Page 118 - 《广西植物》2023年第5期
P. 118

8 9 8                                  广  西  植  物                                         43 卷
            带分布型属和热带分布型属植物截然相反的影                                 Mitteleuropasꎬ 2. Aufl.ꎬ Scriptaꎬ GeobotanicaIX [ M ].
            响ꎬ在一定程度上说明两个分布型属植物对于低                                Göttingen: Verlag E. Goltze.
                                                               GIVNISH TJꎬ 1979. On the adaptive significance of leaf form
            温 冰 冻 等 的 适 应 能 力 存 在 差 异 ( Wang et al.ꎬ
                                                                 [J]. Top Plant Pop Biol: 375-407.
            2011ꎻ Zanne et al.ꎬ 2014)ꎮ 此外ꎬ本研究发现两
                                                               GIVNISH TJꎬ 2002. Adaptive significance of evergreen vs.
            个分布型属常绿阔叶植物的地理更替除了受到气
                                                                 deciduous leaves: solving the triple paradox [J]. Silv Fennꎬ
            温影响ꎬ还受到降水的微弱影响ꎬ反映出热带分布                               36(3): 703-743.
            型属常绿植物对于水分的要求比温带分布型属常                              IGEG Jꎬ TANENTZAP AJꎬ 2020. Angiosperm speciation cools

            绿植物更高ꎬ这可能与代谢等因素有关( Brown et                          down in the tropics [J]. Ecol Lettꎬ 23(4): 692-700.
            al.ꎬ 2004)ꎮ                                        LU Lꎬ MAO Lꎬ YANG Tꎬ et al.ꎬ 2018. Evolutionary history of
                 总之ꎬ本研究提示亚热带地区的温带和热带                             the angiosperm flora of China [ J]. Natureꎬ 554 (7691):
                                                                 234-238.
            分布型属植物在生活史性状和生态习性上存在广
                                                               MORALES AGꎬ MENDOZA JMOꎬ GOZALBO MEꎬ et al.ꎬ
            泛的区别ꎮ 可能正是由于这些区别ꎬ两类植物虽
                                                                 2012. Arboreal  and  prostrate  conifers  coexisting  in
            然共同存在于亚热带地区的森林中ꎬ但对于温度                                Mediterranean high mountains differ in their climatic
            等气候因子的响应特点迥异ꎮ 气候变化场景下ꎬ                               responses [J]. Dendrochronologiaꎬ 30(4): 279-286.
            这些差异有可能会驱动亚热带森林的区系特征发                              ORME Dꎬ FRECKLETON Rꎬ THOMAS Gꎬ et al.ꎬ 2018.
            生改变ꎮ 值得注意的是ꎬ本研究仅针对不同属分                               caper: Comparative analyses of phylogenetics and evolution
            布型进行了分析ꎬ研究发现也仅适用于属这一层                                in R [J/ OL]. R package version 1.0.1. https:/ / CRAN.R ̄
                                                                 project.org/ package=caper.
            级ꎮ 对于本研究发现是否也适用于属以下的分类
                                                               PARADIS Eꎬ SCHLIEP Kꎬ 2018. ape 5.0: an environment for
            层级ꎬ例如物种层级ꎬ需要更为深入的研究ꎮ
                                                                 modern phylogenetics and evolutionary analyses in R
                 致谢  感谢中国森林生物多样性监测网络的                            [J]. Bioinformaticsꎬ 35(3): 526-528.
            建设者们ꎮ 感谢两位审稿人提出的宝贵建议ꎮ                              QIAN Hꎬ JIN Yꎬ 2016. An updated megaphylogeny of plantsꎬ a
                                                                 tool for generating plant phylogenies and an analysis of
                                                                 phylogenetic community structure [J]. J Plant Ecolꎬ 9(2):
            参考文献:                                                233-239.
                                                               QIAN Hꎬ RICKLEFS REꎬ 2016. Out of the tropical lowlands:
            BARTO Kꎬ 2019. MuMIn: multi ̄model inference. R package  latitude versus elevation [J]. Trend Ecol Evolꎬ 31(10):
               version 1.43. 15 [J]. Retrieved Mayꎬ 11: 2020.    738-741.
            BROWN JHꎬ 2014. Why are there so many species in the  QIAN Hꎬ SONG Jꎬ KRESTOV Pꎬ et al.ꎬ 2003. Large ̄scale
               tropics? [J]. J Biogeogrꎬ 41(1): 8-22.            phytogeographical patterns in East Asia in relation to
            BROWN JHꎬ GILLOOLY JFꎬ ALLEN APꎬ et al.ꎬ 2004. Toward  latitudinal and climatic gradients [J]. J Biogeogrꎬ 30(1):
               a metabolic theory of ecology [ J ]. Ecologyꎬ 85 ( 7 ):  129-141.
               1771-1789.                                      QIAN Hꎬ WANG Sꎬ HE Jꎬ et al.ꎬ 2006. Phytogeographical
            CHE Jꎬ ZHENG Jꎬ JIANG Yꎬ et al.ꎬ 2020. Separation of  analysis of seed plant genera in China [ J]. Ann Botꎬ
               phylogeny and ecological behaviors between evergreen and  98(5): 1073-1084.
               deciduous woody angiosperms in the subtropical forest  QIAN Hꎬ DENG Tꎬ JIN Yꎬ et al.ꎬ 2019. Phylogenetic
               dynamics plots of China [ J]. Chin J Plant Ecolꎬ44(10):  dispersion and diversity in regional assemblages of seed
               1007-1014. [车俭ꎬ 郑洁ꎬ 蒋娅ꎬ 等ꎬ 2020. 中国亚热带森           plants in China [J]. Proc Natl Acad Sci USAꎬ 116(46):
               林动态监测样地常绿和落叶木本被子植物谱系结构及生                          23192-23201.
               态习性差异 [J]. 植物生态学报ꎬ 44(10): 1007-1014.]          QIAN Hꎬ JIN Yꎬ LEPRIEUR Fꎬ et al.ꎬ 2020. Geographic
            DONOGHUE MJꎬ 2008. A phylogenetic perspective on the  patterns and environmental correlates of taxonomic and
               distribution of plant diversity [J]. Proc Natl Acad Sci USAꎬ  phylogenetic beta  diversity  for  large ̄scale  angiosperm
               105(Supplement 1): 11549-11555.                   assemblages in China [J]. Ecographyꎬ 43(11): 1706-1716.
            EDWARDS EJꎬ CHATELET DSꎬ CHEN BCꎬ et al.ꎬ 2017.    R Core Teamꎬ 2019. R: a language and environment for
               Convergenceꎬ consilienceꎬ and the evolution of temperate  statistical  computing.  R  Foundation  for  Statistical
               deciduous forests [J]. Am Natꎬ 190(S1): S87-S104.  Computingꎬ Viennaꎬ Austria [ EB/ OL ]. [ 2021 - 03 -
            ELLENBERG   Hꎬ  1979.  Zeigerwerte  der  Gefäßpflanzen  22]. https:/ / www.R ̄project.org/ .
   113   114   115   116   117   118   119   120   121   122   123