Page 56 - 《广西植物》2023年第2期
P. 56
2 5 0 广 西 植 物 43 卷
controls on fresh organic matter decomposition in
agroecosystems [J]. Geodermaꎬ 274: 35-44.
参考文献: GONG JFꎬ CAI ZJꎬ 2018. Soil enzyme activity and their
correlations under different vegetation types in karst area
BURNS RGꎬ DEFOREST JLꎬ MARXSEN Jꎬ et al.ꎬ 2013. Soil [J]. Guizhou Agric Sciꎬ 46(5): 59-63. [宫杰芳ꎬ 蔡照
enzymes in a changing environment: Current knowledge and 军ꎬ 2018. 喀斯特地区不同植被类型的土壤酶活性及相关
future directions [J]. Soil Biol Biochemꎬ 58: 216-234. 性 [J]. 贵州农业科学ꎬ 46(5): 59-63.]
CAO Hꎬ SUN Hꎬ YANG Hꎬ et al.ꎬ 2003. A review soil enzyme GUAN HLꎬ FAN JWꎬ LU XKꎬ 2022. Soil specific enzyme
activity and its indication for soil quality [J]. Chin J Appl stoichiometry reflects nitrogen limitation of microorganisms
Environ Biolꎬ 9(1): 105-109. [曹慧ꎬ 孙辉ꎬ 杨浩ꎬ 等ꎬ under different types of vegetation restoration in the karst
2003. 土壤 酶 活 性 及 其 对 土 壤 质 量 的 指 示 研 究 进 展 areas [J]. Appl Soil Ecolꎬ 169: 104253.
[J]. 应用与环境生物学报ꎬ 9(1): 105-109.] GUAN SYꎬ 1986. Soil enzymes and their research methods
CAO JHꎬ YUAN DXꎬ PAN GXꎬ 2003. Some soil features in [M]. Beijing: Agricultural Press. [关松荫ꎬ 1986. 土壤酶
karst ecosystem [J]. Adv Earth Sciꎬ 18(1): 37-44. [曹建 及其研究法 [M]. 北京: 农业出版社.]
华ꎬ 袁道先ꎬ 潘根兴ꎬ 2003. 岩 溶 生 态 系 统 中 的 土 壤 HE XJꎬ HOU EQꎬ LIU Yꎬ et alꎬ 2016. Altitudinal patterns and
[J]. 地球科学进展ꎬ 18(1): 37-44.] controls of plant and soil nutrient concentrations and
CAO JHꎬYUAN DXꎬ TONG LQꎬ et al.ꎬ 2015. An overview of stoichiometry in subtropical China [J]. Sci Repꎬ 6: 24261.
karst ecosystem in Southwest China: current state and future HILL BHꎬ ELONEN CMꎬ SEIFERT LRꎬ et al.ꎬ 2012.
management [J]. J Resour Ecolꎬ 6(4): 247-256. Microbial enzyme stoichiometry and nutrient limitation in US
CHEN Hꎬ LUO Pꎬ WEN Lꎬ et al.ꎬ 2017. Determinants of soil streams and rivers [J]. Ecol Indicꎬ 18(4): 540-551.
extracellular enzyme activity in a karst regionꎬ southwest JIANG LLꎬ HAN XGꎬ DONG Nꎬ et al.ꎬ 2011. Plant species
China [J]. Eur J Soil Biolꎬ 80: 69-76. effects on soil carbon and nitrogen dynamics in a temperate
CHEN Hꎬ LI DJꎬ XIAO KCꎬ et al.ꎬ 2018. Soil microbial steppe of northern China [ J ]. Plant Soilꎬ 346 ( 1 ):
processes and resource limitation in karst and non ̄karst 331-347.
forests [J]. Funct Ecolꎬ 32: 1400-1409. JIANG MHꎬ NI MYꎬ ZHOU JCꎬ et al.ꎬ 2018. Effects of
CONDRON LMꎬ NEWMAN Sꎬ 2011. Revisiting the warming and precipitation reduction on soil enzyme activity
fundamentals of phosphorus fractionation of sediments and in a young Cunninghamia lanceolata plantation [J]. Chin J
soils [J]. J Soils Sedꎬ 11(5): 830-840. Ecolꎬ 37(11): 3210-3219. [江淼华ꎬ 倪梦颖ꎬ 周嘉聪ꎬ
CUI YXꎬ FANG LCꎬ GUO XBꎬ et al.ꎬ 2018. Ecoenzymatic 等ꎬ 2018. 增温和降雨减少对杉木幼林土壤酶活性的影响
stoichiometry and microbial nutrient limitation in rhizosphere [J]. 生态学杂志ꎬ 37(11): 3210-3219.]
soil in the arid area of the Northern Loess Plateauꎬ China LAI Lꎬ HUANG XJꎬ YANG Hꎬ et al.ꎬ 2016. Carbon emissions
[J]. Soil Biol Biochemꎬ 116: 11-21. from land ̄use change and management in China between
CURTIN Dꎬ CAMPBELL CAꎬ JALIL Aꎬ 1998. Effects of 1990 and 2010 [J]. Sci Advꎬ 2(11) : e1601063.
acidity on mineralization: pH ̄dependence of organic matter LAUBER CLꎬ RAMIREZ KSꎬ AANDERUD Zꎬ et al.ꎬ
mineralization in weakly acidic soils [J]. Soil Biol Biochemꎬ 2013. Temporal variability in soil microbial communities
30(1):57-64. across land ̄use types [J]. Isme Jꎬ 7(8).
DUAN CYꎬ HE CXꎬ SHEN YYꎬ et al.ꎬ 2020. Soil microbe LIAO YLꎬ LU YHꎬ NIE Jꎬ et al.ꎬ 2016. Effects of long ̄term
quantity and enzyme activity characteristics of Eucalyptus fertilization on basic soil productivity and nutrient use
plantations of different forest ages in North Guangxi [ J]. efficiency in paddy soils [J]. J Plant Nutr Fertꎬ 22(5):
Guihaiaꎬ 40(12): 1877-1888. [段春燕ꎬ 何成新ꎬ 沈育伊ꎬ 1249-1258. [廖育林ꎬ 鲁艳红ꎬ 聂军ꎬ 等ꎬ 2016. 长期施肥
等ꎬ 2020. 桂北不同林龄桉树人工林土壤微生物数量和酶 稻田土壤基础地力和养分利用效率变化特征 [J]. 植物
活性特征研究 [J]. 广西植物ꎬ 40(12): 1877-1888.] 营养与肥料学报ꎬ 22(5): 1249-1258.]
FENG Cꎬ MA YHꎬ JIN Xꎬet al.ꎬ 2019. Soil enzyme activities LI Cꎬ LÜ JHꎬ LU Mꎬ et al.ꎬ 2020. Variations of soil enzyme
increase following restoration of degraded subtropical forests activity in typical evergreen broadleaved forests along altitude
[J]. Geodermaꎬ 351: 180-187. gradient in Southeast Yunnan [J]. Fore Resꎬ 33(6): 170-
FIERER Nꎬ MCCAIN CMꎬ MEIR Pꎬ et al.ꎬ 2011. Microbes do 179. [李聪ꎬ 吕晶花ꎬ 陆梅ꎬ 等ꎬ 2020. 滇东南典型常绿阔
not follow the elevational diversity patterns of plants and 叶林土壤酶活性的海拔梯度特征 [J]. 林业科学研究ꎬ
animals [J]. Ecologyꎬ 92(4): 797-804. 33(6): 170-179.]
FAN ZZꎬ LU SYꎬ WANG Jꎬ et al.ꎬ 2018. Microbial and enzyme LIN HL LIANG SCꎬ YAO YPꎬ et al.ꎬ 2021. Species
activities in rhizosphere soil of different forest stand in karst composition and environmental analysis of deciduous broad ̄
and non karst areas [J]. J Beijing For Univꎬ 40(7): 55- leaf forests in the karst hills of Guilin [J]. Guihaiaꎬ 41(5):
61. [范周周ꎬ 卢舒瑜ꎬ 王娇ꎬ 等ꎬ 2018. 岩溶与非岩溶区 758-768. [林红玲ꎬ 梁士楚ꎬ 姚义鹏ꎬ 等ꎬ 2021. 桂林岩溶
不同林分根际土壤微生物及酶活性 [J]. 北京林业大学 石山落叶阔叶林种类组成及其环境解释 [J]. 广西植物ꎬ
学报ꎬ 40(7): 55-61.] 41(5): 758-768.]
GASTON KJꎬ 2000. Global patterns in biodiversity [ J ]. LIN JPꎬ DENG AZꎬ ZHAO XMꎬ et al.ꎬ 2019. Variation
Natureꎬ 405(6783): 220-227. characteristics of soil nutrients of cultivated land in different
GILLIS JDꎬ PRICE G.Wꎬ 2016. Linking short ̄term soil carbon elevation fields in typical hilly areas of Southern Mountains
and nitrogen dynamics: Environmental and stoichiometric [J]. Trans Chin Soc Agric Machꎬ 50(5): 300-309. [林建