Page 65 - 《广西植物》2020年第9期
P. 65
1 2 8 0 广 西 植 物 40 卷
scriptome sequenced for tea plant[J]. Mol Plant Breedꎬ 13 NOVAES Eꎬ DROST DRꎬ FARMERIE WGꎬ et al.ꎬ 2008.
(10): 2250-2255. [陈琳波ꎬ 夏丽飞ꎬ 周萌ꎬ 等ꎬ 2015. 基 High ̄throughput gene and SNP discovery in Eucalyptus gran ̄
于 RNA-Seq 技术的“紫鹃”茶树转录组分析[J]. 分子植 disꎬ an uncharacterized genome[J]. BMC Genoꎬ 9:312.
物育种ꎬ 13(10): 2250-2255.] PERTEA Mꎬ PERTEA GMꎬ ANTONESCU CMꎬ et al.ꎬ 2015.
CHEN SJꎬ ZHANG MZꎬ YAO YXꎬ et al.ꎬ 2017. Establishment Stringtie enables improved reconstruction of a transcriptome
of DNA fingerprinting for tea germplasm from Qiannan pre ̄ from rna ̄seq reads[J]. Nat Biotechnolꎬ 33(3): 290-295.
fecture by SSR markers[J]. J Plant Gene Resourꎬ 18(1): SHI CYꎬ YANG Hꎬ WEI CLꎬ et al.ꎬ 2011. Deep sequencing of
106-111.[陈世军ꎬ 张明泽ꎬ 姚玉仙ꎬ等ꎬ 2017. 基于 SSR the Camellia sinensis transcriptome revealed candidate genes
标记的黔南茶树种质资源 DNA 指纹图谱构建[J]. 植物 for major metabolic pathways of tea ̄specific compounds
遗传资源学报ꎬ 18(1): 106-111.] [J]. BMC Genomicsꎬ 12:131.
FLOREA Lꎬ SONG Lꎬ SALZBERG SLꎬ 2013. Thousands of WANG JYꎬ CHEN Wꎬ LIU DDꎬ et al.ꎬ 2019. The transcriptome
exon skipping events differentiate among splicing patterns in analysis of different tea cultivars in response to the spring cold
sixteen human tissues[J]. F1000Resꎬ 2: 188. spells[J]. J Tea Sciꎬ 39(2): 181-192. [王君雅ꎬ 陈玮ꎬ 刘丁
KIM Dꎬ LANGMEAD Bꎬ SALZBERG SLꎬ 2015. Hisat:A fast 丁ꎬ 等ꎬ 2019. 不同品种茶树新梢响应“倒春寒”的转录组分
spliced aligner with low memory requirements [ J ]. Nat 析[J]. 茶叶科学ꎬ 39(2): 181-192.]
Methodsꎬ 12(4):357-360. WANG Lꎬ FENG Zꎬ WANG Xꎬ et al.ꎬ 2010. DEGseq: An R
LI MXꎬ WANG Mꎬ GAN YDꎬ et al.ꎬ 2018. Transcriptome data package for identifying differentially expressed genes from
assembly and gene function annotation of buds and leaves of RNA ̄seq data[J]. Bioinformaticsꎬ 26: 136-138.
Cammellia sinensis cultivar Jing’anbaicha[J]. Mod Food Sci WEI CLꎬ YANG Hꎬ WANG SBꎬ et al.ꎬ 2018. Draft genome se ̄
Technolꎬ 34(5): 93-100. [李明玺ꎬ 王敏ꎬ 甘玉迪ꎬ 等ꎬ quence of Camellia sinensis var. sinensis provides insights
2018. 靖安白茶芽和叶的转录组数据组装机基因功能注 into the evolution of the tea genome and tea quality[J]. Proc
释[J]. 现代食品科技ꎬ 34(5): 93-100.] Natl Acad Sci USAꎬ 115(18): E4151-E4158.
LIU BYꎬ ZHOU Jꎬ XU Mꎬ et al.ꎬ 2008. Tissue culture of imma ̄ WEI Kꎬ ZHANG YZꎬ WU LYꎬ et al.ꎬ 2018. Gene expression
ture embryo and parentage identification of hybrids between analysis of bud and leaf color in tea[J]. Plant Physiol Bio ̄
Camellia taliensis ( w. w. Smish) melchior and C. sinensis chemꎬ 107: 310-318.
‘Fuding Dabaicha’[J]. Acta Hortic Sinꎬ 35: 735-740. [刘 WU HLꎬ CHEN Dꎬ LI JXꎬ et al.ꎬ 2013. De novo characteriza ̄
本英ꎬ 周健ꎬ 许枚ꎬ 等ꎬ 2008. 云南大理茶与福鼎大白茶 tion of leaf transcriptome using 454 sequencing and develop ̄
种间杂交幼胚的组织培养及亲子鉴定[J]. 园艺学报ꎬ ment of EST ̄SSR marker in tea[ J]. Plant Mol Biol Resꎬ
35: 735-740.] 31: 524-538.
LIU Fꎬ WANG Yꎬ DING ZTꎬ et al.ꎬ 2017. Transcriptomic ZHANG LJꎬ LIU Qꎬ YANG Qꎬ 2015. Advangage and utilization
analysis of flower development in tea [ J]. Geneꎬ 631: of tea germplasm resources in Qiannan prefecture of Guizhou
39-51. Province[J]. Chin Tea Procꎬ 1: 38-41. [张丽娟ꎬ 柳青ꎬ
MCKENNA Aꎬ HANNA Mꎬ BANKS Eꎬ et al.ꎬ 2010. The ge ̄ 杨清ꎬ 2016. 贵州省黔南州茶树种质资源优势及开发利
nome analysis toolkit: A mapreduce framework for analyzing 用[J]. 中国茶叶加工ꎬ 1: 38-41.]
next ̄generation dna sequencing data[J]. Geno Resꎬ 20(9):
1297-1303. (责任编辑 周翠鸣)