全草。蛇足石杉全长转录组数据由深圳华大基因 股份有限公司 PacBio Sequel 平台提供。

1.2 方法

1.2.1 蛇足石杉 COBRA 基因家族成员鉴定 基于 蛇足石杉的全长转录组测序数据及其注释结果, 利用拟南芥 COBRA 基因家族成员的 DNA 序列作 为种子序列, BLAST 比对搜索蛇足石杉全基因序 列数据库,筛选阈值 $E \le 10^{-5}$,获得蛇足石杉的 COBRA 基因家族成员。

1.2.2 蛇足石杉 COBRA 基因家族的理化性质、信号 肽、亚细胞定位和结构域分析 将蛇足石杉 COBRA 基因家族的原始碱基序列通过开放阅读框 ORF Finder (http://www.ncbi.nlm.nih.gov/ orffinder)获得潜在的蛋白质编码片段。利用 ExPAsy(Expasy-ProtParam tool)对 COBRA 基因编 码的蛋白质序列进行理化性质预测;用 SignalP-6.0 (https://services.healthtech.dtu.dk/service.php? SignalP)进行信号肽预测;用 Plant-mPLoc(http:// www.csbio.sjtu.edu.cn/bioinf/plant-multi/)进行亚 细胞定位预测;用 Batch CD-Search (https:// www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb. cgi)进行结构域预测,并利用 TBtools 1.112 软件进 行可视化处理。

1.2.3 蛇足石杉 COBRA 基因家族的二级结构、三级 结构和顺式作用元件分析 分别通过 Prabi (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl? page = npsa_sopma.html)、phyre²(http://www.sbg. bio.ic.ac.uk/phyre2/html/page.cgi? id = index)进行 二级结构和三级结构预测。以蛇足石杉 COBRA 基 因家族上游 2 000 bp 序列作为启动子区域,利用 Plant CARE (https://bioinformatics.psb.ugent.be/ webtools/plantcare/html/)进行顺式作用元件预测, 筛选具有注释功能的顺式作用元件,利用 TBtools 1.112 软件进行可视化处理。

1.2.4 蛇足石杉 COBRA 基因家族的保守基序、表达 量和系统发育分析 通过 MEME Suite 5.5.1 (https://meme-suite.org/meme/tools/meme)预测 基因家族的保守基序,利用 TBtools 1.112 软件进 行可视化处理。通过计算每千个碱基的转录每百 万映射读取的片段(fragments per kilobase of exon model per million mapped fragments, FPKM)均值, 分析 COBRA 基因家族在蛇足石杉叶、孢子、茎、芽 胞中的表达量,利用 TBtools 1.112 软件绘制基因 表达量热图并进行美化。通过 MEGA 11 软件对蛋 白序列进行多重比较,使用邻接法(neighborjoining)构建系统进化树(bootstrap=1000),利用 iTOL(http://itol.embl.de)对进化树进行美化。

2 结果与分析

2.1 蛇足石杉 COBRA 基因家族的理化性质分析

从蛇足石杉全长转录组数据中共筛选出 24 条 COBRA 基因家族的碱基序列,分别命名为 HsCOBRA1-HsCOBRA24,其碱基序列可通过图 1:A 获得。基于蛇足石杉转录组测序及 ORF Finder 获 得氨基酸序列(图1:B)。利用 ExPAsy 在线软件对 HsCOBRAs 编码的蛋白质进行理化性质预测,结果 见表 1。24 条 HsCOBRAs 蛋白序列中,蛋白氨基酸 数量为 73 (HsCOBRA19)~663 (HsCOBRA14)个。 分子量在8 494.91 (HsCOBRA15)~73 084.23 (HsCOBRA14) Da 之间,平均分子量为 26 012.36 Da。9 个蛋白(HsCOBRA1、HsCOBRA5、 HsCOBRA6, HsCOBRA7, HsCOBRA9, HsCOBRA14, HsCOBRA16、HsCOBRA17、HsCOBRA18)等电点在 4.53~6.97之间,为酸性蛋白,其余15个蛋白的等 电点在 8.17~10.13 之间,为碱性蛋白。11 个蛋白 (HsCOBRA1, HsCOBRA2, HsCOBRA3, HsCOBRA4, HsCOBRA6, HsCOBRA7, HsCOBRA11, HsCOBRA12, HsCOBRA13、HsCOBRA14、HsCOBRA23)为稳定蛋 白,其余13个蛋白均为不稳定蛋白。HsCOBRAs家 族成员的亲脂系数介于 61.70~92.37 之间; HsCOBRA7、HsCOBRA8、HsCOBRA9、HsCOBRA12、 HsCOBRA15 为疏水性蛋白,其余蛋白为亲水性蛋白。所有蛋白均带有负电残基3(HsCOBRA19)~77 (HsCOBRA16)个及正电残基6(HsCOBRA15)~53 (HsCOBRA5)个。

图 1 蛇足石杉 COBRA 基因家族的碱基序列(A) 及氨基酸序列(B)二维码

Fig.1 The two-dimensional code of *COBRA* gene family base sequence (**A**) and amino acid sequence (**B**) of *Huperzia serrata*

2.2 蛇足石杉 COBRA 基因家族亚细胞定位及信号 肽分析

跨膜结构预测发现7个蛋白(HsCOBRA2、 HsCOBRA3, HsCOBRA4, HsCOBRA9, HsCOBRA11, HsCOBRA12、HsCOBRA14)分别具有1个跨膜结构, 其余均无跨膜结构。信号肽预测发现 HsCOBRA2、 HsCOBRA4、HsCOBRA14 具有典型的 GPI 锚定蛋白 N端信号肽,信号肽指数分别为 0.975 8、0.975 8、 0.999 8,其切割位点分别可能在 N 端的第 41 个和 第42个、第41个和第42个、第28个和第29个氨 基酸残基间;其余信号肽指数均小于0.5。亚细胞定 位发现 HsCOBRAs 家族成员分布广泛,1个 (HsCOBRA9) 定位于细胞壁,4个(HsCOBRA6、 HsCOBRA7、HsCOBRA10、HsCOBRA23)定位于叶绿 体,10 个(HsCOBRA1、HsCOBRA5、HsCOBRA7、 HsCOBRA16, HsCOBRA17, HsCOBRA19, HsCOBRA20, HsCOBRA21、HsCOBRA22、HsCOBRA24)定位于细胞 核,其余10个均定位于细胞膜。HsCOBRA7分别 定位于叶绿体和细胞核,HsCOBRA10分别定位于 叶绿体和过氧化物酶体,详见表2。

2.3 蛇足石杉 COBRA 基因家族结构域分析

蛋白结构域分析结果显示 HsCOBRAs 家族共有7种结构域(图2),分别为 COBRA、COBRA

表 1 蛇足石杉 COBRA 基因家族理化性质分析

Table 1 Physicochemical characteristics of COBRA gene family of Huperzia serrata

基因名 Gene name	氨基酸数量 Number of amino acids	分子量 Molecular weight (Da)	等电点 pI	不稳定系数 Instability index	亲脂系数 Aliphatic index	亲水性 平均系数 GRAVY	带负电残基 (Asp + Glu)	带正电残基 (Arg + Lys)
HsCOBRA1	302	32 530.59	5.47	36.85	65.26	-0.420	37	28
HsCOBRA2	471	52 393.40	8.17	38.96	81.80	-0.042	28	32
HsCOBRA3	503	55 930.98	8.68	38.03	68.09	-0.246	32	42
HsCOBRA4	471	52 393.40	8.17	38.96	81.80	-0.042	28	32
HsCOBRA5	497	54 926.58	5.20	46.82	83.38	-0.208	66	53
HsCOBRA6	122	13 210.99	4.99	32.01	74.43	-0.009	15	10
HsCOBRA7	120	13 043.86	5.02	31.76	78.92	0.041	16	10
HsCOBRA8	142	15 656.18	8.78	53.72	90.00	0.008	7	11
HsCOBRA9	137	15 292.54	4.58	42.90	91.75	0.120	12	8
HsCOBRA10	81	9 655.12	9.03	42.43	69.88	-0.267	7	10
HsCOBRA11	255	28 653.78	8.24	39.64	68.47	-0.209	15	18
HsCOBRA12	154	16 979.79	8.35	38.91	79.81	0.102	8	11
HsCOBRA13	342	37 845.55	8.66	39.42	75.61	-0.080	17	24
HsCOBRA14	663	73 084.23	5.05	35.02	83.91	-0.076	57	43
HsCOBRA15	75	8 494.91	8.74	56.17	71.47	0.128	4	6
HsCOBRA16	80	9 176.60	6.52	53.67	80.50	-0.094	77	7
HsCOBRA17	127	13 913.37	4.53	47.61	71.34	-0.412	22	8
HsCOBRA18	174	19 703.91	6.97	46.39	84.08	-0.010	12	12
HsCOBRA19	73	8 531.23	10.13	61.70	80.27	-0.255	3	13
HsCOBRA20	141	15 644.73	9.57	65.95	61.70	-0.397	7	16
HsCOBRA21	119	13 578.72	9.52	42.76	65.55	-0.606	13	21
HsCOBRA22	232	25 716.16	8.47	51.62	73.10	-0.656	29	31
HsCOBRA23	194	22 823.72	9.23	18.98	92.37	-0.343	24	30
HsCOBRA24	130	15 116.39	8.95	61.45	85.38	-0.189	6	11

superfamily、PI31_Prot_N、PI31_Prot_C、PI31_ Prot_N superfamily、RING_Ubox superfamily、TilS superfamily。其中,COBRA 与 COBRA superfamily 分别分布在4个蛋白序列中,均注释为糖磷脂酰 肌醇。除HsCOBRA1含有2个结构域外,13个蛋 白(HsCOBRA2、HsCOBRA3、HsCOBRA4、HsCOBRA5、 HsCOBRA6、HsCOBRA7、HsCOBRA8、HsCOBRA12、 HsCOBRA13、HsCOBRA14、HsCOBRA16、HsCOBRA17、 HsCOBRA18)仅有1个结构域,其余10个蛋白无结 构域。

2.4 蛇足石杉 COBRA 基因家族二级结构分析

利用 Prabi 软件对蛇足石杉 *COBRA* 基因家族 进行二级结构预测,表 3 结果表明 HsCOBRAs 蛋 白的二级结构均由无规则卷曲、α螺旋、延长链、 及β折叠组成,所占比平均值分别为46.02%、 29.34%、18.95%、5.70%。6个蛋白(HsCOBRA10、 HsCOBRA19、HsCOBRA20、HsCOBRA21、HsCOBRA22、 HsCOBRA23)中α螺旋占比最大(占38.27%~ 58.25%),其次为无规则卷曲;其余 HsCOBRAs 蛋 白中的无规则卷曲比例最大(占38.67%~64.29%);

表 2 蛇足石杉 COBRA 基因家族亚细胞定位及信号肽分析

Table 2 Subcellular localization and signal peptide analysis of COBRA gene family of Huperzia serrata

蛋白 Protein	亚细胞定位 Subcellular location	跨膜结构 Transmembrane structure	信号肽 指数 Signal peptide index	蛋白 Protein	亚细胞定位 Subcellular location	跨膜结构 Transmembrane structure	信号肽 指数 Signal peptide index
HsCOBRA1	细胞核 Nucleus	0	0.000 8	HsCOBRA13	细胞膜 Cell membrane	0	0.002 5
HsCOBRA2	细胞膜 Cell membrane	1	0.975 8	HsCOBRA14	细胞膜 Cell membrane	1	0.999 8
HsCOBRA3	细胞膜 Cell membrane	1	0.000 3	HsCOBRA15	细胞膜 Cell membrane	0	0.001 0
HsCOBRA4	细胞膜 Cell membrane	1	0.975 8	HsCOBRA16	细胞核 Nucleus	0	0.000 1
HsCOBRA5	细胞核 Nucleus	0	0	HsCOBRA17	细胞核 Nucleus	0	0.000 1
HsCOBRA6	叶绿体 Chloroplast	0	0.000 8	HsCOBRA18	细胞膜 Cell membrane	0	0.000 4
HsCOBRA7	叶绿体,细胞核 Chloroplast, nucleus	0	0.000 8	HsCOBRA19	细胞核 Nucleus	0	0
HsCOBRA8	细胞膜 Cell membrane	0	0	HsCOBRA20	细胞核 Nucleus	0	0
HsCOBRA9	细胞壁 Cell wall	1	0	HsCOBRA21	细胞核 Nucleus	0	0
HsCOBRA10	叶绿体,过氧化物酶体 Chloroplast, peroxisome	0	0.075 1	HsCOBRA22	细胞核 Nucleus	0	0
HsCOBRA11	细胞膜 Cell membrane	1	0.000 1	HsCOBRA23	叶绿体 Chloroplast	0	0
HsCOBRA12	细胞膜 Cell membrane	1	0.000 1	HsCOBRA24	细胞核 Nucleus	0	0.000 3

图 2 蛇足石杉 COBRA 基因家族结构域预测 Fig. 2 COBRA gene family domain prediction of Huperzia serrata

表 3 蛇足右杉 COBRA 基因家族二级结构分

Table 3	Secondary structure analysis of COBRA
	gene family of Huperzia serrata

蛋白 Protein	α 螺旋 Alpha helix (%)	延长链 Extended strand (%)	β折叠 Beta turn (%)	无规则卷曲 Random coil (%)
HsCOBRA1	20.86	14.90	3.64	60.60
HsCOBRA2	14.44	23.35	4.67	57.54
HsCOBRA3	19.68	21.47	4.37	54.47
HsCOBRA4	14.44	23.35	4.67	57.54
HsCOBRA5	43.46	9.26	3.02	44.27
HsCOBRA6	31.15	18.03	1.64	49.18
HsCOBRA7	26.67	22.50	5.83	45.00
HsCOBRA8	32.39	14.79	7.75	45.07
HsCOBRA9	27.74	22.63	6.57	43.07
HsCOBRA10	38.27	20.99	14.81	25.93
HsCOBRA11	17.65	20.39	3.92	58.04
HsCOBRA12	19.48	13.64	2.60	64.29
HsCOBRA13	13.45	23.39	4.09	59.06
HsCOBRA14	15.99	22.62	4.98	56.41
HsCOBRA15	16.00	33.33	12.00	38.67
HsCOBRA16	26.25	22.50	7.50	43.75
HsCOBRA17	33.86	8.66	4.72	52.76
HsCOBRA18	25.29	21.26	2.30	51.15
HsCOBRA19	57.53	5.48	4.11	32.88
HsCOBRA20	43.97	17.02	7.80	31.21
HsCOBRA21	46.22	16.81	9.24	27.73
HsCOBRA22	48.71	10.34	7.33	33.62
HsCOBRA23	58.25	16.49	1.55	23.71
HsCOBRA24	12.31	31.54	7.69	48.46

所有蛋白的 β 折叠所占的比例最小(占 1.55% ~ 14.81%)。

2.5 蛇足石杉 COBRA 基因家族三级结构分析

利用 phyre²软件对蛇足石杉 COBRA 基因家族 成员进行三级结构预测,表4 和图 3 结果表明 24 个蛋白共有 19 种三级结构模型,HsCOBRA7 氨基 酸比例最高(81%),HsCOBRA13、HsCOBRA16、 HsCOBRA19、HsCOBRA24 均具有水解酶结构, HsCOBRA1、HsCOBRA6、HsCOBRA7 均具有水解 酶 抑 制 剂 结 构,HsCOBRA2、HsCOBRA3、 HsCOBRA4、HsCOBRA14 均具有碳水化合物结构。 HsCOBRA6、HsCOBRA7、HsCOBRA17 序列同源性 为 99.9%; HsCOBRA6 和 HsCOBRA7 蛋白的三级 结构相似,可能具有相似的生物学功能; HsCOBRA1和 HsCOBRA5 三级结构序列同源性 为 100%。

2.6 蛇足石杉 COBRA 基因家族顺式作用元件分析

顺式作用元件分析结果显示,HsCOBRAs 共有 45 种具有功能注释的顺式作用元件(图4)。其中, 有 22 种顺式作用元件参与光响应(MRE、Box 4、Gbox ACE circadian AE-box GT1-motif Sp1 3-AF1 binding site, CAG-motif, GA-motif, Gap-box, TCTmotif, chs-CMA2a, GATA-motif, LAMP-element, Box II J-box AT1-motif ATCT-motif GTGGC-motif TCCC-motif)。部分蛋白具有参与分生组织表达 (CAT-box)和胚乳表达(GCN4-motif)及响应脱落酸 (ABRE)、生长素(TGA-element)、赤霉素(P-box、 TATC-box)、水杨酸(TCA-element)的顺式作用元 件,此外还含有响应厌氧(ARE)、缺氧(GC-motif)、 干旱(MBS)、低温(LTR)等环境的顺式作用元件。 CAAT-box 元件的数量最多(306个),为启动子和增 强子区域共有的顺式作用元件,分布于所有蛋白: 其次是作为核心启动顺式作用元件的 TATA-box (206个)和参与干旱诱导 MYB 结合位点的 MBS (72个)。HsCOBRA18 所含的顺式作用元件最多 (78 个), 其次为 HsCOBRA14 (75 个) 和 HsCOBRA24(69个), HsCOBRA7 所含的顺式作用 元件最少(10个)。部分顺式作用元件仅在一条蛋 白中显示,如 TCCC-motif (HsCOBRA5), 3-AF1 site (HsCOBRA12), GTGGC-motif binding (HsCOBRA17), ACA-motif, Box II-like sequence (HsCOBRA18), Box II (HsCOBRA19), ATCT-motif, AT1-motif, A-box (HsCOBRA20), GA-motif, ACE (HsCOBRA23), TC-rich repeats (HsCOBRA24)

2.7 蛇足石杉 COBRA 基因家族保守基序分析

HsCOBRAs保守基序结果表明,该家族共包含 6种保守基序,命名为Motif 1-Motif 6(图 5,图 6)。 其中,仅有 13 个蛋白拥有 Motif,3 个蛋白 (HsCOBRA2、HsCOBRA3、HsCOBRA4)所含的Motif 最多,均为6种;7个蛋白(HsCOBRA1、HsCOBRA5、 HsCOBRA7、HsCOBRA9、HsCOBRA10、HsCOBRA12、 HsCOBRA24)仅有1种Motif。Motif 6分布最广,其 次为Motif 1、Motif 3、Motif 4。Motif 3含有高度保守

表 4 蛇足石杉 COBRA 基因家族三级结构分析

Table 4 Tertiary structure analysis of COBRA gene family of Huperzia serrata

蛋白 Protein	建模氨基酸数量及比例 Number of modeling amino acids and proportion (%)	模型 Model	序列同源性 Sequence homology (%)	模型名称 Model name
HsCOBRA1	135(45)	c2vt8B	100	水解酶抑制剂 Hydrolase inhibitor
HsCOBRA2	59(13)	c6f7eA	96.0	碳水化合物 Carbohydrate
HsCOBRA3	60(12)	c6f7eA	96.1	碳水化合物 Carbohydrate
HsCOBRA4	59(13)	c6f7eA	96.0	碳水化合物 Carbohydrate
HsCOBRA5	295(59)	c3vrhA	100	RNA 结合蛋白 RNA binding protein
HsCOBRA6	92(75)	c2vt8B	99.9	水解酶抑制剂 Hydrolase inhibitor
HsCOBRA7	97(81)	c2vt8B	99.9	水解酶抑制剂 Hydrolase inhibitor
HsCOBRA8	63(44)	c5zwo0	79.4	剪接 Splicing
HsCOBRA9	11(8)	d1v6ga2	36.0	糖皮质激素受体样结构域 Glucocorticoid receptor-like
HsCOBRA10	14(17)	c2kfvA	74.9	异构酶 Isomerase
HsCOBRA11	101(40)	d1exha	87.9	碳水化合物结合域 Carbohydrate-binding domain
HsCOBRA12	35(23)	c6qk4B	26.8	裂解酶 Lyase
HsCOBRA13	96(28)	c2rttA	90.4	水解酶 Hydrolase
HsCOBRA14	59(9)	c6f7eA	96.5	碳水化合物 Carbohydrate
HsCOBRA15	34(45)	d2a90a1	29.2	WWE 区域 WWE domain
HsCOBRA16	58(72)	c6uehA	68.5	水解酶 Hydrolase
HsCOBRA17	79(62)	c2l0bA	99.9	连接酶 Ligase
HsCOBRA18	28(16)	c2kk2A	34.3	信号蛋白 Signaling protein
HsCOBRA19	29(40)	c6i3oA	33.2	水解酶 Hydrolase
HsCOBRA20	15(11)	c3pmiC	77.3	结合蛋白 Binding protein
HsCOBRA21	22(18)	c6u9gA	22.8	转运蛋白 Transport protein
HsCOBRA22	15(6)	d1bboa1	18.2	β-β-α 型锌指 Beta-beta-alpha zinc fingers
HsCOBRA23	22(11)	d2asba2	27.0	原核型 KH 结构域 Prokaryotic type KH domain
HsCOBRA24	41(32)	c3ndyG	66.2	水解酶 Hydrolase

的 CCVS 结构,7 个蛋白具有 Motif 3。HsCOBRA2、 HsCOBRA3、HsCOBRA4(Motif 1-Motif 6)分别与 HsCOBRA1、HsCOBRA6、HsCOBRA7(Motif 4)和 HsCOBRA9、HsCOBRA10(Motif 6)具有相同种类 的 Motif。

2.8 蛇足石杉 COBRA 基因家族组织表达模式分析

根据 COBRA 基因在蛇足石杉叶、孢子、茎、 芽胞中的转录组数据分析其表达模式,见图 7。 HsCOBRA2 在 4 个组织中的表达量均最高, HsCOBRA4 在叶、孢子、茎中的表达量仅次于 HsCOBRA2。HsCOBRA7、HsCOBRA15、HsCOBRA20 在 4个组织中几乎不表达,此外还有3个基因 (HsCOBRA6、HsCOBRA12、HsCOBRA23)在叶片 中几乎不表达,1个基因(HsCOBRA21)在孢子中 几乎不表达,4个基因(HsCOBRA6、HsCOBRA12、 HsCOBRA13、HsCOBRA23)在茎中几乎不表达,4 个基因(HsCOBRA4、HsCOBRA6、HsCOBRA21、 HsCOBRA23)在芽胞中几乎不表达。COBRA 基

图 3 蛇足石杉 COBRA 基因家族三级结构预测 Fig. 3 Tertiary structure prediction of COBRA gene family of Huperzia serrata

因家族在蛇足石杉中的表达量顺序为叶>孢子> 茎>芽胞; HsCOBRA2 和 HsCOBRA16 在芽胞及孢子中表达量较高,可能参与蛇足石杉的繁殖。

2.9 蛇足石杉 COBRA 基因家族系统发育分析

为了解蛇足石杉与蕨类植物 COBRA 基因家族的进化关系,构建蛇足石杉与江南卷柏 (Selaginella moellendorffii)的 COBRA 家族成员的 NJ系统发育树,见图 8。序列比对发现 HsCOBRA2、HsCOBRA3、HsCOBRA4、HsCOBRA11、 HsCOBRA13、HsCOBRA14 具有 CCVS 结构,分别 位于蛋白序列的第238 位和第241 位、第268 位和 第271 位、第238 位和第241 位、第268 位和 第271 位、第238 位和第241 位、第268 位和 第271 位、第238 位和第241 位、第268 位和 第241 位、第431 位和第434 位氨 基酸残基中,蛋白高度保守。图8 结果表明, HsCOBRA1 与 HsCOBRA7、HsCOBRA2 与 HsCOBRA4、HsCOBRA16 与 HsCOBRA17 具有同 源性;蛇足石杉与江南卷柏 COBRA 基因家族成员 之间具有一定的亲缘关系。

3 讨论与结论

本研究共筛选出 24 个蛇足石杉 COBRA 基因 家族成员且多以碱性蛋白为主,二级结构主要由 无规则卷曲和 α 螺旋及延长链构成,大部分成员 具有光响应顺式作用元件,与大白菜(廉瑞婷等, 2022)、亚麻(齐燕妮等,2019)、高粱(元志成等, 2020)、番茄(曹颖等,2012)、玉米(潘倚天和黄 敏,2022)、茶树(艾安涛等,2021)等 COBRA 基因 家族相似,说明这些物种中可能具有数量相近、性 质和功能相似的家族成员。但研究也发现 HsCOBRAs 亚细胞定位与玉米、亚麻、谷子(任昂 彦等,2021)中 COBRA 定位不同,提示不同物种的 基因在进化过程中可能产生了某种特定功能的分 化。HsCOBRAs 中 6 个 蛋 白 (HsCOBRA15、 HsCOBRA19、HsCOBRA20、HsCOBRA21、HsCOBRA22、 HsCOBRA23)无结构域及保守基序,并且在蛇足石

HsCOBRA1	
HsCOBRA2	
HsCOBRA3	
HsCOBRA4	
HsCOBRA5	
HsCOBRA6	
HsCOBRA7	
HsCOBRA8 HsCOBRA9	- M-N-8-M88MB80-M-M-8-8-8-
HsCOBRA10	
HsCOBRA11	
HsCOBRA12	
HsCOBRA13	
HsCOBRA14	
HsCOBRA15	
HsCOBRA16	
HsCOBRA17	
HsCOBRA18	89-8-88-3-883-8-8-8-8-8-8-888888-88-888888
HsCOBRA19	
HsCOBRA20	
HsCOBRA21	
HsCOBRA22	
HsCOBRA23	-0-0-00-00-0-0-0000000
HsCOBRA24	
	5/ 300 600 900 1 200 1 500 1 800 2 100 2 400 2 700 3 000 CGTCA-motif TATA-box GTGGC-motif Box II -like sequence CCAAT-box CAAT-box CAT-box ACA-motif Box II LTR TGACG-motif TGA-element Gap-box AT1-motif Box 4 O2-site CAG-motif circadian ATCT-motif GATA-motif Sp1 G-box MSA-like A-box I-box P-box MBS TCA-element chs-CMA2a GARE-motif GT1-motif ABRE 3-AF1 binding site GA-motif TCCc-motif TCT-motif LAMP-element GC-motif ACE MRE ARE TATC-box GCN4-motif TC-rich repeats AE-box

部分顺式作用元件重叠。 Partial *cis*-acting elements overlap.

图 4 蛇足石杉 COBRA 基因家族顺式作用元件预测

Fig. 4 Cis-acting elements prediction of COBRA gene family of Huperzia serrata

杉4个组织中几乎不表达,该6个蛋白可能不属于 蛇足石杉 COBRA 家族成员。

石杉碱甲在治疗阿尔茨海默病及益智中表现 出时效长、副作用少的优势(陈思思等,2021),蛇

足石杉作为石杉碱甲的主要来源之一,其基原植 物的生长繁殖、产量与可持续发展备受人们关注。 COBRA 基因的主要功能是参与植物细胞扩增(廉 瑞婷等,2022),通过调节植物的生长发育从而影 响其生物量和产量。本研究发现,HsCOBRAs 具有 参与分生组织表达及胚乳表达的顺式作用元件, 并且16个HsCOBRAs基因在叶、孢子、茎、芽胞4 个组织中有不同程度的表达,尤其在叶和孢子中 表达量最高,说明蛇足石杉 COBRA 基因家族参与 到其叶、孢子、茎及芽胞的发育过程(杨兰锋等, 2023)。前期研究发现,蛇足石杉大叶、老叶及孢 子囊壁中均具有丰富的纤维素,提示 HsCOBRAs 基 因家族可能通过调节纤维素及细胞壁生长、机械 强度等参与蛇足石杉的生长发育过程,提高其生 物量。孢子是蛇足石杉主要繁殖器官之一, HsCOBRAs 基因家族可能影响其孢子囊壁的生长 发育从而影响孢子的成熟和萌发。同时,该基因 家族成员具有响应干旱、缺氧、低温、盐碱等非生 物胁迫的顺式作用元件。其中, ACA 能响应冷、 热、盐胁迫和紫外等多种非生物胁迫(陈逃飞等, 2023); ABRE 元件能与 BpbZIP1 特异性结合, 响 应盐胁迫,通过清除活性氧提高株系耐盐能力(郭 依萍等,2020);LTR 反转录转座子能响应盐、 ABA、H,O,和干旱等而发生转录水平的变化(周宾 寒等,2023)。ACA、ABRE、LTR 反转录转座子在 HsCOBRAs 基因家族启动子区域大量存在,说明蛇 足石杉 COBRA 基因家族在植物应对非生物胁迫 方面发挥作用。

蛇足石杉 COBRA 基因家族具有与其他物种相 似的生物信息学特征及规律,同时具有可能参与 生长发育、繁殖及响应不良环境胁迫的生物学功 能。通过研究蛇足石杉 COBRA 基因家族的分子 生物信息学特征及组织表达规律,有助于阐明蛇 足石杉 COBRA 基因的分子调控和促进生长发育 机制,为生物量的增长提供新途径,为将来的分子 育种及基因功能验证等研究提供理论依据。

参考文献:

- AI AT, LI YL, ZHANG WY, et al., 2021. Genome-wide identification and expressions of *COBRA* family in *Camellia sinensis* [J]. Acta Tea Sin, 62(3): 95-104. [艾安涛, 李 燕丽,章文益,等, 2021. 茶树 *COBRA* 基因家族全基因 组鉴定及表达分析 [J]. 茶叶学报, 62(3): 95-104.]
- BORNER GH, LILLEY KS, STEVENS TJ, et al., 2003. Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis [J]. Plant Physiol, 132(2): 568-577.
- CAO Y, TANG XF, LIU YS, et al., 2012. Cloning, expression

pattern and bioinformation analyses of *COBRA* gene in tomato (*Solanuml ycopersicum*) [J]. Bull Bot Res, 32(3): 304-310. [曹颖, 唐晓凤, 刘永胜, 等, 2012. 番茄 *COBRA* 基因克隆、表达模式及生物信息学分析 [J]. 植物研究, 32(3): 304-310.]

- CHEN SS, ZHANG MH, WANG JX, et al., 2021. Original plant and research progress of the medicinal plant *Huperzia javanica* [J]. Guihaia, 41(11): 1794–1809. [陈思思,张 梦华, 王锦秀, 等, 2021. 药用植物千层塔的基原物种及 研究进展 [J]. 广西植物, 41(11): 1794–1809.]
- CHEN TF, HUANG M, LIU R, et al., 2023. Bioinformatics

analysis of maize ACA gene family [J]. Mol Plant Breed, 21 (13): 4188-4201. [陈逃飞, 黄敏, 刘睿, 等, 2023. 玉米 ACA 基因家族生物信息学分析 [J]. 分子植物育种, 21(13): 4188-4201.]

- GUO YP, SHI JJ, ZHOU MQ, et al., 2020. Drought and salt tolerance analysis of *BpbZIP*1 gene in birch and ABRE element binding identification [J]. For Res, 33(5): 68– 76. [郭依萍, 石晶静, 周美琪, 等, 2020. 白桦 *BpbZIP*1 基因抗旱耐盐分析及 ABRE 元件结合鉴定 [J]. 林业科 学研究, 33(5): 68–76.]
- HUANG YM, XIE CL, ZHOU LM, et al., 2023. Literature

180.00

150.00

- 120.00

90.00

60.00

-30.00

0.00

A. 叶; B. 孢子; C. 茎; D. 芽胞。 A. Leaves; B. Spores; C. Stems; D. Gemma.

图 7 蛇足石杉 COBRA 基因家族的组织表达模式分析 Fig. 7 Tissue expression patterns analysis of COBRA gene family of Huperzia serrata

research on the original and efficacy of *Huperzia serrata* (Thunb.) Trev. [J]. Asia-Pacific Trad Med, 19(3): 183-189. [黄玉妹,谢采连,周玲梅,等, 2023. 千层塔基原 及药效文献研究 [J]. 亚太传统医药, 19(3): 183-189.]

- JI SG, 2007. Research on molecular biology of Huperziaceae medicinal plants [D]. Shanghai: Fudan University: 1-140. [姬生国, 2007. 国产石杉科药用植物的分子生物学 研究 [D]. 上海:复旦大学: 1-140.]
- JIA J, WEI C, CHEN S, et al., 2018. The cost of alzheimer's disease in china and re-estimation of costs worldwide [J]. Alzheimerors Demen, 14(4): 483-491.
- KASIRAJAN L, HOANG NV, FURTADO A, et al., 2018. Transcriptome analysis highlights key differentially expressed genes involved in cellulose and lignin biosynthesis of sugarcane genotypes varying in fiber content [J]. Sci Rep, 8(1): 11612.
- LI P, LIU Y, TAN W, et al., 2019. Brittle culm 1 encodes a COBRA-like protein involved in secondary cell wall cellulose biosynthesis in *Sorghum* [J]. Plant Cell Physiol, 60(4): 788-801.

- LI Z, ZHOU T, SUN P, et al., 2022. COBL9 and COBL7 synergistically regulate root hair tip growth via controlling apical cellulose deposition [J]. Biochem Biophys Res Commun, 596: 6-13.
- LIAN RT, REN H, ZHAI W, et al., 2022. Identification and expression analysis under low temperature stress of COBRA gene family in *Brassica rapa* L. [J]. J Yunnan Agric Univ (Nat Sci), 37(6): 1031-1039. [廉瑞婷, 任宏, 翟文, 等, 2022. 大白菜 COBRA 基因家族鉴定及其低温胁迫表 达分析 [J]. 云南农业大学学报(自然科学), 37(6): 1031-1039.]
- NIU E, FANG S, SHANG X, et al., 2018. Ectopic expression of GhCOBL9A, a cotton glycosyl-phosphatidyl inositol-anchored protein encoding gene, promotes cell elongation, thickening and increased plant biomass in transgenic *Arabidopsis* [J]. Mol Genet Genom, 293(5): 1191–1204.
- PAN YT, HUANG M, 2022. Genome-wide identification and expression pattern analysis of *COBRA* family members in maize [J]. Gansu Agric Sci Technol, 53(2): 67-72. [潘 倚天, 黄敏, 2022. 玉米 *COBRA* 家族成员全基因组鉴定 与表达模式分析 [J]. 甘肃农业科技, 53(2): 67-72.]
- QI YN, LI WJ, WANG LM, et al., 2019. Identification and bioinformatics analysis of the *COBRA* gene family in flax [J]. Gansu Agric Sci Technol, (9): 33-38. [齐燕妮, 李 闻娟, 王利民, 等, 2019. 亚麻 *COBRA* 基因家族的鉴定 与生物信息学分析 [J]. 甘肃农业科技, (9): 33-38.]
- REN AY, CHEN HY, WANG GP, et al., 2021. Genome-wide identification and expression files of COBRA family in foxtail mille [J/OL]. Mol Plant Breed: 1-10 [2023-08-05]. http://kns. cnki. net/kcms/detail/46. 1068. S. 20211015. 0104.002.html. [任昂彦,陈环宇, 王根平, 等, 2021. 谷 子 COBRA 家族成员的全基因组鉴定及表达模式分析 [J/OL]. 分子植物育种: 1-10 [2023-08-05]. http:// kns. cnki. net/kcms/detail/46. 1068. S. 20211015. 0104. 002. html.]
- ROUDIER F, SCHINDELMAN G, DESALLE R, et al., 2002. The COBRA family of putative gpi-anchored proteins in *Arabidopsis*. A new fellowship in expansion [J]. Plant Physiol, 130(2): 538-548.
- WANG YQ, LIANG JH, JIA RX, et al., 2019. Alzheimer disease in China (2015—2050) estimated using the 1% population sampling survey in 2015 [J]. Chin J Alzheimer's Dis Relat Disord, 2(1): 289–298. [王英全,梁景宏,贾 瑞霞,等, 2019. 2020—2050 年中国阿尔茨海默病患病 情况预测研究 [J]. 阿尔茨海默病及相关病, 2(1): 289–298.]

图 8 蛇足石杉与江南卷柏 COBRA 家族成员的系统发育树 Fig. 8 Phylogenetic tree of COBRA family members of *Huperzia serrata* and *Selaginella moellendorffii*

- YANG LF, ZHU XD, ZHOU BH, et al., 2023. Genome-wide identification and abiotic stress response analysis of TCP transcription factor gene family in tartary buckwheat (*Fagopyrum tataricum*) [J/OL]. Guihaia: 1-15 [2023-10-23]. http://kns.cnki.net/kcms/detail/45.1134.q. 2023 0824.1928.013.html. [杨兰锋,朱旭东,周宾寒,等, 2023. 苦荞 TCP 转录因子全基因组鉴定及非生物胁迫分析 [J/OL]. 广西植物: 1-15 [2023-10-23]. http://kns.cnki.net/kcms/detail/45.1134.q. 2023 0824.1928.013.html.]
- YUAN ZC, KE YS, WU FJ, et al., 2020. Genome wide identification and expression of *COBRA* gene family in *Sorghum bicolor* [J]. J Henan Agric Sci, 49(10): 33-41. [元志成, 柯余生, 吴富进, 等, 2020. 高粱 *COBRA* 基 因家族全基因组的鉴定和表达分析 [J]. 河南农业科学,

49(10): 33-41.]

- ZAHEER M, REHMAN SU, KHAN SH, et al., 2022. Characterization of new COBRA like (COBL) genes in wheat (*Triticum aestivum*) and their expression analysis under drought stress [J]. Mol Biol Rep, 49(2): 1379–1387.
- ZHOU BH, YANG Z, WANG SP, et al., 2023. Screening of active LTR retrotransposons in wheat (*Triticum aestivum* L.) seed lings and analysis of their responses to abiotic stresses [J]. Acta Agron Sin, 49(4): 966–977. [周宾寒,杨竹, 王书平,等, 2023. 小麦幼苗活性 LTR 反转录转座子筛选 及其对非生物胁迫的响应 [J]. 作物学报, 49(4): 966–977.]

(责任编辑 周翠鸣)