Page 133 - 《广西植物》2025年第11期
P. 133
11 期 胡晓玉等: 转录组分析马缨杜鹃响应高温胁迫的分子机制 2 0 7 7
图 8 转录因子与激素互作网络图
Fig. 8 Interaction network diagram between transcription factors and hormones
Transcription factors associated with abiotic and biotic stress GUO Mꎬ LIU JHꎬ MA Xꎬ et al.ꎬ 2016. The plant heat stress
tolerance and their potential for crops improvement [ J]. transcription factors ( HSFs): Structureꎬ regulationꎬ and
Genesꎬ 10(10): 771. function in response to abiotic stresses [ J]. Frontiers in
BENJAMINI Yꎬ HOCHBERG Yꎬ 1995. Controlling the false Plant Scienceꎬ 7: 114.
discovery rate: A practical and powerful approach to multiple HASANUZZAMAN Mꎬ NAHAR Kꎬ ALAM MMꎬ et al.ꎬ
testing [J]. Journal of the Royal Statistical Society: Series B 2013. Physiologicalꎬ biochemicalꎬ and molecular mechanisms
(Methodological)ꎬ 57(1): 289-300. of heat stress tolerance in plants [J]. International Journal of
CHENG HFꎬ WAN ZYꎬ XU YXꎬ et al.ꎬ 2023. Transcriptome Molecular Sciencesꎬ 14(5): 9643-9684.
and photosynthetic analyses provide new insight into the HE Yꎬ LEI YSꎬ ZHANG Jꎬ et al.ꎬ 2023. Cloning and expression
molecular mechanisms underlying heat stress tolerance in analysis of Rhododendron bHLH transcription factor RsMYC2
Rhododendron × pulchrum Sweet [ J ]. Tree Physiologyꎬ under abiotic stress [J]. Molecular Plant Breedingꎬ 21(4):
44(1): 133. 1103-1110. [何盈ꎬ 雷云生ꎬ 张劲ꎬ 等ꎬ 2023. 杜鹃 bHLH 转
DUAN SGꎬ TANG Mꎬ TANG Jꎬ et al.ꎬ 2022. Transcriptome 录因子 RsMYC2 的克隆及在非生物胁迫下的表达分析
profiling of Rhododendron delavayi leaf at seedling stage [J]. 分子植物育种ꎬ 21(4): 1103-1110.]
under waterlogging stress [J]. Molecular Plant Breedingꎬ 20 JIANG Jꎬ 2000. The study on scavenging superoxide anion
(9): 2854-2863. [段盛光ꎬ 唐明ꎬ 唐婧ꎬ 等ꎬ 2022. 水淹 radicals of wheat seedling by aceto salicylic acid under water
胁迫下马缨杜鹃幼苗叶片转录组初步分析 [J]. 分子植 deficiency [ J]. Plant Physiology Journalꎬ 36 ( 1): 33 -
物育种ꎬ 20 (9): 2854-2863.] 35. [姜晶ꎬ 2000. 水分亏缺下乙酰水杨酸清除小麦幼苗
-
DUAN Xꎬ CHEN Xꎬ ZHAO YYꎬ 2007a. Study on the seed 中 O 的研究 [J]. 植物生理学通讯ꎬ 36 (1): 33-35.]
2
germination of Rhododendron delavayi [J]. Journal of Anhui KAN Yꎬ MU XRꎬ GAO Jꎬ et al.ꎬ 2023. The molecular basis of
Agricultural Sciencesꎬ 35(29): 9199-9200. [段旭ꎬ 陈训ꎬ heat stress responses in plants [ J ]. Molecular Plantꎬ
赵洋毅ꎬ 2007a. 马缨杜鹃种子萌发研究 [J]. 安徽农业科 16(10): 1612-1634.
学ꎬ 35(29): 9199-9200.] KLOPFENSTEIN VDꎬ ZHANG Lꎬ PEDERSEN SBꎬ et al.ꎬ
DUAN Xꎬ CHEN Xꎬ ZHAO YYꎬ 2007b. Study on growth 2018. GOATOOLS: a python library for gene ontology
regularity and technology of Handeliodendron sowing seeds analyses [J]. Scientific Reportsꎬ 8(1): 10872.
[J]. Seedꎬ 26 (10): 82 - 84. [ 段 旭ꎬ 陈 训ꎬ 赵 洋 毅ꎬ KOMAC Bꎬ ESTEBAN Pꎬ TRAPERO Lꎬ et al.ꎬ 2016.
2007b. 马缨杜鹃播种苗的生长规律研究 [J]. 种子ꎬ Modelization of the current and future habitat suitability of
26(10): 82-84.] Rhododendron ferrugineum using potential snow accumulation
FANG LCꎬ TONG Jꎬ DONG YFꎬ et al.ꎬ 2017. De novo RNA [J]. PLoS ONEꎬ 11(1): e0147324.
sequencing transcriptome of Rhododendron obtusum identified KUMAR Pꎬ 2012. Assessment of impact of climate change on
the early heat response genes involved in the transcriptional rhododendrons in Sikkim Himalayas using Maxent modelling:
regulation of photosynthesis [ J ]. PLoS ONEꎬ limitations and challenges [ J ]. Biodiversity and
12(10): e0186376. Conservationꎬ21(5): 1251-1266.

