Page 92 - 《广西植物》2025年第6期
P. 92
1 0 7 8 广 西 植 物 45 卷
[J]. Biochar for Environmental Management: Science and
4 结论 Technologyꎬ 2: 421-454.
GE XGꎬ CAO YHꎬ ZHOU BZꎬ et al.ꎬ 2019. Biochar addition
increases subsurface soil microbial biomass but has limited
生物质炭添加显著提高土壤 Olsen ̄P、HCl ̄P
effects on soil CO emissions in subtropical moso bamboo
与 Citrate ̄P 的含量ꎬ并随着生物质炭添加浓度与 2
plantations [J]. Applied Soil Ecologyꎬ 142: 155-165.
时间的增加呈增加的趋势ꎮ 生物质炭施入石灰土 GLASER Bꎬ LEHR VIꎬ 2019. Biochar effects on phosphorus
壤中ꎬ土壤有效磷的提高主要来源于弱酸活化的 availability in agricultural soils: A meta ̄analysis [ J ].
无机磷ꎮ 土壤 HCl ̄P、Citrate ̄P、微生物生物量磷、 Scientific Reportsꎬ 9(1): 9338.
Enzyme ̄P 与 pH 是显著影响土壤磷素有效性的关 HONG Cꎬ LU Sꎬ 2018. Does biochar affect the availability and
键因素ꎮ 生物质炭添加浓度为 5 thm 时ꎬ土壤 chemical fractionation of phosphate in soils? [ J ].
 ̄2
Environmental Science and Pollution Researchꎬ 25:
微生物生物量磷含量与碱性磷酸酶活性最高ꎬ因
8725-8734.
此蔗渣生物质炭添加浓度为 5 thm 是提高岩溶
 ̄2
HUANG Cꎬ LIU LJꎬ ZHANG MKꎬ 2011. Effects of biochar on
森林土壤磷素有效性的最合适浓度ꎮ properties of red soil and ryegrass growth [ J]. Journal of
Zhejiang University(Agriculture and Life Sciences)ꎬ 37(4):
439-445. [黄超ꎬ 刘丽君ꎬ 章明奎ꎬ 2011. 生物质炭对红
参考文献: 壤性质和黑麦草生长的影响 [J]. 浙江大学学报(农业与
生命科学版)ꎬ 37(4): 439-445.]
ATKINSON CJꎬ FITZGERALD JDꎬ HIPPS NAꎬ 2010.
LEHMANN Jꎬ 2007. Bio ̄energy in the black [J]. Frontiers in
Potential mechanisms for achieving agricultural benefits from
Ecology and Evolutionꎬ 5: 381-387.
biochar application to temperate soils: a review [J]. Plant
LEHMANN Jꎬ DA SILVA JPꎬ STEINER Cꎬ et al.ꎬ 2003.
Soilꎬ 337: 1-18. Nutrient availability and leaching in an archaeological
BORNEMANN LCꎬ KOOKANA RSꎬ WELP Gꎬ 2007.
Anthrosol and a Ferralsol of the Central Amazon basin:
Differential sorption behaviour of aromatic hydrocarbons on
fertilizerꎬ manure and charcoal amendments [J]. Plant Soilꎬ
charcoals prepared at different temperatures from grass and
249(2): 343-357.
wood [J]. Chemosphereꎬ 67: 1033-1042. LIANG YMꎬ LI MJꎬ PAN FJꎬ et al.ꎬ 2020. Alkaline
BU QZꎬ 2014. The impacts of biochar on the physical and phosphomonoesterase ̄harboring microorganisms mediate soil
chemical properties of limestone soil and crop growth phosphorus transformation with stand age in Chinese Pinus
[M ]. Guilin: Guangxi Normal University. [ 卜 巧 珍ꎬ massoniana plantations [ J ]. Frontiers in Microbiology.
2014. 生物 炭 对 石 灰 土 理 化 性 质 和 作 物 生 长 的 影 响 11: 571209.
[M]. 桂林: 广西师范大学.] LIU CGꎬ WANG QWꎬ JIN YQꎬet al.ꎬ 2021. Perennial cover
CASTLE SCꎬ NEFF JCꎬ 2009. Plant response to nutrient crop biomass contributes to regulating soil P availability more
availability across variable bedrock geologies [ J ]. than rhizosphere P ̄mobilizing capacity in rubber ̄based
Ecosystemsꎬ 12: 101-113. agroforestry systems [J]. Geodermaꎬ 401: 115218.
CHAO JWꎬ WANG JGꎬ DAI Mꎬ 2015. Effects of biochar MACKIE KAꎬ MARHAN Sꎬ DITTERICH Fꎬ et al.ꎬ 2015. The
amendment on phosphorus availability in paddy soil [ J]. effects of biochar and compost amendments on copper
Soilsꎬ 47(4): 670- 674. [巢军委ꎬ 王建国ꎬ 戴敏ꎬ 等ꎬ immobilization and soil microorganisms in a temperate
2015. 生物炭对水稻土 Olsen ̄P 的影响 [J]. 土壤ꎬ 47(4): vineyard [J]. Agriculture Ecosystems & Environmentꎬ 201:
670-674.] 58-69.
CHEN Mꎬ QIN HLꎬ LIANG YMꎬ et al.ꎬ 2024. The phoD ̄ MARTINSEN Vꎬ ALLING Vꎬ NURIDA NLꎬ et al.ꎬ 2015. pH
harboring microorganism communities and networks in karst effects of the addition of three biochars to acidic Indonesian
and non ̄karst forests in Southwest China [ J]. Forestsꎬ mineral soils [J]. Soil Science and Plant Nutritionꎬ 61(5):
15: 341. 821-834.
CUI LQꎬ YAN JLꎬ YANG YGꎬ et al.ꎬ 2013. Influence of OHNO Tꎬ ZIBILSKE LMꎬ 1991. Determination of low
biochar on microbial activities of heavy metals contaminated concentrations of phosphorus in soil extracts using malachite
paddy fields [J]. BioResourcesꎬ 8: 5536-5548. green [J]. Soil Science Society of America Journalꎬ 55(3):
DELUCA THꎬ GUNDALE MJꎬ MACKENZIE MDꎬ et al.ꎬ 892-895.
2015. Biochar effects on soil nutrient transformations PAN FJꎬ QIAN Qꎬ LIANG YMꎬ et al.ꎬ 2022. Spatial variations

