DOI: 10.11931/guihaia.gxzw202002041

曾坚,张燕秋,陈丽萍,等.木薯 *MeHSF*10 基因克隆及表达分析 [J]. 广西植物, 2021, 41(9): 1576-1584. ZENG J, ZHANG YQ, CHEN LP, et al. Clone and expression analysis of *MeHSF*10 in *Manihot esculenta* [J]. Guihaia, 2021, 41(9): 1576-1584.

木薯 MeHSF10 基因克隆及表达分析

曾 坚1,张燕秋1,陈丽萍1,吴春来2,胡 伟2*

(1.韶关学院 英东生命科学学院, 广东 韶关 512005; 2. 中国热带农业科学院热带生物技术研究所, 海口 571101)

摘 要: 热激转录因子(heat shock transcription factor, HSF) 是植物中重要的逆境调控因子。许多研究表明 HSF 可通过对信号通路下游的逆境相关基因进行调控而提高植物适应逆境的能力,如提高植株在干旱和氧 化损伤等逆境中的耐受能力。为研究 HSF 在木薯抗逆和采后储存中的功能,该研究以木薯品种 SC124 为材 料,通过 RT-PCR 技术从木薯叶片克隆得到一个木薯 HSF 家族基因,将其命名为 MeHSF10。结果表明:(1) 该基因全长为1098 bp,编码365 个氨基酸残基,蛋白质相对分子量为40.7 kD,理论等电点为8.15,蛋白的 亚细胞定位预测为细胞核。蛋白质序列分析结果表明 MeHSF10 与麻风树 JcHSF 和橡胶树 HbHSF 的相似性 最高,分别为 80.31%和 90.54%。MeHSF10 基因的蛋白序列含有 HSF 蛋白家族的保守结构域,如 DBD、HR-A Core、HR-B Core、插入序列和核定位信号 (nuclear localization signal, NLS),表明 MeHSF10 基因编码的蛋 白质属于 HSFC 家族成员。(2)为分析 MeHSF10 基因在木薯不同组织中的表达情况,对该基因在木薯 11 个 组织中的表达进行分析,结果表明 MeHSF10 基因在木薯所有组织中都有表达,在叶片中的表达最高。(3) MeHSF10 基因的启动子序列元件分析结果显示其含有脱落酸(abscisci acid, ABA)响应(ABA responsive motif)、干旱诱导(drought-induced motif)和光响应(light-responsive motif)等元件。(4)表达分析结果也表 明, MeHSF10 基因能被干旱和 ABA 处理显著诱导, MeHSF10 基因在木薯块茎的采后生理性变质过程中也被 显著诱导表达。综上结果表明,MeHSF10 基因可能在转录水平参与 ABA 介导的木薯干旱胁迫响应和木薯 块茎的采后生理性变质,这为进一步研究其在木薯抗逆和采后储存中的功能奠定基础。 关键词: 热激转录因子, MeHSF10, 非生物胁迫, 采后生理性变质(PPD), 表达分析 文献标识码:A 文章编号: 1000-3142(2021)09-1576-09 中图分类号: 0943

Clone and expression analysis of *MeHSF10* in *Manihot esculenta*

ZENG Jian¹, ZHANG Yanqiu¹, CHEN Liping¹, WU Chunlai², HU Wei^{2*}

(1. Henry Fok College of Life Sciences, Shaoguan University, Shaoguan 512005, Guangdong, China; 2. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China)

Abstract: Heat shock transcription factor (HSF) is a key adverse regulatory factor in plants. Many studies have shown that HSFs can partake in the downstream of signal transduction pathways and regulate genes expression responsive for a

收稿日期: 2020-03-17

基金项目:国家自然科学基金(31901537);韶关学院重点项目(SZ2018KJ05);韶关市科技计划项目(2019sn087);韶关学院博士 启动项目(99000615);广东省教育厅青年创新人才项目(2018KQNCX234) [Supported by the National Natural Science Foundation of China (31901537); Key Program of Shaoguan University (SZ2018KJ05); Science and Technology Planning Program of Shaoguan City (2019sn087); Doctoral Scientific Research Startup Foundation of Shaoguan University (99000615); Foundation for Young Innovation Talents of Education Office of Guangdong Province (2018KQNCX234)]。

作者简介:曾坚(1987-),博士,讲师,研究方向为植物分子生物学研究,(E-mail)zengjian@sgu.edu.cn。

^{&#}x27;通信作者:胡伟,博士,研究员,研究方向为植物分子生物学,(E-mail)huwei2010916@126.com。

variety of abiotic/biotic stresses, to improve the tolerance to high salinity and oxidative stress in plants. In order to analyze the function of HSF in stress tolerance and post-harvest storage of Manihot esculenta, M. esculenta cv. SC124 was used as cloning material. In this study, a HSF gene designated MeHSF10 was isolated from M. esculenta leaves through RT-PCR method. The results were as follows: (1) The full-length cDNA of MeHSF10 was 1 098 bp, encoded a polypeptide of 365 amino acid residues with a predicted relative molecular mass of 40.7 kD and an isoelectric point of 8.15. Subcellular localization of MeHSF10 was predicted as nuclear localization. Multiple protein sequence alignment showed that MeHSF10 shared a significant degree of sequence similarity with other HSF proteins in Jatropha curcas (80.31 %) and Hevea brasiliensis (90.54 %). The protein sequence of MeHSF10 contained conserved motifs of the HSF family, such as DNA Binding Domain (DBD), HR-A Core, HR-B Core, insert sequence, and nuclear localization sequence signal (NLS), these results suggested that MeHSF10 isolated from M. esculenta was a genuine member of the HSFC family. (2) In order to analyze the expression profiles of MeHSF10 gene in M. esculenta, the expression data of eleven M. esculenta tissues/organ types were analyzed, and the result showed that MeHSF10 gene expressed in all eleven M. esculenta tissues, and the highest expression of MeHSF10 was in leaf. (3) Results of promoter element analysis revealed that MeHSF10 contained drought-induced motif (MBS), ABA responsive motif (ABRE), and several lightresponsive motifs. (4) The transcriptome data results also showed that MeHSF10 was upregulated by drought stress and ABA treatment. The expression of MeHSF10 was also induced in M. esculenta post-harvest physiological deterioration (PPD) process. All the above results indicate that *MeHSF*10 may be involved in ABA mediated drought stress response. and that MeHSF10 is also related with PPD and may operate mainly through ROS-regulated gene networks. Therefore, these results offered critical basic knowledge for future gene function analysis of MeHSF10 in stress tolerance and postharvest storage of Manihot esculenta.

Key words: heat shock transcription factor (HSF), *MeHSF*10, abiotic stress, post-harvest physiological deterioration (PPD), expression analysis

植物在漫长的进化过程中已经进化出了应对 各种逆境的抵御机制 (Ohama et al., 2017)。研究 结果表明,热休克反应在植物响应非生物胁迫过程 中具有重要作用,热激转录因子(heat shock transcription factor, HSF)是其中重要的调控因子, HSF 可通过对信号通路下游的逆境相关基因进行 调控而提高植物适应逆境的能力。HSF 能够提高 植株在热、干旱和氧化损伤等逆境中的耐受能力, 在植物应对非生物胁迫过程中具有非常重要的作 用(Guo et al., 2016; Jiang et al., 2018; Zhou et al., 2018)。HSF 还能够提高植物适应不同非生物胁迫 的能力,如TaHSFA4a可提高水稻在重金属环境中 的生存能力 (Shim et al., 2009); SlHsfA1 可提高番 茄在高温环境的生存能力 (Scharf et al., 2012); CarHsfB2 可提高拟南芥在干旱环境中的生存能力 (Hao et al., 2016); AtHSFA6a 和 AtHSFA6b 也可提 高拟南芥在高盐和低温环境中的生存能力; AtHSFA2 可提高拟南芥在高渗、高盐和高氧化水平 环境中的生存能力(Miller & Mittler, 2006; Banti et al., 2010)。因此,不同物种的 HSF 基因均能提高 不同植株应对不同逆境胁迫的能力。

木薯(Manihot esculenta) 是广泛种植于热带及 亚热带地区的重要粮食作物。在我国,木薯种植 面积 5.0×10⁵ hm²,年产量约 1.0×10¹⁰ kg,年产值超 过140亿元,是我国热带和亚热带地区一种重要 的经济作物(张鹏等,2014)。木薯是我国和世界 上具有巨大发展潜力的能源植物,可用于生产工 业淀粉,燃料乙醇,生物基材料(张鹏等,2014;Hu et al., 2016;颜彦等, 2018)。木薯本身拥有较好 的抗旱和耐贫瘠等特点,随着绿色能源需求的不 断增加,木薯作为生物质能源的潜力越来越被重 视。此外,木薯块根采后易出现"采后生理性变 质" (post-harvest physiological deterioration, PPD), 导致其储藏期时间短,严重影响了其在工业生产 中的开发利用(Zidenga et al., 2012:张振文和李开 绵,2012;Xu et al., 2013)。目前,关于 HSF 基因 在木薯中的功能研究还鲜有报道(Wei et al., 2018, Yu et al., 2019)。因此, 克隆木薯 HSF 相关 基因并进行表达分析,对深入研究其在木薯抗逆 过程和 PPD 过程中的表达调控作用具有重要意 义。本研究利用前期木薯转录组数据,通过 PCR 技术克隆到一个热激转录因子 MeHSF10 基因,并 对其编码蛋白序列、保守结构域和进化关系进行 初步分析,同时,也对 MeHSF10 在干旱胁迫、ABA 处理和 PPD 过程中的表达模式进行分析,为研究 MeHSF10 基因功能及抗逆分子机理提供参考。

1 材料与方法

1.1 材料

本研究选用的木薯材料为 SC124 品种 (Manihot esculenta cv. SC124),由中国热带农业科 学院热带生物技术研究所保存。植物 RNA 提取 试剂盒(货号: DP437)购自天根生化科技有限公 司, cDNA 反转录试剂盒(货号: K1622)购自 Fermentas 公司。PCR 引物由上海生工生物工程股 份有限公司合成。

1.2 材料处理

将木薯茎秆切成合适长度的小节(包含 3~4 个芽点),将其种入蛭石和营养土比例为1:1(V/ V)的基质中生长。待生长约 60 d 后,选取生长状 况一致的木薯幼苗作为后续实验材料。采用 20% (W/V)PEG-6000 进行干旱模拟处理,对照植株浇 灌水,在处理0、3、5、7 d 后采集木薯叶片样品用液 氮速冻后放入超低温冰箱保存;使用 100 µmol・ L⁻¹ ABA 进行浇灌,在处理0、3、5、7 d 后采集木薯 叶片样品用液氮速冻后放入超低温冰箱保存;取 生育期 10 个月的木薯块根,置于 25 ℃、70% 相对 湿度的培养箱内进行暗培养,分别在0、6、12、48 h 取样,采集的木薯样品用液氮速冻后放入超低温 冰箱保存,每个样品设3 次生物学重复。

1.3 基因克隆

分别使用 RNA 提取试剂盒和反转录试剂盒进行 RNA 提取和反转录。根据木薯同源序列(Manes. 02G087400.1)设计引物(P1: 5'-ATGAGCAAAAAAGA AAAAAAG-3'; P2: 5'-CTAAAAGCC ACCACCTAAAAGCG-3'),以木薯 叶片 cDNA 为模板进行 *MeHSF*10 基因扩增。扩增 产物连接至 pMD-18T 载体,转化大肠杆菌并挑选 阳性单克隆进行测序。

1.4 生物信息学分析

使用 NCBI 中的 BLASTp 搜索其他物种中和 MeHSF10 同源的蛋白质序列;使用 Plant-mPLoc 软 件预测亚细胞定位;使用 NCBI-CDD 数据库预测保 守结构域;通过 ExPASy ProtParam 计算蛋白质的理 论等电点和相对分子质量;采用 DNAMAN6 软件进 行序列比对;利用 MEGAX 中的 Neighbor-Joining (NJ)法构建进化树;采用 Primer 5.0 软件设计引物; 利用 Plantcare 进行启动子元件分析 (http:// bioinformatics.psb.ugent.be/webtools/plantcare/html/)。

1.5 基因的表达分析

将相应处理的样品提取 RNA,建库并测序,这 部分工作由上海美吉生物技术有限公司完成。测 序平台是 Illumina GAII (Illumina, San Diego, CA, USA)。使用 FASTX-toolkit (http://hannonlab. cshl.edu/fastx_toolkit/)移除接头序列和低质量序 列;利用 Tophat 2.0 (Trapnell and Pachter LSalzberg, 2009)软件将 clean reads 和木薯基因组 参考序列 (version 4.1)进行比对,将比对结果用 Cufflinks (Trapnell et al., 2012)来组装转录组数 据,转录本至少存在于两个样本中才保留。ABA 处理、聚乙二醇(polyethylene glycol, PEG)处理和 PPD 过程中的基因表达水平使用 FPKM (Fragments per kilobase per million mapped reads)表示。

2 结果与分析

2.1 MeHSF10 基因的克隆

利用拟南芥 AtHSF8 基因 (登录号: AT3G24520)的蛋白质序列为参考序列,在 Phytozome 数据库中进行 BLASTp 比对搜索,得到了 一个和木薯相似性较高的基因序列 (Manes. 16G116200.1)。根据该基因设计引物后进行扩增, 对目的基因进行测序后得到一个全长为1098 bp的 片段(图1),编码365个氨基酸,将其命名为 MeHSF10 基因。MeHSF10 基因和参考序列之间存 在1个碱基差异,属于同义突变(图2)。MeHSF10 基因序列含有1个内含子和2个外显子。MeHSF10 蛋白的分子式预测为 C₁₇₉₀H₂₈₄₉N₅₀₁O₅₅₁S₁₇,相对分子 量 40.7 kD, 理论等电点为 8.15, 不稳定系数为 60.57,属于不稳定蛋白。蛋白的亚细胞定位预测为 细胞核。蛋白保守结构域分析显示 MeHSF10 包含 有 HSF 家族结构域(图 3),进一步证明克隆得到的 基因为木薯 HSF 基因。

2.2 MeHSF10 氨基酸序列同源性比对和系统发育 分析

在 NCBI 数据库中使用 MeHSF10 基因的蛋白 质序列为探针,进行 Blast 搜索,下载同源性较高

图 1 木薯 *MeHSF*10 基因 PCR 产物的琼脂糖凝胶电泳结果(A)和 *MeHSF*10 基因在染色体 16 的位置(B) Fig. 1 cDNA electrophoresis of *MeHSF*10 gene of *Manihot esculenta*(A) and location of *MeHSF*10 gene chromosome 16(B)

的序列,其中与橡胶树(XP_021643078.1)和麻风树(XP_020535025.1)的氨基酸序列相似性最高,分别为90.54%和80.31%。多重序列比对结果显示,MeHSF10基因的蛋白序列含有HSF蛋白家族的保守结构域(图4)。在N端6~100氨基酸残基位置含有高度保守的DNA Binding Domain (DBD),在N端170~210氨基酸残基位置含有HR-A Core、HR-B Core和插入序列,在N端227~242氨基酸残基位置含有核定位信号(nuclear localization signal, NLS),这些结果表明MeHSF10基因编码的蛋白质属于HSFC家族成员。系统发育分析结果显示,木薯MeHSF10和橡胶树的HbHSF聚在一起,氨基酸序列一致性最高(图5)。 2.3 MeHSF10基因的组织表达分析

本研究通过下载得到木薯 11 个没有经过任何 处理的组织的表达数据进行研究 MeHSF10 基因在 木薯 不同组织中的表达变化情况(shiny. danforthcenter.org/cassava_atlas/)。它们分别是叶 (L),中脉(M),叶柄(P),茎(S),侧芽(LB),顶端 分生组织(SAM),根(SR),须根(FR),根顶端分 生组织(RAM),分化胚组织(OES),松散性胚性愈 伤组织(FEC)。结果显示 MeHSF10 基因在不同组 织中的表达水平不一样,在叶片中的表达水平最 高,在分化程度较低的组织 FES、RAM 和 SAM 中 的表达水平较低(图 6)。

2.4 MeHSF10 基因在不同胁迫条件下的表达分析

根据基因组数据,通过对 MeHSF10 基因起始 密码子上游 1 500 bp 的序列进行启动子元件分 析,结果表明启动子中包含 1 个干旱诱导元件 MBS、3 个 ABA 响应元件 ABRE (表 1)。因此,在 ABA 处理和模拟干旱胁迫下对 MeHSF10 基因的 表达水平进行分析。结果表明 MeHSF10 基因在 ABA 处理下表达上调,在模拟干旱胁迫下表达也 上调,分别最高提高了 2.3 倍和 2.4 倍(图 7)。

为研究 MeHSF10 基因与木薯块根采后生理性 变质(PPD)过程之间的关系,对 MeHSF10 基因在 木薯采后生理性变质过程中的表达水平进行了分 析。结果显示在采后生理性变质过程中 MeHSF10 基因的表达明显受到诱导,在 6 h 时没有显著变 化;而 12 h 时达到最高水平,提高了约 4.3 倍;48 h 后表达水平下降,但仍然高于 0 h (图 8)。

3 讨论与结论

热激转录因子在自然界中有多个基因家族成 员,它们含有不同的保守结构域,如 DNA 结合功 能域(DNA binding domain, DBD)、寡聚化功能域 (oligomerization domain, OD)、核定位信号(nuclear localization singal, NLS)等。根据保守结构域 OD 的特点可以分为 HSFA、HSFB 和 HSFC 三个家族 (Guo et al., 2016)。不同植物中拥有不一样的 HSF家族数量,例如:拟南芥中有 21 个,水稻中 25 个,玉米中25个,小麦中则超过56个。这些植物 中都含有 HSF 基因家族的保守结构域,并有其相 关功能研究(Guo et al., 2008; Mittal et al., 2009; Lin et al., 2011; Scharf et al., 2012; Xue et al., 2014), 而关于木薯的报道较少。本研究分离的 MeHSF10 基因序列全长为1 098 bp, 编码 365 个氨 基酸。序列分析表明,该基因含有 HSFC 家族的保 守结构域 (李菲等, 2017),系统发育分析结果显 示 MeHSF10 与橡胶树 HbHSF 和麻风树 JcHSF 的 亲缘关系较近。

41 卷

				1	0			20			30			4	0			50			60			70		
	1	ATG	AGC	AAA	AAA	GAA	AAA	AAA	GAA	GCG	GAAT	GCG.	ACC	AAT	CGC.	AGC	TCC	TCC	TCC	ATA	TTT	GCT	GGG	GAGA	AGGA	2
	T	М	S	ĸ	ĸ	E	ĸ	ĸ	E	А	N	А	Т	IN	R	S	S	S	S	T	F.	А	G	E 1	K D	
				8	5			95			105			11	5		1	25			135			145		
	76	GCC	TTG	CTT	CTT	ССТ	CTA	GAC	GCA.	AGI	AGA	GAG.	ААА	AAA	GAA	ATT	ATT	CAA	CTG	TGI	'AGA	GTT	TAT(GGGA'	rgga	G
	26	A	L	L	L	Ρ	L	D	A	S	R	Е	Κ	Κ	Е	I	I	Q	L	С	R	V	Y	GΪ	ΜE	
	1 - 1	~~~		16	0	~	1	70			180			19	0		2	00	~	~~~	210		~ ~ ~	220		~
	151 51	CCT	AA'I'.	ACC.	ATC	GTA(GCT(CCT	TTC	GTC	ATG.	AAG.	ACA	T'A'I'	CAG.	A'I''I' T	GTC.	AA'I'	GAT	CCA	GCC.	ACT	GACA	ACAC!	I''I'A'I'(
	JI	F	IN	Т	Т	v	A	r	Г	v	141	Г	T	Т	Q	T	v	IN	D	r	A	Т	D	1 1		
				23	5		24	45			255			26	5		2	75			285			295		
	226	ACC	TGG	GGC.	AAA	GCC	AAC	AAC	AGC	TTC	CATC	GTC.	ATC	GAC	ССТ	TTA	GAT	TTC	TCC	CAG	GAGA	ATC	TTG	CCTG	TTTA	С
	76	Т	W	G	Κ	А	Ν	Ν	S	F	I	V	I	D	Ρ	L	D	F	S	Q	R	I	L	Ρv	V Y	
				21	~		~	~ ~			220			24	~		2	- 0			200			270		
	201	mme	יעעע	1C	U N N C	ת א	J. Turci	20 TCT	ACC	mmc	330 CTTT	~~~~	CAC	34 CTTA	U DDC	۸CT	כ התח	50 CCT	ՠՠՠ		360	CUU	<u>сл</u> т(370	۸ m ۸ C ·	7
	101	F	K K	H	N N	N N	F	S	S	F	V	R	CAG O	T.	AAC. N	T ACI	Y	G	F	RGA	K	V	D	P 1	AIAGA D R	7
	101	-	10				-	Ũ	õ	-	•	11	×	1		-	-	0	-	1.	10	·	D			
				38	5		3	95			405			41	5		4	25			435			445		
	376	TGG	GAA'	TTC	GCA	AAC	GAG	TGG	TTT	CTI	CGT	GGG	CAA	AAA	CAG	TTG	TTG	AAG.	AAT	ATA	GTT	CGT.	AGA/	AAGC	ATAG	С
	126	W	Ε	F	А	Ν	Ε	W	F	L	R	G	Q	K	Q	L	L	K	Ν	Ι	V	R	R	K I	H S	
				16	\cap		л.	70			180			10	0		5	00			510			520		
	451	AAG	GGC'	TCG	U TGT	ATG	CAA	, о тст	AAA	АТС	GAG	GAT	ጥጥጥ	GAC	о ААТ	GAA	GAG	CTA	GTT	ATG	GAG	АТА	GCG?	JZU AGGT'	TAAA	G
	151	K	G	S	C	M	Q	S	K	I	E	D	F	D	N	E	E	L	V	M	E	I	A	RÍ	L K	5
				53	5		5	45			555		_	56	5		5	75			585			595		_
	526	CAA	GAA	CAG.	AGA	GTT	CTG	GAG	AAA	GAG	CTT	GAG	GGT	ATG	AAC.	AAA	CGG	TTG	GAG	GCC	ACT	GAG.	AGA	CGCC	CTCA	A
	1/6	Q	E	Q	R	V	Г	E	ĸ	E	Ц	E	G	М	IN	ĸ	ĸ	Ц	뇬	А	Т	E	R	K I	P Q	
				61	0		62	20			630			64	0		6	50			660			670		
	601	CAA	ATG	ATG	ТСТ	TTT	CTT	TAC	AAA	GTC	GTC	CAG	GAC	ССТ	GAT	CTT	СТС	ССТ	CGC	ATG	ATA	CTT	CAGI	AAAG	AAAG	A
	201	Q	М	М	S	F	L	Y	Κ	V	V	Q	D	Ρ	D	L	L	Ρ	R	М	I	L	Q	K J	ΞR	
				<u> </u>	F		~	0 5			705			71	F		7	0 F			725			745	Ļ	
	676	ЪСT	ACA	00 220	כ העדים	משמ	0 2202	95 886			705 2066	ጥጥፚ	атс	/ 1 Δ Ͳ Ͳ	с С	ССТ	י דרב	∠ つ Ͳ ⊂ Ͳ'	тсс	TCC	כנ/ ידרידי	ССТ		745 2000	C Cacture	т
	226	T	R	0	L	N	D	K	K	R	R	L	M	I	S	P	S	S	S	S	S	G	G	A J	A V	T
				~																			-			
				76	0		7'	70			780			79	0		8	00			810			820		
	751	TCC	AGT'	TCA	GTG	AAG	ICG	GAA	GAA	GAA	GAC	GGT	GGA	AAC	GTA	GGG	GTA	ATA	TCG	TCI	CCA	GAA.	ACA	GGGT	FTTG	2
	251	S	S	S	V	ĸ	S	E	E	E	D	G	G	N	V	G	V	T	S	S	Р	E	Т	G	e C	
				83	5		84	45			855			86	5		8	75			885			895		
	826	CAA	TCT	TCT	с ССТ	TCA	CCG	GAG	ACA.	AAT	ATC.	ATA.	AGG	TGG	TTG	GGA	GAĂ	GGG.	AAC	TAT	GGT	TGT	GAG	rcgg	CGCC	Г
	276	Q	S	S	Ρ	S	Ρ	Е	Т	Ν	I	I	R	W	L	G	Ε	G	Ν	Y	G	С	Ε	S I	A P	
				0.1	~			~ ~						~ •	~		~	- 0								
	0.01	ת א	001	91 700	0 7 C C	maai	92	20	3 m.C.	COT	930	~~~	7 mm	94	0 7 7 m	7 C TT	9 СШЛ	50 200	CmC	C C 7	960	mom	CAC	970	י א א א	TP
	901 301	N	P	T.	ACG T	S	T	DJE A	M	GGI	. GAA' E	GUU. G	T	G G	AAI. N	ACI T	U GIA	ACG T	V	GCF A	M	S	O	P P	AAAA E N	T
	001	14	-		-	U	-			0		0	-	0		-	•	-	•			D	×			
				98	5		9	95		1	.005			101	5		10	25		1	035		-	1045		
	976	AGC	TCG	ATA	GGT	TGT	GGC	GGT	GAC.	AAG	GTT	GGG	CAA	ATA	AGC	TAT	TTT	GGA	GAA	СТС	GCG	GCG	GGC	GTGG	AGGC	Г
	326	S	S	Ι	G	С	G	G	D	K	V	G	Q	Ι	S	Y	F	G	Ε	L	A	A	G	VJ	ΞA	
				106	Λ		10'	70		1	080			100	0											
	1051	AGA	CCA	CCA	U CCG	ССТ	то ГАТ(CCA	TTT	TCG	.000 СТТ'	TTA	GGT	GGT	GGC	ፐፓፐ	TAG									
	351	R	P	P	P	P	Y	P	F	S	L	L	G	G	G	F	*									
箭头表	箭头表示 MeHSF10 与参考序列之间存在1个碱基差异。																									

Arrow indicates there is one SNP between MeHSF10 and the reference sequence.

图 2 MeHSF10 基因 ORF 序列

Fig. 2 ORF sequence of MeHSF10 gene

HSF 基因在所有的水稻组织中都有表达,而 HSF9 则只在向日葵和拟南芥的种子中表达 (Almoguera et al., 2002; Scharf et al., 2012), 番茄 花粉组织中的 HSFA2 相比其他花组织表现出更高

图 3 MeHSF10 蛋白质保守结构域分析

Fig. 3 Conserved domain analysis of MeHSF10 protein

XP_007013185.2_可可 E0V30804.1_可可 XP_012452195.1_雷蒙德氏棉 KAB2024193.1_海岛棉 XP_022755053.1_榴莲 XP_021643078.1_橡胶树 XP_012076680.1_麻风树 XP_002324418.2_毛果杨 AKW56417.1-/小叶杨 KAB5514284.1_柳树 MeHSF10_木薯	MESNSNNIVAPFVVKTYQLVNDETIDILAKKANNSFIMMDPLDESCRILEAYFKHSNFSSFVRQLNTYGFRKVDPDKWEFANECFLRGOKHLKNIV MESNSNNIVAPFVAKTYQMVNDETIDILAKKANNSFIMDDPLDFSCRILEAYFKHSNFSSFVRQLNTYGFRKVDPDKWEFANECFLRGOKHLKNIV MEADSNPKIVAPFVAKTYQMVNDEMIDVITWKANNSFIVIDPLDFSCRILEVYFKHSFSSFVRQLNTYGFRKVDPDKWEFANEGFLRGOKHLKNIV MEADSNPKIVAPFVAKTYQMVNDEMIDVITWKANNSFIVIDPLDFSCRILEVYFKHSFSSFVRQLNTYGFRKVDPDKWEFANEGFLRGOKHLKNIV MEADSNFKIVAPFVAKTYQMVNDEMIDVITWKANNSFIVIDPLDFSCRILEVYFKHSFSSFVRQLNTYGFRKVDPDKWEFANEGFLRGOKHLKNIV MEADSNFKIVAPFVAKTYQMVNDEMIDVITWKANNSFIVIDPLDFSCRILEVYFKHSFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGOKHLKNIV MEANTIVAPFVMKTYQIVNDEMIDTITWKANNSFIVIDPLDFSCRILEVYFKHNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGOKULKNIV MEANTIVAPFVMKTYQIVNDEMIDTISWKANNSFIVIDPLDFSCRILEVYFKHNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGOKQLKNIV MEANNNNNIVAPFVLKIYQMVSDETDSLISWCRANNSFIVIDPLDFSCRILEVYFKHNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGOKQLKNIV MEANNNNNNIVAPFVLKIYQMVSDETDSLISWCRANNSFIVIDPLDFSCRILEVYFKHNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGOKQLKNIV MEANNNNNNIVAPFVLKIYQMVSDETDSLISWCRANNSFIVIDPLDFSCRILEVYFKHNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGOKQLKNIV MEANNNNNNSDETDSLISWCRANNSFIVIDPLDFSCRILEVYFKHNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGOKQLKNIV MEANNNNNNNNNNNNNDPROVLKIYQMYSDETDSLISWCRANNSFIVIDPLDFSCRILEVYFKHNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGOKQLKNIV MEANNNNNNNNNNNNNNNPDFRDRFLRGOKQLKNIV
	DBD
XP_007013185.2_可可 E0Y30804.1_可可 XP_012452195.1_雷蒙德氏棉 KAB2024193.1_海岛棉 XP_022755053.1_榴莲 XP_021643078.1_橡胶树 XP_012076680.1_原风树 XP_002324418.2_毛果杨 AKV56417.1-小叶杨 KAB5514284.1_柳树 MeHSF10_太薯	RRKONKNPYMOMKABOLDOKOIVMEIARIKEEGKSIEEBIOGMNKRIEATERRPQOMMAFLYKVVEDTOLLPRMMLEKERTRGINAEKKORUTI RRKONKNPYMOMKABOLDOKOIVMEIARIKEEOKSIEEBIOGMNKRIEATERRPQOMMAFLYKVVEDTOLLPRMMLEKERTRGINAEKKORUTI RRKHNKNPYMOL.KABOLDEEIVMEIARIKEEOKSIEEBIOGMNKRIEATERRPQOMMEFLYKVVEDODULPRMMLEKERTRGINAEKKORUTI RRKHNKNPYMOL.KABOLDEEIVMEIARIKEEOKSIEEBIOGMNKRIEATERRPQOMMEFLYKVVEDODULPRMMLEKERTRGINADKKRRITM RRKHNKNPYMOL.KABOLDEEIVMEIARIKEEOKSIEEBIOGMNKRIEATERRPQOMMEFLYKVVEDODULPRMMLEKERTRGINADKKRRITM RRKHNKNPYMOL.KABOLDEEIVMEIARIKEEOKSIEBEIOGMNKRIEATERRPQOMMEFLYKVVEDODULPRMMLEKERTRGINADKKRRITM RRKHSKSSFMOG.KIBOLNDEEIVMEIARIKEEOKSIEBEIOGMNKRIEATERRPQOMMAFIYKVVEDODULPRMMLEKERTRGINADKKRRITM RRKHSKSSFMOG.KIBOFDEEIVMEIARIKOEOKILBKEEOKSIEBEIOGMNKRIEATERRPQOMMAFIYKVVEDODULPRMICKERTRGINADKKRRITM RRKHSKSSSFMOG.KIBOFDEEIVMEIARIKOEOKILBKELGENKRIEATERRPQOMMAFIYKVVEDODULPRMICKERTRGINADKKRRITM RRKHSKSS.SFMOG.KIBOFDEDIIMEIARIKOEOKILBKELGENKRIEATERRPQOMMAFIYKVVEDODULPRMICKERTRGIK.DKKORMMI RRKHSKSSYMOVNIKGEDFDEDIIMEIARIKOEOKALBOOKALBOOKANKRIEATERRPQOMMAFIYKVVEDODULPRMICKERTRGIK.DKKORMMI RRKHSSNNKGSSYMOVNIKGEDFDEDIIMEIARIKOEOKALBOOKARIEOKKRIEATERRPOOMMAFIYKVVEDODULPRMICKERTRGIK.DKKORMI RRKHSSNNKGSSYMOVNIKGEDFDEDIIMEIARIKOEOKALBOOKARIEOKKRIEATERRPOOMMAFIYKVVEDODULPRMICKERTRGIK.DKKORMI RRKHSKN.KGSYMOVNIKGEDFDEDIIMEIARIKOEOKALBOOKARIEOKKRIEATERRPOOMMAFIYKVVEDODULPRMICKERTRGIK.DKKORMI RRKHSKN.KGSYMOVNIKGEDFDEDIIMEIARIKOEOKALBOOKARIEOKKRIEATERRPOOMMAFIYKVVEDODULPRMICKERTRGIK.DKKORMI
	HR-A Core Insert HR-B Core NLS
XP_007013185.2_可可 E0Y30804.1_可可 XP_012452195.1_雷蒙德氏棉 KAB2024193.1_海岛棉 XP_022755053.1_榴莲 XP_021643078.1_橡胶树 XP_012076680.1_麻风树 XP_002324418.2_毛果杨 AKV56417.1-小肝杨 KAB5514284.1_柳树 MeHSF10_木薯	PSYSSSSLAVSNNSVKSEDEEE.VNPGVISPPTGFDVDNNFCRSNYOSSPSE.DSRELLGHRPITGQVMNYGCATVTSQMPAVVLAPSVIKN PSSYSSSSLAVSNNSVKSEDEEE.VNPGVISPPTGFDVDNNFCRSNYOSSPSE.DSRELLGHRPITGQVMYGCATVTSQMPAVVLAPSVIKN APS.NSSSSLAVSNNSVKSEDEED.GHPGVISSPPTGFDVDNNFCRSNYOSSPSEDOJSKELLGQNRLHEGQLMYGCAAVTTQLPAVVAPSVIGN PS.NSSSSLAVSNNSVKSEDEEE.GHPGVISSPPTGFDDIDNNFCRSNYOSSPSEDOJSKELLGQNRLHEGQLMYGCAAVTTQLPAVVAPSVIGN PS.SSSSSLAVSNNSVKSEDEEE.GHPGVISSPPTGFDDIDNNFCRSNYOSSPSEDOJSKELLGQNRLHEGQLMYGCAAVTTQLPAVVAPSVIGN PS.SSSSSLAVSNNSVKSEDEEE.GHPGVISSPPTGFDIDNNFCRSNYOSSPSEDOJSKELLGQNRLHEGQLMYGCAAVTTQLPAVVAPSVIGN PS.SSSSSLAVSNNSVKSEDEEEE.GNIGVISSPPTGFDIDNNFCRSNYOSSPSEDOJSKELLGQNRLHEGGLMYGCAAVTTQLPAVVAPSVIGN PS.SSSSSSLAVSNNSVKSEDEEEE.GNIGVISSPPTGFDIDNNFCRSNYOSSPSEDOJSKELLGQNRLHEGGLMYGCAAVTTQLPAVVAPSVIGT SS.SSSSGGAAVSSVKSEDEEEE.GNIGVISSPPTGFDIDNNFCRSNYOSSPSEDOJSKELLGQNRLHEGGLMYGCAAVTTQLPAVVAPSVIGT SS.SSSSGGAAVSS.VKSEDEEEE.GNIGVISSPPTGFDIDNNFCRSNYOSSPSEDISTAIGNLGGNYGCLUPGLTTGGSSVGAEGN SS.SSSSSGAAVSS.VKSEDEEEECNIGVISSPPTVFNVKFCOSSPSPETNFIRMLGEGNYGCLUPGLTTGGSMGAGGGA SS.ATSPGMAISSTSTIIKSEVHEGSIGVISSPTVFNVKFCOSSPSPESDINAIGNLDOVNYGLAVAGPSPTTGSMGAGGAG SS.ATSPSGMAISSTSTIKSEVHEGSIGVISSPTVFNVKFCOSSPSPESDINAIGNDOVNYGLAVAGPSPTTGSMGAGGAG SS.SSSSGGAAVSSVKSEDEEGSIGVISSPTVFNVDKFCOSSPSPESDINAIGNDOVNYGLAVAGPSPTTGSMGAGGAGAG SS.SSSSSGGAAVSSS.VKSEDAVSLAVSSPTGAFCOSSPSPETNIRAUGUDVNYGLAVAGSPSAGSMGAGGAGAG SS.SSSSSGGAAVSSS.VKSEDSVASSSPTGSNSSSSGGAAVSSS.NSSEDASDINAIGNDONYGCESAPNPLTS.IAMGGGAGAGAG SS.SSSSSSGGAAVSSS.VKSEDAVSSSPTGAFCOSSPSPETNIRAUGUDNYGCESAPNPLTS.IAMGGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
XP_007013185.2_可可 E0V30804.1_可可 XP_012452195.1_雷蒙德氏棉 KAB2024193.1_海岛棉 XP_022755053.1_榴莲 XP_021643078.1_橡胶树 XP_012076680.1_麻风树 XP_002324418.2_毛果杨 AKV56417.1-小叶杨 KAB514284.1_柳树 MeHSF10_木薯	GTAMSSPGTSSLGGYG.DNNGQLGYFGEMAAAGMEARPEPYPFSLLGGF GTAMSSPGTSSLGGYG.DNNGQLGYFGEMAAAGMEARPEPYPFSLLGGF GMAVSSSGATSVAGYG.DRSCQLGYFGEMAAPWMEARPREPYPFSLLGGF MAVSSSGTTSVAGYG.DRSCQLGYFGEMAAPWMEARPREPYPFSLLGGF TVTVARPPENNLIGCG.DRVGGISYFGELAAD.VEARPEPYPFSLLGGF TVAVSPPENNLIGCG.DRVGEISYFGELAAD.VEARPEPYPFSLLGGF TVAVLPQGNSTVIGYGGDWGDHINYFGEMAAG.VEDRPRESYFFSLLGGF TVAVLPQGNSTVIGYGGDWGDHINYFGEMAAG.VEDRPRESYFFSLLGGF TVAVLPQGSVIGYGGDWGDHNYFGEMAAG.VEDRPRESYFFSLLGGF TVAVLPQGSSVIGYGGDWGDHNYFGEMAAG.VEDRPRESYFFSLLGGF TVAVLPQGSSVIGYGGDWGDHNYFGEMAAG.VEDRPRESYFFSLLGGF TVAVLPQGSSVIGYGGDWGDHNYFGEMAAG.VEDRPRESYFFSLLGGF TVAVLPQGSSVIGYGGDWGDHNYFGEMAAG.VEDRPRESYFFSLLGGF

XP_021643078.1 橡胶树; XP_012076680.1 麻风树; XP_002324418.2 毛果杨; AKV56417.1 小叶杨; KAB5514284.1 柳树; XP_012452195.1 雷蒙德氏棉; KAB2024193.1 海岛棉; XP_007013185.2 可可; EOY30804.1 可可; XP_022755053.1 榴莲。 XP_021643078.1 (*Hevea brasiliensis*); XP_012076680.1 (*Jatropha curcas*); XP_002324418.2 (*Populus trichocarpa*); AKV56417.1 (*Populus simonii*); KAB5514284.1 (*Salix brachista*); XP_012452195.1 (*Gosspium raimondii*); KAB5014284.1 (*Salix brachista*); XP_012452195.1 (*Gosspium raimondii*); KAB504193.1 (*Gosspium barbadense*); XP_

007013185.2 (Theobroma cacao); EOY30804.1 (Theobroma cacao); XP_022755053.1 (Durio zibethinus).

图 4 MeHSF10 与其他植物 HSF 蛋白的多序列比对分析

Fig. 4 Multiple sequence alignment analysis of MeHSF10 and HSF proteins from other plants

的表达 (Guo et al., 2016)。因此,不同 HSF 基因 会由于功能的差异在不同植物的不同组织中呈现 出不同的表达水平。MeHSF10 基因的启动子序列 分析结果显示其含有大量的光诱导元件,而 MeHSF10在叶片中的表达水平最高,因而推测该 基因可能与叶片中的光合作用相关。

方框标出 MeHSF10。

MeHSF10 was marked by box.

图 5 木薯 MeHSF10 蛋白与其他物种 HSF 蛋白构建的系统进化树 Fig. 5 Phylogenetic tree of MeHSF10 protein in *Manihot esculenta* and HSF protein from other species

表达量为 FPKM。下同。L. 叶; M. 中脉; P. 叶柄; S. 茎; LB. 侧 芽; SAM. 顶 端 分 生 组 织; FR. 须 根; SR. 根; RAM. 根顶端分生组织; OES. 分化胚组织; FEC. 松散性胚 性愈伤组织。

The relative expression is FPKM. The same below. L. Leaf; M. Midvein; P. Petiole; S. Stem; LB. Lateral bud; SAM. Shoot apical meristem; FR. Fibrous root; SR. Storage root; RAM. Root apical meristem; OES. Organized embryogenic structure; FEC. Friable embryogenic calli.

图 6 MeHSF10 基因在木薯不同组织中的表达分析 Fig. 6 Expression analysis of MeHSF10 gene in different tissues/organs of Manihot esculenta

启动子是基因表达调控的重要元件, MeHSF10 基因的启动子序列分析结果显示其含有干旱诱导

表 1 MeHSF10 基因启动子元件分析结果

Table 1 Promoter elements analysis of MeHSF10 gene

序号 No.	元件名称 Element name	数目 Number	功能预测 Predicted function
1	ABA 响应元件 ABRE	3	ABA 响应 Abscisic acid responsive
2	光响应元件 Box 4	5	光响应 Light-responsive
3	光响应元件 G-Box	3	光响应 Light-responsive
4	干旱诱导元件 MBS	1	干旱诱导 Drought-inducible
5	茉莉酸甲酯反应元件 TGACG-element	1	茉莉酸诱导 MeJA-responsiveness

相关元件 MBS 和 ABRE 元件。因此,本研究分别 对木薯进行干旱和 ABA 处理,结果表明 MeHSF10 基因的表达明显受到干旱胁迫和 ABA 处理的诱 导。在拟南芥中,AtHsfA9 通过 ABA 信号通路提高 植株应对干旱胁迫的能力(Guo et al., 2008),过 表达 AtHSFA2 和 AtHSFA8 基因可提高拟南芥植株 对盐和渗透胁迫的适应能力;过表达 OsHSF29 和 OsHSF17 基因可以提高水稻植株对盐和渗透胁迫 的适应能力(Jin et al., 2013)。因此,推测 MeHSF10

图 7 *MeHSF*10 基因在 ABA(A)和 PEG(B)处理下的表达分析 Fig. 7 Expression analysis of *MeHSF*10 gene under ABA (A) and PEG (B) treatments

9期

in PPD process of cassava tuberous roots

可能通过依赖于 ABA 信号通路的途径来响应干旱 胁迫,但具体是哪些基因参与了 MeHSF10 介导的 分子调控仍不清楚。MeHSF10 在木薯生理性变质 过程中的高表达则表明,该基因可能和木薯块茎 的生理性变质相关。研究报告指出 HSF 和植物应 对氧化胁迫密切相关,在水稻中 OsHsfC2a 和 OsHsfA5 是植株 ROS 感知和含量积累的重要基因 (Miller et al., 2008; Mittal et al., 2009)。在烟草 中,过表达胡杨 PeHSF 基因则通过调节叶片中的 ROS 平衡提高烟草应对非生物逆境胁迫的能力 (Shen et al., 2013)。因此,推测 MeHSF10 可能和 氧化胁迫相关,进而影响木薯块茎的生理性变质。 但 MeHSF10 基因如何参与木薯块茎的生理性变质 仍不清楚。因此,对这些结果的进一步研究将有 可能为木薯的抗逆和延缓生理性变质提供理论参考。下一步将通过对基因功能的研究来验证该基 因在木薯抗旱和延缓生理性变质中的作用。

参考文献:

- ALMOGUERA C, ROJAS A, DIAZ-MARTIN J, et al., 2002. A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower [J]. J Biol Chem, 277(46): 43866-43872.
- BANTI V, MAFESSONI F, LORETI E, et al., 2010. The heatinducible transcription factor hsfa2 enhances anoxia tolerance in *Arabidopsis* [J]. Plant Physiol, 152(3): 1471-1483.
- HU W, KONG H, GUO YL, et al., 2016. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava [J]. Front Plant Sci, 7: 736.
- GUO JK, WU J, JI Q, et al., 2008. Genome-wide analysis of heat shock transcription factor families in rice and *Arabidopsis* [J]. J Genet Genom, 35(2): 105–118.
- GUO M, LIU JH, MA X, et al., 2016. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses [J]. Front Plant Sci, 7: 114.
- HAO M, WANG C, YANG B, et al., 2016.*CarHSFB2*, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in Chickpea (*Cicer arietinum* L.) [J]. Plant Mol Biol Rep, 34(1): 1–14.
- JIANG Y, ZHENG QQ, CHEN L, et al., 2017. Ectopic overexpression of maizeheat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic *Arabidopsis* [J]. Acta Physiol Plant, 40(1): 1– 12: 76/DOI:10.1186/1471-2164-12-76.

- JIN GH, GHO HJ, JUNG KH, 2013. A systematic view of rice heat shock transcription factor family using phylogenomic analysis [J]. J Plant Physiol, 170(3): 321–329.
- MILLER G, SHULAEV V, MITTLER R, 2008. Reactive oxygen signaling and abiotic stress [J]. Physiol Plant, 133(3): 481-489.
- MILLER G, MITTLER R, 2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? [J]. Ann Bot-London, 98(2): 279–288.
- MITTAL D, CHAKRABARTI S, SARKAR A, et al., 2009. Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses [J]. Plant Physiol Biochem, 47(9): 785–795.
- LI F, HE XH, ZHANG XM, et al., 2017. Screening and functional analysis of Heat Shock Factor (HSF) family in *Medicago truncatula* and *Medicago lupulina* L. [J]. Mol Plant Breed, 15(7), 2517-2524. [李菲,何小红,张习 敏,等, 2017. 蒺藜苜蓿和天蓝苜蓿热激因子(HSF)家族 的筛选与功能分析 [J]. 分子植物育种, 15(7): 48-55.]
- LIN YX, JIANG HY, CHU ZX, et al., 2011. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize [J]. BMC Genomics, 12
- OHAMA N, SATO H, SHINOZAKI K, et al., 2017. Transcriptional regulatory network of plant heat stress response [J]. Trends Plant Sci, 22(1): 53–65.
- SCHARF KD, BERBERICH T, EBERSBERGER I, et al., 2012. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution [J]. BBA-Gene Regul Mech, 1819(2): 104-119.
- SHEN Z, DING M, JIAN S, et al., 2013. Overexpression of *PeHSF* mediates leaf ROS homeostasis in transgenic tobacco lines grown under salt stress conditions [J]. Plant Cell Tiss Org, 115(3): 299–308.
- SHIM D, HWANG JU, LEE J, et al., 2009. Orthologs of the class a4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice [J]. Plant Cell, 21(12): 4031-4043.
- TRAPNELL C, PACHTER LSALZBERG SL, 2009. TopHat: discovering splice junctions with RNA-Seq [J]. Bioinformatics, 25: 1105–1111.
- TRAPNELL C, ROBERTS A, GOFF L, et al., 2012. Differential gene and transcript expression analysis of RNA-

seq experiments with TopHat and Cufflinks [J]. Nat Protoc, 7: 562-578.

- WEI YX, LIU GY, CHANG YL, et al., 2018. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava [J]. Mol Plant Pathol, 19(10): 2209–2220.
- XU J, DUAN XG, YANG J, et al., 2013. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots [J]. Plant Physiol, 161(3): 1517-1528.
- XUE GP, SADAT S, DRENTH J, et al., 2014. The heat shock factor family from *Triticum aestivum* in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes [J]. J Exp Bot, 65(2): 539–557.
- YAN Y, TIE WW, DING ZH, et al., 2018. Cloning and expression analysis of *MePYL8* gene in cassava [J]. Mol Plant Breed, 16(14): 4498-4504. [颜彦, 铁韦韦, 丁泽 红, 等, 2018. 木薯 *MePYL8* 基因克隆及表达分析 [J]. 分 子植物育种, 16(14): 4498-4504.]
- YU XY, YAO Y, HONG YH, et al., 2019. Differential expression of the Hsf family in cassava under biotic and abiotic stresses [J]. Genome, 62(8): 563-569.
- ZHANG P, YANG J, ZHOU WZ, et al., 2014. Progress and perspective of cassava molecular breeding for bioenergy development [J]. Chin Bull Life Sci, 26(5): 465-473. [张 鹏,杨俊,周文智,等, 2014. 能源木薯高淀粉抗逆分子育 种研究进展与展望 [J]. 生命科学, 26(5): 465-473.]
- ZHANG ZW, LI KM, 2012. Review on postharvest deterioration and methods of storage for cassava tuberous root [J]. Chin J Trop Crops, 33(7): 1326-1331. [张振文,李开绵, 2012. 木薯块根采后腐烂及贮藏方法研究进展 [J]. 热带 作物学报, 33(7):1326-1331.]
- ZHOU J, XU X, CAO JJ, et al., 2018. HsfA1a is essential for Mi-1.2-mediated resistance to Meloidogyne incognita, and regulates Wfi1 transcription and H₂O₂ production [J]. Plant Physiol, 176(3): 2456–2471.
- ZIDENGA T, LEYVA-GUERRERO E, MOON H, et al., 2012. Extending cassava root shelf life via reduction of reactive oxygen species production [J]. Plant Physiol, 159(4): 1396-1407.

(责任编辑 李 莉)