| This article has been:browse 2145times Download 869times |
 Scan the code! |
|
|
| 华南沿海卵叶喜盐草生物量差异及其关键影响因素 |
|
刘飞武1,2, 戴洪涛3, 郭宇明3, 盘远方2,4, 吴礼广3, 黄亮亮1, 邱广龙2,4*
|
|
1. 桂林理工大学 环境科学与工程学院, 广西环境污染控制理论与技术重点实验室, 广西 桂林 541006;2. 广西海洋科学院(广西红树林研究中心), 广西红树林保护与利用重点实验室, 广西 北海 536000;3. 广西壮族自治区合浦儒艮国家级自然保护区管理中心, 广西 北海 536100;4. 自然资源部北部湾滨海湿地生态系统野外科学观测研究站, 广西 北海 536015
|
|
| 摘要: |
| 为探究卵叶喜盐草(Halophila ovalis)生物量的变化及其与环境因子的关系,该研究基于1990—2025年华南沿海文献数据,系统分析了卵叶喜盐草生物量对多种环境因子的响应关系,并采用结构方程模型与线性混合效应模型,解析水温、盐度、营养盐、悬浮物及pH等因子对生物量的直接与间接影响。结果表明:(1)水体悬浮物在整体上对卵叶喜盐草生物量积累具有显著负作用,是华南沿海地区普遍存在的限制因子。(2)水温、盐度及营养盐[溶解无机氮(DIN)与水体活性磷酸盐(PO43-)]是导致生物量差异的关键环境因子。(3)氮磷营养盐,尤其是铵态氮(NH4+-N),对各省(区)卵叶喜盐草生物量的积累均构成重要制约作用,但主导因子在区域间存在差异。该研究强调,未来需关注多尺度环境因子交互效应,并制定基于环境阈值管理的区域适应性保护策略。该研究结果为卵叶喜盐草海草床的保护与修复提供了科学依据。 |
| 关键词: 线性混合效应模型(LMM), 结构方程模型(SEM), 卵叶喜盐草, 生物量, 环境因子 |
| DOI:10.11931/guihaia.gxzw202504049 |
| 分类号:Q948 |
| 文章编号:1000-3142(2025)09-1578-14 |
| Fund project:国家自然科学基金(32170399); 广西科学院改革发展专项(2024YGFZ504-102)。 |
|
| Differences in biomass of Halophila ovalis and their key environmental factors along the South China coast |
|
LIU Feiwu1,2, DAI Hongtao3, GUO Yuming3, PAN Yuanfang2,4, WU Liguang3, HUANG Liangliang1, QIU Guanglong2,4*
|
|
1. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, Guangxi, China;2. Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Beihai 536000, Guangxi, China;3. Hepu Dugong National Nature Reserve Management Center, Guangxi Zhuang Autonomous Region, Beihai 536100, Guangxi, China;4. Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, Guangxi, China
|
| Abstract: |
| To investigate the relationship between biomass variation in Halophila ovalis and its environmental factors, this study systematically analyzed response relationship of H. ovalis biomass to multiple environmental factors using literature data(1990 — 2025)from the South China coast. Structural equation modeling(SEM)and linear mixed-effects model(LMM)were employed to quantify direct and indirect factors, such as water temperature, salinity, nutrients, suspended solids, and pH on biomass. The results were as follows:(1)Suspended solids in water significantly inhibited biomass accumulation and represented a widespread limiting factor across the region.(2)Water temperature, salinity, and nutrients [including dissolved inorganic nitrogen(DIN)and reactive phosphate in water(PO43-)availability] were key environmental factors leading to biomass differences.(3)Nitrogen and phosphorus nutrients, particularly ammonium nitrogen(NH4+-N), imposed critical constraints on biomass accumulation in each province(region), but dominant factors varied regionally. This study emphasizes that in the future, it is necessary to pay attention to the interaction effects of multi-scale environmental factors and formulate regional adaptive protection strategies based on environmental threshold management. The results of this study provide a scientific basis for the protection and restoration of the seagrass bed of H. ovalis. |
| Key words: linear mixed-effects model(LMM), structural equation modeling(SEM), Halophila ovalis, biomass, environmental factors |