Page 38 - 《广西植物》2022年第3期
P. 38
3 8 2 广 西 植 物 42 卷
[J]. Plant Diversꎬ 41: 26-32. Herbarium records identify sensitivity of flowering phenology
HE Xꎬ BURGESS KSꎬ YANG XFꎬ et al.ꎬ 2019b. Upward of eucalypts to climate: Implications for species response to
elevation and northwest range shifts for alpine Meconopsis climate change [J]. Austral Ecolꎬ 40(2): 117-125.
species in the Himalaya ̄Hengduan Mountains region RENNER SSꎬ ZOHNER CMꎬ 2018. Climate change and
[J]. Ecol Evolꎬ 9: 4055-4064. phenological mismatch in trophic interactions among plantsꎬ
IPCCꎬ 2014. Climate change 2014: Synthesis report [ M] / / insectsꎬ and vertebrates [J]. Ann Rev Ecol Evol Systꎬ 49:
CORE WRITING TEAMꎬ PACHAURI RK ꎬ MEYER 165-182.
LA. Contribution of working groups Iꎬ II and III to the fifth ROBBIRT KMꎬ DAVY AJꎬ HUTCHINGS MJꎬ et al.ꎬ 2011.
assessment report of the intergovernmental panel on climate Validation of biological collections as a source of
change. Switerland: Geneva: 151. phenological data for use in climate change studies: a case
KERR JTꎬ PINDAR Aꎬ GALPERN Pꎬ et al.ꎬ 2015. Climate study with the orchid Ophrys sphegodes [ J]. J Ecolꎬ 99:
change impacts on bumblebees converge across continents 235-241.
[J]. Scienceꎬ 349: 177-180. RODRIGO Jꎬ HERRERO Mꎬ 2002. Effects of pre ̄blossom
KWEMBEYA EGꎬ 2021. Tracking biological footprints of temperatures on flower development and fruit set in apricot
climate change using flowering phenology of the geophytes: [J]. Sci Horticulꎬ 92(2): 125-135.
Pancratium tenuifolium and Scadoxus multiflorus [J]. Int J ROSE JPꎬ SYTSMA KJꎬ 2021. Complex interactions underlie
Biometeorolꎬ 65: 577-586. the correlated evolution of floral traits and their association
LI LHꎬ ZHANG YLꎬ WU JSꎬ et al.ꎬ 2019. Increasing with pollinators in a clade with diverse pollination systems
sensitivity of alpine grasslands to climate variability along an [J]. Evolutionꎬ DOI:10.1111/ evo.14220.
elevational gradient on the Qinghai ̄Tibet Plateau [J]. Sci SCHWARTZ MDꎬ 2013.Phenology: An integrative environmental
Total Environꎬ 678: 21-29. science [M]. 2nd ed. Dordrecht: Springer.
LIU MYꎬ 2018. The response of leaf morphology and anatomical SHETLER Sꎬ ABU ̄ASAB Mꎬ PETERSON Pꎬ et al.ꎬ 2001.
structure of the alpine plant Meconopsis tomentosa to altitude Earlier plant flowering in spring as a response to global
[J]. Chin J Ecolꎬ 37(1): 35-42. [刘梦颖ꎬ 2018. 高山植 warming in the Washington DC area [J]. Biodivers Conservꎬ
物全缘叶绿绒蒿叶片形态及解剖结构对海拔的响应 10: 597-612.
[J]. 生态学杂志ꎬ 37(1): 35-42.] SHRESTHA UBꎬ GAUTAM Sꎬ BAWA KSꎬ 2012. Widespread
LU PLꎬ YU Qꎬ HE QTꎬ 2006. The response of plant phenology climate change in the Himalayas and associated changes in
to climate change [ J]. Acta Ecol Sinꎬ 26 ( 3): 923 - local ecosystems [J]. PLoS ONEꎬ 7: e36741.
929. [陆佩玲ꎬ 于强ꎬ 贺庆棠ꎬ 2006. 植物物候对气候变 SONG ZQꎬ FU YSꎬ DU YJꎬ et al.ꎬ 2020. Flowering phenology
化的响应 [J]. 生态学报ꎬ 26(3): 923-929.] of a widespread perennial herb shows contrasting responses to
MCEWAN RWꎬ BRECHA RJꎬ GEIGER DRꎬ et al.ꎬ 2011. global warming between humid and non ̄humid regions
Flowering phenology change and climate warming in [J]. Funct Ecolꎬ 34(9): 1870-1881.
southwestern Ohio [J]. Plant Ecolꎬ 212(1): 55-61. SONG ZQꎬ FU YSꎬ DU YJ et al.ꎬ 2021. Global warming
MEMMOTT Jꎬ CRAZE PGꎬ WASER NMꎬ et al.ꎬ 2007. Global increases latitudinal divergence in flowering dates of a
warming and the disruption of plant ̄pollinator interactions perennial herb in humid regions across eastern Asia [ J].
[J]. Ecol Lettꎬ 10: 710-717. Agric For Meteorolꎬ 296: 108-209.
MOHANDASS Dꎬ ZHAO JLꎬ XIA YMꎬ et al.ꎬ 2015. Increasing SPARKS THꎬ CAREY PKꎬ COMBES Jꎬ 1997. First leafing
temperature causes flowering onset time changes of alpine dates of trees in Surrey between 1947 and 1996 [J]. London
ginger Roscoea in the Central Himalayas [J]. J Asia ̄Pacific Natꎬ 76: 15-20.
Biodiversꎬ 8(3): 191-198. STELTZER Hꎬ POST Eꎬ 2009. Seasons and life cycles
PEÑUELAS Jꎬ FILELLA Lꎬ 2001. Phenology: Responses to a [J]. Scienceꎬ 324: 886-887.
warming world [J]. Scienceꎬ 294: 793-795. SUN SXꎬ ZHANG Yꎬ HUANG DZꎬ et al.ꎬ 2020. The effect of
PEÑUELAS Jꎬ RUTISHAUSER Tꎬ FILELLA Iꎬ 2009. climate change on the richness distribution pattern of oaks
Phenology feedbacks on climate change [J]. Scienceꎬ 324: ( Quercus L.) in China [ J ]. Sci Total Environꎬ
887-888. 744:140786.
QI RYꎬ WANG QLꎬ SHEN HYꎬ 2006. Phenological changes of TAO ZXꎬ GE QSꎬ XU YJꎬ et al.ꎬ 2020. Comparison of
Qinghai herb plants and analysis of the impact of flowering phenology and temperature sensitivity of woody
meteorological conditions [ J]. Meteorol Sci Technolꎬ 34 plants in Xian and Baoji [ J]. Acta Ecol Sinꎬ 40 (11):
(3): 702-706. [祁如英ꎬ 王启兰ꎬ 申红艳ꎬ 2006. 青海草 3666-3676. [陶泽兴ꎬ 葛全胜ꎬ 徐韵佳ꎬ 等ꎬ 2020. 西安和
本植物物候期变化与气象条件影响分析 [J]. 气象科技ꎬ 宝鸡木本植物花期物候变化及温度敏感度对比 [J]. 生
34(3): 702-706.] 态学报ꎬ 40(11): 3666-3676.]
RAWAL DSꎬ KASEL Sꎬ KEATLEYMRꎬ et al.ꎬ 2015. TSIFTSIS Sꎬ TSIRIPIDIS Iꎬ 2020. Temporal and spatial patterns