Page 68 - 《广西植物》2022年第3期
P. 68
4 1 2 广 西 植 物 42 卷
DONG ZXꎬ HAN QFꎬ JIA ZKꎬ et al.ꎬ 2007. Photosynthesis NAKANO Hꎬ MAKINO Aꎬ MAE Tꎬ 1997. The effect of
rate in response to light intensity and CO concentration in elevated partial pressures of CO on the relationship between
2 2
different alfalfa varieties [J]. Acta Ecol Sinꎬ 7(6): 2272- photosynthetic capacity and N content in rice leaves
2278. [董 志 新ꎬ 韩 清 芳ꎬ 贾 志 宽ꎬ 等ꎬ 2007. 不 同 苜 蓿 [J]. Plant Physiolꎬ 115(1): 191-198.
(Medicago sativa L.)品种光合速率对光和 CO 浓度的响 POORTER Lꎬ 1999. Growth responses of 15 rain ̄forest tree
2
应特征 [J]. 生态学报ꎬ 7(6): 2272-2278.] species to a light gradient: the relative importance of
DOUTHE Cꎬ DREYER Eꎬ EPRON Dꎬ et al.ꎬ 2011. Mesophyll morphological and physiological traits [ J]. Funct Ecolꎬ
conductance to CO ꎬ assessed from online TDL ̄AS records of 13(3): 396-410.
2
13 SAGE RFꎬ 1994. Acclimation of photosynthesis to increasing
CO discriminationꎬ displays small but significant short ̄
2
term responses to CO and irradiance in Eucalyptus seedlings atmospheric CO : The gas exchange perspective [ J ].
2 2
[J]. J Exp Botꎬ 62(15): 5335-5346. Photosynth Resꎬ 39(3): 351-368.
DOUTHE Cꎬ DREYER Eꎬ BRENDEL Oꎬ et al.ꎬ 2012. Is SAWADA Sꎬ KUNINAKA Mꎬ WATANABE Kꎬ 2001. The
mesophyll conductance to CO in leaves of three Eucalyptus mechanism to suppress photosynthesis through end product
2
species sensitive to short ̄term changes of irradiance under inhibition in single rooted soybean leaves during acclimation
ambient as well as low O ? [J]. Funct Plant Biolꎬ 39(5): to CO enrichment [ J]. Plant Cell Environꎬ 42 ( 10):
2 2
435-448. 1093-1102.
EVANS JRꎬ LORETO Fꎬ 2000. Acquisition and diffusion of SUN Yꎬ GU LHꎬ DICKINSON REꎬ et al.ꎬ 2013. Asymmetrical
CO in higher plant leaves [ M ] / / LEEGOOD RC. effects of mesophyll conductance on fundamental
2
Photosynthesis: physiology and metabolism. Amsterdam: photosynthetic parameters and their relationships estimated
Academic Publishers: 321-351. from leaf gas exchange measurements [ J ]. Plant Cell
EVANS JRꎬ POORTER Hꎬ 2001. Photostic acclimation of Environꎬ 37(4): 978-994.
plants to growth irradiance: the relative importance of THOLEN Dꎬ ZHU XGꎬ 2011. The mechanistic basis of internal
specific leaf area and nitrogen partitioning in maximizing conductance: A theoretical analysis of mesophyll cell
carbon gain [J]. Plant Cell Environꎬ 24(8): 755-767. photosynthesis and CO diffusion [ J ]. Plant Physiolꎬ
2
FARQUHAR GDꎬ VON CAEMMERER Sꎬ BERRY JAꎬ 156(1): 90-105.
1980. A biochemical model of photosynthetic CO THOLEN Dꎬ ETHIER Gꎬ GENTY Bꎬ et al.ꎬ 2012. Variable
2
assimilation in leaves of C species [J]. Plantaꎬ 149(1): mesophyll conductance revisited: theoretical background and
3
78-90. experimental implications [J]. Plant Cell Environꎬ 35(12):
FINI Aꎬ LORETO Fꎬ TATTINI Mꎬ et al.ꎬ 2016. Mesophyll 2087-2103.
conductance plays a central role in leaf functioning of XIONG Dꎬ LIU XIꎬ LIU Lꎬ et al.ꎬ 2015. Rapid responses of to
Oleaceae species exposed to contrasting sunlight irradiance changes of CO concentrationꎬ temperature and irradiance are
2
[J]. Physiol Plantꎬ 157(1): 54-68. affected by N supplements in rice [J]. Plant Cell Environꎬ
GU LHꎬ PALLARDY SGꎬ TU Kꎬ et al.ꎬ 2010. Reliable 38(12): 2541-2550.
estimation of biochemical parameters from C leaf YAMORI Wꎬ NAGAI Tꎬ MAKINO Aꎬ 2011. The rate ̄limiting
3
photosynthesis ̄intercellular carbon dioxide response curves step for CO 2 assimilation at different temperatures is
[J]. Plant Cell Environꎬ 33(11): 1852-1874. influenced by the leaf nitrogen content in several C crop
3
GU LHꎬ SUN Yꎬ 2013. Artefactual responses of mesophyll species [J]. Plant Cell Environꎬ 34(5): 764-777.
conductance to CO and irradiance estimated with the YAO ZGꎬ WANG ZSꎬ YAN Cꎬ et al.ꎬ 2010. The photosynthesis
2
variable J and online isotope discrimination methods response to different light intensity for the endangered plant
[J]. Plant Cell Environꎬ 37(5): 1231-1249. Parrotia subaequalis [J]. J Nanjing For Univ (Nat Sci Ed)ꎬ
JIA RFꎬ YIN GTꎬ YANG JCꎬ et al.ꎬ 2012. Effects of different 34(3): 83-88. [姚志刚ꎬ 王中生ꎬ 颜超ꎬ 等ꎬ 2010. 濒危
nutrient deficiency on Calophyllum inophyllum L. seedlings 植物银缕梅幼苗对不同光强的光合响应 [J]. 南京林业
[J]. J Nanjing For Univ (Nat Sci Ed)ꎬ 36(6): 33-36. [贾 大学学报(自然科学版)ꎬ 34(3): 83-88.]
瑞丰ꎬ 尹光天ꎬ 杨锦昌ꎬ 等ꎬ 2012. 不同缺素处理对红厚 ZHANG XCꎬ SHANGGUAN ZPꎬ 2009. The responses of
壳幼苗生长的影响 [J]. 南京林业大学学报(自然科学 photosynthetic electron transport and partition in the winter
版)ꎬ 36(6): 33-36.] wheat leaves of different drought resistances to nitrogen levels
KING DAꎬ 2003. Allocation of above ̄ground growth is related to [J]. Plant Physiol Commꎬ 45(1): 13-18 [张绪成ꎬ 上官
light in temperate deciduous saplings [ J]. Funct Ecolꎬ 周平ꎬ 2009. 抗旱性不同品种的小麦叶片中光合电子传递
17(4): 482-488. 和分配对氮素水平的响应 [J]. 植物生理学通讯ꎬ 45(1):
LORETO Fꎬ TSONEV Tꎬ CENTRITTO Mꎬ 2009. The impact of 13-18.]
blue light on leaf mesophyll conductance [J]. J Exp Botꎬ ZHANG SRꎬ DANG QLꎬ 2006. Effects of carbon dioxide
60(8): 2283-2290. concentration and nutrition on photosynthetic functions of white
MAROCO JPꎬ BREIA Eꎬ FARIA Tꎬ et al.ꎬ 2002. Effects of birch seedlings [J]. Tree Physiolꎬ 26(5): 1457-1467.
long ̄term exposure to elevated CO and N fertilization on the ZHOU BZꎬ FU MYꎬ 2008. Fine root production and turnover of
2
development of photosynthetic capacity and biomass Phyllostachys pubescens stands in Miaoshanwu Nature Reserve
accumulation in Quercus suber L. [J]. Plant Cell Environꎬ [J]. Acta Agric Univ Jiangxiꎬ 30(2): 239-245. [周本智ꎬ
25 (1): 105-113. 傅懋毅ꎬ 2008. 庙山坞自然保护区毛竹林细根生产和周转
MANTER DKꎬ KERRIGAN Jꎬ 2004. A/ C curve analysis across 研究 [J]. 江西农业大学学报ꎬ 30(2): 239-245.]
i
a range of woody plant species: influence of regression
analysis parameters and mesophyll conductance [J]. J Exp (责任编辑 周翠鸣)
Botꎬ 55(408): 2581-2588.